用户名: 密码: 验证码:
岸—舰双基地高频地波SIAR系统相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达的探测距离可达300-400Km,可以填补天波超视距和常规微波雷达的监视盲区,在海洋遥感遥测方面具有实时性好、探测范围大和可全天候工作等优点。因此,高频地波雷达的研究对于临海国家对其“蓝色领土”及海上专属经济区(EEZ)实施有效管理和合理开发有着重要意义。
     本文研究一种新型的地波超视距雷达-岸-舰双基地高频地波SIAR,该雷达利用综合脉冲孔径雷达(SIAR)技术,将双基地与舰载体制进行结合,具有机动灵活、良好的抗定向有源干扰和抗反辐射导弹能力。论文针对信号波形设计与处理、发射阵列综合及超分辨处理、射频干扰抑制和海杂波特性分析及其抑制等方面进行了研究,主要工作概括如下:
     第1章介绍岸-舰双基地高频地波SIAR的研究背景及意义,回顾了高频地波雷达的研究与发展概况,并简要介绍了本文的主要研究内容。
     第2章介绍岸-舰双基地高频地波SIAR系统的基本工作原理。首先简单介绍岸-舰双基地高频地波SIAR的系统组成和工作特点,接着按照信号的处理流程,从发射同步信息提取、波形分析与综合处理、坐标变换与目标定位三个方面对该系统的工作原理进行了较为详细的阐述。最后对接收信号的组成及特点作了简单分析,并由此讨论了信号处理的主要任务。
     分析及实验结果表明,通过选择合适的信号波形参数,可以满足雷达的工作要求,实验数据的处理结果进一步验证了该新体制雷达的可行性。
     第3章研究发射阵列的综合设计及基于发射阵列的超分辨方法。根据发射系统的工作特点及要求,从系统方位分辨率、系统成本以及阵元互耦角度,分析以非均匀稀布MRL阵列作为发射阵形的工作性能。首先讨论了对应的发射信号频率编码的优化配置问题,研究了异频发射时的发射超分辨MUSIC算法,并分析了算法的目标分辨和参数估计性能;最后针对MUSIC算法受通道误差影响大的情况,研究了利用直达波信号的幅相误差自校准方法。
     分析表明,MRL阵列在系统成本、阵元相互影响、分辨性能以及对信噪比的要求等方面的表现都要优于均匀线阵;通过频率编码来实现发射信号正交,不仅可以提高系统的目标分辨性能,而且进一步提高了系统的测距精度。
     第4章研究单天线接收模式下的射频干扰抑制方法。首先分析该雷达多载频发射、单根全向天线接收时射频干扰在信号处理各环节的特征;由于射频干扰相对发射站没有“方向性”,因此利用干扰的时域、距离域及多普勒域特点,基于特征子空间正交投影思想,研究并提出了不同的时域、距离域干扰的抑制方法,并对所提方法的优缺点进行了分析比较。最后利用实测数据对所提方法的效果进行了验证。
     实测数据处理结果表明:在时域和距离域抑制射频干扰是可行和有效的。并且由于没有利用干扰的空域特征,因而其空间非平稳性并不会降低这些方法的性能,也不会影响目标的方向特性。
     第5章研究在接收平台运动条件下的海杂波特点。首先简单介绍了高频海杂波的产生机理,分析了接收平台静止及运动时海杂波多普勒谱的特点,推导了海杂波Bragg频率与系统几何参数的关系,分析了不同的接收平台运动状态下一阶海杂波谱的空时分布、时间调制特点及其对目标检测的影响;最后,在文献基础上,利用获得的海杂波统计特性对一阶海杂波进行了仿真和进一步的分析。
     分析表明,接收平台运动不仅导致海杂波多普勒频率与方位角产生耦合,而且还可能存在时间调制作用,导致一阶海杂波谱明显扩展,会大大降低海面低速目标的检测性能。
     第6章研究单根天线接收时空时耦合扩展海杂波的抑制方法。分别对利用Hankel降秩矩阵方法的空-时级联处理、利用线性约束(LCMV)的自适应波束形成方法的时-空级联处理和基于直接数据域(DDD)时空时二维联合处理(3DT-SAP和JDL)方法的海杂波抑制效果进行了分析和讨论,结合仿真数据,对上述算法进行了检验。
     研究表明:一个相干处理周期内,若接收平台近似做匀速直线运动,则通过时域方法和空时联合处理均可以有效抑制扩展的海杂波。
     第7章对全文的研究内容进行了总结,针对存在和尚未解决的问题,展望了未来研究工作的重点和方向。
Owing to a low attenuation of vertically polarized HF radio wave on ocean surface, HFSWR is able to detect the targets of 300~400Km away. So it can be considered as complementary of HF sky wave radar and conventional microwave radar; and it also can be applied to the remote sensing of ocean state in real-time, large range and 24-hour working. Therefore, HFSWR plays important roles in the management and development of exclusive economic zones (EEZ) for oceanic countries.
