用户名: 密码: 验证码:
振荡流与底沙、泥相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥沙运动与水流的紊动现象密切相关,振荡流边界层存在于海底床面,虽然厚度相对水深而言很小,但其水流紊动特性与波浪的传播和变形、泥沙起动和输运、以及床面形态的变化密切相关,对其特性的研究具有重要的理论和工程意义。本文在前人工作的基础上,对振荡流边界层的数值研究引入大涡模拟方法,要通过数值模拟来反映振荡流和底泥的相互作用,引入大涡模拟湍流模型和底泥底部本构方程来建立波浪、水流和底泥相互作用理论模型。
     海岸泥沙主要受两种动力因素作用,即波浪和潮流的作用。但因潮流属于长周期波,其对底床泥沙运动,可利用河流泥沙运动规律近似描述。而波浪水流与单向水流不同,它存在着流速和压力的周期性振荡。对于振荡流在平床及沙纹床面上振荡流的湍流结构,且由于振荡流具有强剪切作用及各项异性,故而本文采用了有限差分法的各向异性的湍流数学模型,并取得了计算结果。通过与已有的前人实验结果对比,证明该模型在湍流能量、耗散以及雷诺应力都得到了较好的结果。通过对模型的改进,沙纹床面上的粘性涡结构也得到了很好的模拟,其流场状态,粘性涡的形成、扩散、“喷射”和破碎也得到了较好的体现。
     另外通过对海河口等地河口底泥的流变实验,本文对海河口几个典型泥场的淤泥流变特性及其材料特性进行了实验研究,并给出了相应的剪切力与剪切应变的曲线。
The turbulent bottom layer induced by the wave or wave combined current over rough bed has been received much attention from coastal engineer. Although the thickness of this bottom layer is quite small compared with the water depth, it still play a very important role in determining the sediment suspension and movement, the rate of wave energy dissipation, and the magnitude of bottom shear stress. Therefore, a numerical model is developed to describe the essential feature in the oscillatory bottom layer, and the large eddy simulation technique is used to model the sub-grid scale turbulence effects, the correspondence between the measurement and the simulations seems to be good in all case.
     When we discuss the interaction between the wave and sediments, the turbulence must be concerned. This paper mainly considers the oscillatory bottom boundary layers over flat or rippled sea beds. Owing to the strong shear and anisotropy of oscillatory flow, an anisotropic turbulence mathematical model is set up using the finite difference method, and the computational results of the model are verified by comparisons with well known experiments. Turbulent energy, dissipation and Reynolds stress can all be computed with this mathematical model, and the development processes of a large coherent vortex structure over a rippled bed, such as main flow separation, coherent vortex formation and curling, coherent vortex ejection and breaking up are successfully simulated.
     In addition, this paper discussed the turbulence characteristic of oscillatory bottom layer over plane rough bed in detail. It need to study the coherent structure closed the bed and build the new wall boundary condition for mud.
引文
[1]严恺,梁其旬,等.海岸工程[M].北京:海洋出版社,2002.
    [2]白玉川,蒋昌波.海河口粘性淤泥起动规律研究[J].水利学报,2003,14(2)
    [3]蒋昌波.振荡流底层水沙运动特性及明渠沙纹形成机理[C].天津:天津大学,2001
    [4]赵子丹,蒋昌波,白玉川.振荡流底部边界层运动的数值研究[J].天津大学学报,2003,34(3)
    [5]白玉川.层流边界层C型失稳的研究[J].空气动力学学报,1995,(1)
    [6]白玉川,蒋昌波,罗纪生,赵子丹.振荡流底层拟序结构及其与泥沙相互作用研究[J].力学进展,2003,33(3)
    [7] Ahilan, R. V, Sleath, J.F.A. Sediment transport in oscillatory flow over flat beds [J]. Hydraul. Div., ASCE, 1987, (113):308-322.
    [8] Aydin, I. Computation and analysis of unsteady turbulent flow on flat bottom and over rigid ripples.Thesis for the Degree of Doctor of Engineering [D]. Tohoku University, Sendai, Japan, July, 1987.
    [9] Ayrton, H. The origin and growth of the ripple mark. Proc. Roy. Soc. of London. , 1910. A84:285.
    [10] A literature review on sand transport under oscillatory flow conditions in the rippled-bed [EB/OL].http://sandpit.wldelft.nl/reportpage/right/SandpitLiteratureReviewVanDerWerf.pdf,2003-04-14
    [11] Aydin, I. and Shuto, N., An application of the k-εmodel to oscillatory boundary layers [J].Coastal Engineering, 1988, 30 (2): 11-24.
    [12] Bagnold, R. A., Motion of wave in shallow water; interaction between waves and sand bottoms [J].Proc. R. Soc., 1946, 18(7): 1-18.,London
    [13] Bai , Y. , Jiang , C. B. and Shen , H. T. , Large eddy simulation for wave breaking in the surf zone , China Ocean Engineering , 2001,15 (4) : 541-552.
    [14] Bai, Y. and Ng, C. O., a. Large eddy simulations for plunge breaker and sediment suspension [J].China Ocean Engineering, 2002,16(2) :151-164.
    [15] Bai, Y., Xu, H. and Lu, D., 2005. The nonlinear evolution of the wave on the small amplitude uneven sloping bed [J].Applied Mathematics and Mechanics(English Edition), 2005, 26 (5): 654-661.
    [16] Bai, Y. and Ng , C. O. , b. Numerical study for evolution of coherent vortex in unidirectional and oscillatory boundary layer over sand ripples[J].Journal of Hydrodynamic , Ser. B , 2002,14 (4) : 88-94.
    [17] Blondeaux, P. and Vittori, G., Vorticity dynamics in an oscillatory flow over a rippled bed, [J]. Fluid Mechanics. 1991, 22(6): 257-289.
    [18] Bradshaw, P.,. Understanding and prediction of turbulent flow—1996 , Int . [J]. Heat and Fluid Flow, 1997, 18 (1):45-54.
    [19] Brevik, J. , Oscillatory rough boundary layers, Waterway Port [J].Coastal and Ocean Engineering, 1981, 10(7): 175-188.
    [20] Davies, A. G., A model of oscillatory rough turbulent boundary flow [J]. Coastal Shelf Science. , 1986, 23(3), 353-374.
    [21] Fredsoe, J., Andersen, K. H. and Sumer, M. B., Wave plus current over a ripple covered bed [J]. Coastal Engineering, 1999, 38 (4): 177-221.
    [22] Hagatun, K. and Eidsvik, K. J., Oscillating turbulent boundary layers with suspended sediment [J]. Geophys.Research, 1986, 91 (C11): 13045-13055.
    [23] Hara, T. and Mei C. C., Oscillating flow over periodic ripples, [J]. Fluid Mechanics, 1990, 21(1):183-209.
    [24] Hayashi, T. and Ohashi, M., A dynamical and visual study on the oscillatory turbulent boundary layer [M].Turbulent Shear Flows(3 ,edited by L. J . S. Bradbury et al), Springer Verlag, 18-33, Berlin,1982
    [25] Hino, M., Kashiwanayagi, M., Nakayama, A. and Hara, T., Experiments on the turbulence statistics and the Structure of a reciprocating oscillatory flow [J].Fluid Mechanics, 1983, 13(1):363-400.
    [26] Jensen, B. L., Sumer, B. M. and Fredsoe, J., Turbulent oscillatory boundary layers at high Reynolds numbers, [J].Fluid Mech., 1989, 20(6):265-297.
    [27] Jonsson, I. G., Measurement in the turbulent wave boundary layer [J].Proc. 10th Congr. IHAR.,1963, (1): 85-92, London
    [28] Justesen, P., Prediction of turbulent oscillatory flow over rough beds, Coastal Engineering, 1988, (12):257-284.