     This paper studies a novel HFSWR—coast-ship bistatic high frequency surface wave SIAR (Synthetic Impulse and Aperture Radar). Using the SIAR technique, the radar successfully combines bistatic and shipborne operation. Thus the radar has the advantages of flexibility and the ability of rejecting directional active jamming and ARM (Anti-Radiation Missile). The researches of the paper are outlined as follow:
     Chapter 1 introduces the background and necessary of coast-ship bistatic high frequency surface wave SIAR. The history of HFSWR and some typical systems are firstly reviewed. The contents of the paper are also presented.
     Chapter 2 introduces operation principles of the novel radar. According to the signal processing flow, the system configuration and framework are firstly presented, and then the operation principle is introduced detailedly by introducing the system synchronization, the parameters selection and synthesis processing of LFMICW, and coordinate transform and location; finally, some key techniques in signal processing are discussed in brief.
     The demands of the radar on signal waveform can be met by selecting the parameters, and the experimental results show the feasibility of the radar.
     Chapter 3 studies the configuration of transmit array and range-angle joint superresolution processing based on transmit array. The operation performance of Minimum Redundancy Linear array (MRL) as transmit array is investigated in resolution, estimation precision with MUSIC algorithm. The frequency code is selected for releasing the coupling between range and angle with GA (Genetic Algorithm). The calibration of channel errors of gain and phase is proposed using the direct wave from the transmit site.
     The analyses show that MRL has advantages over ULA or plane array in system cost, element coupling and resolution; the orthogonal waveform with frequency code is better than that with the phase code of the same frequency for the improvement of system resolution and range precision.
     Chapter 4 studies the suppression of radio frequency interference (RFI) when only a single omnidirectional antenna is utilized. The features of RFI in time, range and Doppler domain are analyzed firstly; and then the orthogonal projection algorithm is utilized to mitigating the time and range domain RFI. The new methods for estimating the covariance matrix is propose based on the features of RFI. The algorithm is examined with the practical data.
     The experimental results prove that the proposed method can effectively suppress the RFI without the distortion of target pattern even when the RFI is spatially nonstationary.
     Chapter 5 investigates the characteristics of sea clutter with a single antenna on a moving receiver platform. Based on the mechanism of first-order sea clutter, the Doppler frequency of sea clutter is formulated about the system geometry. The space-Doppler coupling and time-modulating of sea clutter are discussed.
     The spectrum of sea clutter will be widen when the receiver is moving, which directly lead to the difficulty in detecting such slow targets as ships or boats.
     Chapter 6 studies how to suppress the spreading sea clutter. The Hankel rank-reduced matrix method based on singular value decomposition (SVD) is applied in beam space; and spatial adaptive filtering with Doppler pre-processing is also tested; finally, two space-time adaptive processing algorithms: mDT-SAP and JDL (Joint Domain Localized) with Direct Data Domain (DDD) method are tried to suppress the clutter. The simulation results show the validity of the above methods.