    [29] Kaneko, A. and Honji, H., Double structure of steady streaming in the oscillatory viscous flowover a wavy wall [J].Fluid Mechanics , 1979, (93):727-736.
    [30] Kobashi, Y., Hayakawa, Development of turbulence through nonsteady boundary layer,[M].Structure and Mechanisms of Turbulence,edited by H.Fiedler,277-288,Springer,Berlin,1978
    [31] Longuet Higgins, M. S., Oscillatory flow over steep sand ripples [J].Fluid Mechanics, 1981, (107):1-35.
    [32] Lyne, W. H., Unsteady viscous flow over a wavy wall [J].Fluid Mech. , 1970,(50) , Part I:33-48
    [33] LIU Nansheng, LU Xiyun and ZHUANG Lixian, Rotation effect on near2wall turbulence statistics and flow structures [J].Science in China, Series G, 2005, 48(2): 211-227.
    [34] Menter, F. R., Zonal two equation k-εturbulence models for aerodynamic flows [J].24th Fluid Dynamics Conf. (Orlando) , AIAA , Paper 1993.
    [35] Myrhaug, D., on a theoretical model of rough turbulent wave boundary layers, Ocean Engineering, 1982(96): 547-565.
    [36] Nielsen.P, on the structure of oscillatory boundary layers [J].Coastal Engineering, 1985, (9):261-276.
    [37] Obremski, H. J., Fejer. A. A., Transition in oscillating boundary layers flows, [J].Fluid Mechanics, 1967, (29):93-110.
    [38] Rodi W.,Turbulence Models and Their Application in Hydraulics -a State of the Art Review,1984 IAHR, Karl sruhe.
    [39] Sana, A. and Shuy, E. B.,Two equation turbulence models for smooth oscillatory boundary layers [J].Water way, Port , Coastal , Ocean Engineering, 2002,128 (1): : 38-45.
    [40] Shima..N,A Reynolds stress model for near wall and low Reynolds number regions[J].Fluids Engineer, 1988, 1(10):38-44.
    [41] BAI Yu chuan et al,China Ocean Engineering , , 2006 , 20(14):560-569
    [42] Sleath, F. A, Turbulent oscillatory flow over rough beds [J].Fluid Mmechanism. 1987, 18(2):369-409.
    [43] Tanaka, H. and Shuto, Experimental study on an oscillatory flow combined with a steady motion over a wavy wall [J].Proc.31st Japanese Conf. Coastal Engineering. 1984,301-305.
    [44] Thais, L, Chapalain, G. and Smaoui. S, Reynolds number variation in oscillatory boundary layers-Part I: purely oscillatory motion [J].Coastal Engineering, 1999,(36):111-146.
    [45] Uda, T. and Hino, M, A solution of oscillatory viscous flowover a wavy wall, [J] Proc. JSCE, 1975,, 237 , 27-36. (in Japanese)
    [46] Wilcox,D.C,.Turbulence Modeling for CFD(Second Edition)[M].DCW Industries,California,2002
    [47]蒋昌波,白玉川,赵子丹,江诗群.明渠沙纹形成的实验研究[J].长沙交通学院学报,2002,18(3)
    [48] ZHANG Dao-hua(张道华),NG Chiu-on(吴朝安).A Numerical Study on Wave-Mud Interaction [J]. China Ocean Engineering,2006 ,20(3):383-394
    [49] ZHANG Xue Yan(张雪岩),and NG Chiu-On(吴朝安). Mud-Wave Interaction:A Viscoelastic Model [J]. China Ocean Engineering,2006 ,20(1):15-26
    [50]王东耀,Blasius边界层三维亚谐扰动的二次稳定性[D].天津大学研究生毕业论文,1990年
    [51]齐鹏,侯一筠,波浪作用下淤泥质底床泥体输移[J].水动力学研究与进展A辑2005,(20)增刊
    [52] Jiang Q. Study on rheological properties and mass transport of soft mud under water Waves [D]. Tokyo: University of Toykyo, 1996
    [53] Fox D J, Lilly D K .Numerical simulation of turbulent flows. Rev Geophys Space Phys,1972 , 10:51-72
    [54]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005:165.
    [55]张兆顺,湍流[M].北京:国防工业出版社.2002.
    [56]张兆顺,崔桂香,许春晓.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-122.
    [57] Smagorinsky J S. General circulation experiments with the primitive equations-, the basic experiment [J]. Monthly Weather Review, 1963, 91:99-164.
    [58] Deardorff J W.A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number [J]. Journal of Fluid Mechanics.1970, 41:453-480.
    [59] Poimelli Liu, Ferziger J H, Moin P, et al. New approximation boundary conditions for large eddy simulations of wall boundary flows [J]. Physics of Fluids, 1989, (1):1061-1068.
    [60] Moin P, Kim J. Numerical investigation of turbulent channel flow [J]. Journal of Fluid Mechanics, 1982, 118:341-377
    [61]苏铭德.直方管内充分发展湍流的大涡模拟[J].空气动力学报,1995,(1):10-20
    [62] J.S. Ribberinka,J.J. van der Werfa,T. O’Donoghueb and W.N.M. Hassana,Sand motion induced by oscillatory flows: Sheet flow and vortex ripples[J].Journal of Turbulence,2008,9(20)
    [63] Bagnold, R.A. Motion of wave in shallow water; interaction between waves andsand bottoms [J]. Proc. R.Soc. London, 1946, A18 (7):1–18.
    [64] Bagnold, R.A. An approach to sediment transport problem from general physics [J].U.S. Geological Survey Prof. Paper 422-IGeological Survey, Washington, D.C., 1966.
    [65] Bai yuchan, Jiang Changbo. A study on the coherent structure evolution of sub-layer and the mechanism of dune formation in open channel 3rd [M] GENSIUS -SINGEUS Symposium, German, 2000.
    [66] Bakker, W.T. Sand concentration in an oscillatory flow. Proc. 14th Conf. Coastal Eng. Copenhagen, 1974:1129–1148.
    [67] Bardina, J., Ferziger, J.H., &Reynold, W.C. Improved subgrid scale models for large eddy simulation. AIAA paper, 1980. 80-1357.
    [68] Best, J.L., Bridge, J.S. The morphology and amplitude of flow amplitude bed waves upon upper-stage plane beds and the preservation of planar laminae. Sedimentology, 1992, 39:737-752.
    [69] Black, K.P., Rosenberg, M.A.,Suspended sediment load at three time scales.Coastal Sediments 91 Proceedings, ASCE,1991: 313-327.
    [70] Black, B. Suspended sediment load during an asymmetric wave cycle over a plane bed. Coastal Engineering, 1994, (23):95-114.
    [71] Blondeaux, P. Turbulent boundary layer at the bottom of gravity waves [J]. Hydr. Res. 1987, 25 (4): 447–464.
    [72] Blondeaux, P, Sand ripples under sea waves. Part 1[J]. Ripple formation. Fluid Mechanics, 1990, (218): 1-17.
    [73] Revik, J., Oscillatory rough boundary layers [J]. Waterway. Port. Coastal Ocean Eng. Div. ASCE, 1981, (107): 175–188.
    [74] Brevik, I., Aas, B. Flume experiment on waves and currents: I. Rippled bed. Coastal Engineering [J]. , 1980 3:149-177.
    [75]曹志先,泥沙数学模型近底边界条件,水利学报[J].1997,(1)
    [76] Cain, A. B., Reynold, W.C., and Ferziger, J. H. Simulation of the transition and early turbulence regions of a mixer layer. Report TF-14, Department of Mech. Eng., Stanford Univ., Stanford, CA, 1981
    [77] Chien, K.Y., Predictions of channel and boundary layer flows with a low-Reynolds-number turbulence model. [J]AIAA, 1982, 20:33–38.