     Chapter 7 makes conclusions about the study of the paper, and some problems to be solved and future working are presented in the end.
引文
[1] Varian R. H., W. W. Hansen, and J. R. Woodyard, Object Detecting and Locating System, U. S. Patent 2, 435~615, Feb.10, 1948.
    [2] Clarke J., D. N. Davies, and M. F. Radford, Review of United Kingdom Radar [J]. IEEE Trans. on AES, 1984, 20(9): 506-520
    [3] Sherwin C. W., Ruina J. P. Raweliffe R. D., Some Early Developments in Synthetic Aperture Radar System [J]. IRE Trans. On MIL, 1962, 6(2): 111-115
    [4] Williams. F. C., et al., The Pioneer Venus Orbiter Radar, WESCON Sess.4, Los Angeles, 1976, 9: 14-17
    [5] L. Sevgi, and H. C. Chan, An integrated maritime surveillance system based on HF surface-wave radars [J]. IEEE AP magazine, 2001,8, 43(4), pp.28-43
    [6] Peebles P. Z., Signal Processor and Accuracy of Three-Beam Monopulse Tracking Radar [J]. IEEE Trans. on AES, 1969: 52-57
    [7] Seashore C. R., MM-Wave Sensors for Missile Guidance, Microwave J.,1983, vol.26: 133-144
    [8] Walker J. L., Range Doppler Imaging of Rotating objects [J]. IEEE Trans. on AES, 1980, vol.16: 23-52
    [9] Brenna L. E., J. D. Mallett, and I. S. Reed, Adaptive Arrays in Airborne MTI Radar [J]. IEEE Trans. on AP, vol.24,1976: 607-615
    [10] Richter J. H., High-Resolution Tropospheric Radar Sounding [J]. Proc. of Radio Sci., 1969, Vol.4: 1261-1268.
    [11] S. J. Anderson, Remote sensing with the JINDALEE skywave radar [J]. IEEE J. Ocean. Eng., 1986, 11(2): 158-163.
    [12] S. J. Anderson, Adaptive remote sensing with HF skywave radar [J]. IEE Proc. Radar, Sonar and Navig., 1992, 139(2): 182-192.
    [13] T. M. Georges, J. A. Harlan, et al., A test of ocean surface current mapping with over-the-horizon radar [J]. IEEE Trans. on GRS, 1998, 36(1): 101-110.
    [14] J. Parent, A. Bourdillon, A method to correct HF skywave backscattered signals for ionospheric frequency modulation [J]. IEEE Trans. on AP, 1988, 36(1): 127-135.
    [15] C. W. Anderson, S. D. Green, S. P. Kingsley, HF skywave radar: Estimating aircraft Heights using super-resolution in range [J]. IEE Proc. Radar, Sonar and Navig., 1996, 143(4): 966-976.
    [16] D. M. Fernandez, J. F. Vesecky, C. C. Teague, et al., Ship detection with highfrequency phased-array and direction-finding radar system [C]. IGARSS’98, 1998, 204-206.
    [17] Junhao Xie, Yeshu Yuan, and Yongtan Liu. Super-Resolution Processing for HF Surface Wave Radar Based on Pre-Whitening MUSIC [J]. IEEE Journal of Oceanic Engineering, 2003, 23(4): 313-321.
    [18] Y. T. Liu, Target detection and tracking with a high frequency ground wave over-the-horizon radar [C]. IEEE Int. Conf. on Radar, 2003, 593-598.
    [19] Martin W. Y. Poon, Rafaat H. Khan, and Son Le-Ngoc. A singular value decomposition based method for suppressing ocean clutter in high frequency radar [J]. IEEE Trans. on Signal Processing, 1993, 41(3): 1421-1425
    [20] W. Xianrong, Z. Sifeng, K. Hengyu et al, Target detection with high frequency surface wave radar in co-channel interference [J]. IEE Proc. Radar Sonar Navig., 2005,152(2): 97-103.