    [78] Davies, A.G., and Villaret, C. Oscillatory flow over rippled beds: boundary layer structure and wave-induced Eulerian drift. Gravity waves in water of finite depth.[J].Adv. Fluid Mechanics., Comp. Mechanics. Publ., 1997:215–254.
    [79] Davies, A.G., Effect unsteadiness on the suspended sediment flux in coline wave-current flow [J]. Cont. Shelf Res., 1995, (15): 949-979.
    [80] Davies, A.G., Soulsby, R.L., King, H.L., A numerical model of the combined wave and current bottom boundary layer [J]. Geophys.Res. 93 C1, 1988:491-508.
    [81] Dimas, A. A., et al, Large -wave simulation of free surface flows developing weak spilling breaking waves [J]. Comp. Phys. 2000, 15(9):172-196.
    [82] Dearforff, J. W. A numerical study of three-dimensional turbulent channel flow at large Reynolds number [J]. Fluid Mechanics.1972, (41):452-480.
    [83] Dick, J.E., Sleath, J.F.A. 1991. Velocities and concentrations in oscillatory flow over beds of sediment [J]. Fluid Mechanics. 1970, 23(3):165-196.
    [84] Du Toit, C., Sleath, J.F.A. 1981. Velocity measurements close to ripple beds in oscillatory flow [J]. Fluid Mechanics. 11(2):71-96.
    [85] Engelund, F., and Fredsoe, Sediment ripples and dunes [J]. Ann. Rev. Fluid Mechanics. 1982(4):13-37.
    [86] Foti, E., Blondeaux, P., Sea ripple formation: the turbulent boundary layer case. Coastal Engineering. [J]. 1995(6):227-236
    [87] Fredsoe, on the development of dunes in erodible channels [J]. Fluid Mechanics, Cambridge, U.K., 64, p1-16.
    [88] Fredsoe, J., 1984. Turbulent boundary layer in wave-current motion [J]. Hyd. Eng. ASCE 110, p1103–1120.
    [89] Fredsoe, J., Deigaard, R., 1992. Mechanics of coastal sediment transport. In: Liu, P.L.F. Ed., Adv. Series on Ocean Engineering, 1974, (3): 369.
    [90] Fredsoe, J., Andersen, K. H., Sumer M. B., Wave plus current over a ripple-covered large wave. ASCE 121, 1999:1041-1059.
    [91] Ghosal, S., Lund, T. S., Moin, P. and Akselvoll, K, A dynamic localization model for large-eddy simulation of turbulent flows [J]. Fluid Mechanics. 1995, 28(6):229-55
    [92] Grant, W.D., Sleath, J.F.A, Oscillatory laminar flow above a rough bed. In Proc. 16th Conf.on Coastal Engng, Hamburg, ASCE, 898-910
    [93] Glenn, S.M., Grant, W.D., A suspended sediment stratification correction for combined wave and current flows [J]. Geophys.Research. 1978, (92):8244-8264
    [94] Grass, A. J. Transport of fine sand on a flat bed: turbulence and suspension mechanics. Hydrodynamic and Hydraulic Engineering, Tech. Univ. Denmark,1974. (48):33-34, In Euro Mechanics Institute.
    [95] Gry, A. & Schmid, A. Turbulent flow over smooth erodible sand bed in flumes. [J].Hyd. Research, 1997(35):525-544.
    [96] Hagatun, K., Eidsvik, K.J. Oscillating turbulent boundary layers with suspended sediment. [J]. Geophys Res. ., 1986, (91):13045–13055.
    [97] Hino, M., Sawamoto M., Takasu, S., Experiments in transition to turbulence in an oscillatory pipe flow. [J]. Fluid Mechanics. 1976, 7(5):193-207.
    [98] Hino, M., Kashiwanayagi, M., Nakayama, A., Hara, T., Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. [J]. Fluid Mechanics, 1983, 13(1):363–400.
    [99] Horikawa, K., Watanabe, A., Katory, S. Sediment transport under sheet flow conditions. Pro. 18th Conf. Coastal Engineering, 1982, (2):1335-1352.
    [100] Horiuti, K. A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation. Phy. Fluids A, vol. 1 (2), Feb., 426-428
    [101] Ikeda, S., Horikawa, K., Nakamura, H., & Noguchi K., 1991. Oscillatory boundary layer over a sand ripple model. Coastal Eng. in Japan, 1989, (32):15-29.
    [102] Justesen, P. Turbulent wave boundary layers. Series Paper 43, Thesis, The Technical University, University of Denmark, Institute of Hydrodynamics and Hydraulic Engineering. , 1988
    [103] Justesen, P. Prediction of turbulent oscillatory flow over rough beds. [J].Coastal Engineering, 1988, (12):257–284.
    [104] Johns, B., Residual flow and boundary shear stress in the turbulent bottom layer beneath waves [J]. Phys.Oceanogr, 1977, (7):733–738.
    [105] Jonsson, I.G., Carlsen, N.A. Experimental and theoretical investigations in an oscillatory turbulent. Boundary layer [J].Hhydraulic Research, 1976,14 (1):45–60.
    [106] Johns, B. The form of the velocity profile in a turbulent shear wave boundary layer [J]. Geophys. Research, 1975, 80:5109–5112.
    [107] Jonsson, I. G. Measurement in the turbulent wave boundary layer. Proc. 10th Congr. IHAR. London, 1963, (1)85-92.
    [108] Jonsson, I.G. Wave boundary layers and friction factors. Proc. 10th Conf. Coastal Eng., ASCE, Tokyo, 1966:127–148.
    [109] Kajiura, K., A model for the bottom boundary layer in water waves[J]. FluidMechanics. 1968, 182:369–409.
    [110] Kamphuis, J. W., Friction factor under oscillatory waves [J]. Waterway. Port. Coastal Ocean Eng. Div.ASCE, 1975, (101):135–144.
    [111] Keiller, D.C., Sleath, Velocity measurements close to a rough plate oscillating in its own plane [J]. Fluid Mechanics, 1976, 73:73-691.
    [112] Kennedy, J.F. The formation of ripples, dunes and antidunes [J]. Ann. Rev. Fluid Mechanics., 1969, (1):147-168.
    [113] Kim, J., Moin, P., The structure of the vorticity found in turbulent channel flow: Part 2. Study of ensemble-average fields [J]. Fluid Mechanics. 1986 162:339-363.
    [114] Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W. The structure of turbulent boundary layer [J]. Fluid Mechanics. 1967, (70):741-773.
    [115] Klebanove.P. S., Three Dimensional Nature of Boundary ayer Instability, J. Fluid Mechanics., 1962, (12):1-34.
    [116] Kobashi, Y. & Hayakawa, M. Development of turbulence through non-seady boundary layer. In Structure a dmechanisms of Turbulence 1. Lecture Notes in physics, 1978, 7(5):277-288
    [117] Lesieur, M et al New Trends in large eddy simulations o fturbulence. Annu. Rev. Fluid Mechanics. 1996,28:45-82.
    [118] Lilly, D. K. A proposed modification of the Fermano subgrid-scale closure method. Phys. Fluids A, 1992, 4 (3):633-35.
    [119] Longuet-Higgins, M.S., Oscillatory flow over steep sand ripples [J]. Fluid Mechanics, 1981, 10(7):1-35.
    [120] Mansour, N. N., moin, P., Reynolds. W. C. and Ferzuger, J. H., improved method for large eddy simulations of turbulence.Proc. 1st Internation Symposium on Turbulent Shear Flows. Penn. State University. 1977
    [121] Makoto, Field observation and numerical calculation of suspended sediment concentration in the surf zone. Coastal Engineering in Japan, 1988, 30:75-88.
    [122] McMillan, O. J., and Ferziger, J. H., 1Direct testing of subgrid scale models. AIAA Journal,1979,(17):1340-1354
    [123] McEwan, I.K., Jefcoate, B.J., Willetts, B.B. The grain fluid interaction as a self-stabilizing mechanism in fluvial bed load transport [J].Sedimentology.1999, 46:407-416.
    [124] McMillan, O. J., Ferziger, J. H. and Rogallo, R. S, Tests of new subgrid scalemodels in strained turbulence. AIAA paper, 1980, (80):1339-1344.
    [125] Moin, P. and Kim, J. 2. Numerical investigation of turbulent channel flow [J].Fluid Mechanics, 198, 118:341-377.
    [126] Nezu, I. & Nakagawa, H. Turbulent structure in unsteady depth varying open channel flow [J]. Hyd. Engng. ASCE, 1997, (123):.752-763.
    [127] Nielsen, P. On the structure of oscillatory boundary layers. Coastal Eng. , 1985,(9):261–276.
    [128] Nielsen.P, Suspended sediment concentrations under waves. Coastal Engng. , 1986, (10):22-31.
    [129] Nielsen, P. Coastal bottom boundary layers and sediment transport. In: Liu, P.L.F. Ed, Adv. Series on Ocean Engineering, 1992, (4):324
    [130] Obremski, H. J., Fejer, A. Transition in oscillating boundary layers flows [J]. Fluid Mechanics.1967, 29:93-110.
    [131] Orszag, S. A. Numerical simulation of incompressible flows within simple boundaries [J]. Fluids Mechanics.1971, (49):75-112.
    [132]钱宁,万兆惠,泥沙运动力学[M]北京:科学出版社,1985.
    [133] Reynolds, A.J. A decade's investigation of the stability of erodible stream beds. NORDIC Hydraulic.Nordic Hyd., 1976, (7):161-180.
    [134] Ribberink J. & Al-salem, A. Time-dependent sediment transport phenomena in oscillatory boundary layers flow under sheet flow conditions. Technical Report H840.20, Part IV, Delft Hydraulic, 1992.
    [135] Saric.W.S. et al. Forced and Unforced Subharmonic Resonance in Boundary Layer Transtion. AIAA 22nd Aerosoace Science Meeting, Janury, 9-12, /Reno Neveda. , 1984.
    [136] Savioli, J., Justesen, P., Sediment in oscillatory flows over a plane bed [J]. Journal of Hydraulic Research, 1997, 35(2):177-189.
    [137] Sawamoto, Stability theory of sand ripples due to wave action. Coastal Eng. In Jap.1986,(29):120-128
    [138] Schumann, U., Results of a numerical simulation of turbulent channel flows. [J].Internation Meeting on Reactor Heat Transfer (M. Dalle-Donne, ed.), 1973:230-251.
    [139] Schmman, U, Subgrid scale modeling for finite difference simulations of turbulent flows in plane channel and annuli [J]. Compter Physics, 1975, (18):376-404.
    [140] Sheng, Y.P. Modeling turbulent bottom boundary layer dynamics.[J].Proc. 20th Conf. Coastal Eng. Taipei, 1986:1496–1508.
    [141] Shinji Sato. Oscillatory Boundary Layer Flow and Sand Movement over Ripples. Phd thesis, Univ.of Tokyo, 1987.
    [142] Shibayama, T. Modelling of Time-Dependent Sand Transport at the Bottom Boundary Layer in the Sure Zone.Coastal Engineering Journal. 1998, 40(7):241-263.
    [143] Shibayama, T. Sediment transport mechanism and two-dimensional beach transformation due to waves. Ph.D. dissertation, Univ. of Tokyo. 1984.
    [144] Sato, S., et al, Geometry of Sand Ripples and Net Sand Transport Rate Due To Regular and Irregular Oscillatory Flows. Coastal Engineering in Japan, 1988,30:90-98
    [145] Sleath, J.F.A. Stability of laminar flow at sea bed [J]. Waterway. Port. Coastal Ocean Engineering. Div. ASCE., 1974, 100:105–122.
    [146] Sleath, J.F.A Measurements of bed load in oscillatory flow [J]. Waterway. Port. Coastal Ocean Eng. Div. ASCE., 1971, 10(4):291-307.
    [147] Sleath, J.F.A. Turbulent oscillatory flow over rough beds [J]. Fluid Mechanics, 1987, 182: 369–409.
    [148] Sleath, J.F.A. Transition in turbulent oscillatory flow over rough beds [J]. Waterway. Port. Coastal Ocean Eng. Div. ASCE, 1988, 11(4):18–33.
    [149] Sleath, J.F.A., Velocities and shear stresses in wave-current flows [J]. Geophys. Research, 1991, 96 C8:15237–15244.
    [150] Sleath, J.F.A. Seabed boundary layers. In Le Mehaute, B., Hanes, D.[M] 1990
    [151] Smagorinsky, J. General Circulation experiments with the primitive equations. I. The Basic Experiment. Mon. Wea. Rev. , 1963, 9(1):99-104
    [152] Song C C S, Yuan M, Proc. of the international symposium on large hydraulic machinery and associated equipment [M]. Beijin, China, 1989. .
    [153] Summer, B. M., and Degaard, R. Particle motion near the bottom in turbulent flow in an open channel [J]. Fluid Mechanics. 1981, 12(9):311-352.
    [154] Sutherland, A. J. Proposed mechanism for sediment entrainment by turbulent flow [J]. Geophys. Res., 1967, 17(7):191-198.
    [155] Smith, J.D., McLean, S.R., Boundary layer adjustments to bottom topography and suspended sediment. In: J.C [J].Nihoul (Ed.), Bottom Turbulence.Elsevier, New York, 1977:123-152.
    [156] Swart, D.H., Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics Lab.Publ. , 1974:131.
    [157] Shi, J., Thomas, T.G., and Williams, J.J.R Large-Eddy Simulation of Flow in a Rectangular Open Channel [J]. Hydro. Res., 1999, 37(3):345-361.
    [158] Thais, L., Chapalain, G. Smaoui, S. Reynolds number variation in oscillatory boundary layers. Part I: purely oscillatory motion. Coastal Engineering.1999 3(6):111–146
    [159] Toit, D., J.E., Sleath, J. F. A. 1. Velocities measurement close to rippled beds in oscillatory flow [J]. Fluid Mechanics. 1981,(12):71-96.
    [160] Trowbridge, J.H., Madsen, O.S., Turbulent wave boundary layers: Model formulation and first order Solution [J]. Geophys. Res. 1984, (C58)9:7989–7997.
    [161] Trowbridge, J.H., Madsen, O.S.,. Turbulent wave boundary layers: 2. Second order theory and mass transport [J]. Geophys. Res. 1984b, 89 C5:7999–8007.
    [162]黎英,海岸、河口淤泥的流变特性:[硕士学位论文],天津:天津大学,1991
    [163]陈惠钊,粘度测量[M].北京:中国计量出版社,1994
    [164]黄胜,卢启苗,河口动力学[M].北京:水利电力出版社,1995
    [165] Michael W.Tubman,Joseph N.Suha yda,Wave action and bottom movement in fine sediment ,fifteen coastal engineering conference,1976,16(8):1183
    [166]周永洽,浑水的流变性质[M].北京,水利水电科学院泥沙研究所,1964
    [167]白玉川,顾元棪,邢焕政,水流泥沙水质数学腜屠砺奂坝τ肹M].天津:天津大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700