    [21] E. D. Shearman, M. D. Moorhead, A Coastal Ground-wave HF Radar for Current, Wind, and Wave Mapping to 200Km Range [J]. Proc. of IGARSS’88: 773-776
    [22] Li S. T., Koyama L. B., EM Study of a shipboard HF Surface Wave Radar. [J].
    [23] J. Walsh, Barry J. D.and S. K. Srivastava, Remote sensing of icebergs by ground wave Doppler radar [J]. IEEE Journal of Oceanic Engineering 1986, ll(2): 276-284
    [24] E. W. Gill and J. Walsh, On the Second-Order High Frquency Bistatic Ground Wave Radar Cross Section OF the Ocean Surface [J]. IEEE, CCECE’97, 1997
    [25]陈伯孝. SIAR四维跟踪及其长相干积累等技术研究[D].西安电子科技大学博士论文,1997
    [26]张庆文,保铮,张玉洪.稀布阵综合脉冲和孔径雷达的接收信号处理[J].现代雷达,1992.10
    [27]陈伯孝,许辉,张守宏.舰载无源综合脉冲孔径雷达及其若干关键问题[J].电子学报,2003, 31(12): 1776-1779
    [28] Crombie D D, Doppler Spectrum of Sea Echo at 13.56Mc/s [J]. Nature, 1955, 175, pp.681-682
    [29] D. E. Barrick, First-order theory and analysis of MF/HF/VHF from sea waves [J]. Geophysics Res., 1966, 71, pp.4839-4842
    [30] D. E. Barrick, Sea backscatter at HF: interpretation and utilization of the echoes [J]. Proc. of IEEE, 1974, 62, pp.673-680
    [31]朱宝明.超视距雷达的新发展[J].微波与雷达,1998, 3: 1-4.
    [32] D. E. Barrick, History, present status, and future direction of HF surface-wave radars in the USA [J]. Int. Conf. on Radar, Australia, 2003, 9, pp.652-655.
    [33] Gurgel K W, Antonischki G and Essen H H, et al. Wellen Radar (WERA), a new ground-wave based HF radar for ocean remote sensing. Coastal Engineering, 1999, 8, 37: 219-234
    [34] http://www.linkocean.cn/Helzel/WERA%20HF%20Radar.htm
    [35] Lipa, D. E. Barrick, Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE [J]. IEEE Journal of Oceanic Engineering, 1983, OE-8: 226-253.
    [36]万显荣.高频地波雷达数字接收机设计与抗干扰研究[D].武汉大学博士论文,2005.
    [37]苏洪涛.超视距雷达目标检测与干扰抑制方法研究[D].西安电子科技大学博士论文,2004.
    [38] Y. I. Abramovich, N. K. Spencer, S. J. Anderson, Experimental study of the spatial dynamics of environmental noise for a surface-wave OTHR application. Proc. HFRST-2000, Guildford, UK: 357-361.
    [39] S.J. Anderson, P.J. Edwards, P. Marrone, et al. Investigations with SECAR - a bistatic HF surface wave radar [J]. IEEE International Conference on Radar, 2003: 717-722
    [40] Rafaat Khan, Brian Gamberg, Desmond Power, et al. Target Detection and Tracking with High Frequency Ground Wave Radar [J]. IEEE Journal of ocean engineering, 1994, 19(4): 540-548
    [41] Raython System Canada Ltd., SWR-503 High Frequency Surface Wave Radar Comprehensive Surveillance of the EEZ. www.rps.com/products/swr503
    [42]乔晓林,高频地波超视距雷达的目标检测问题,哈尔滨工业大学博士论文,1991
    [43]王威,高频地波超视距雷达目标检测与估值的研究,哈尔滨工业大学博士论文,1997
    [44]谢俊好,舰载高频地波雷达的目标检测与估值的研究,哈尔滨工业大学博士论文,2001
    [45]张国毅,高频地波雷达极化抗干扰技术的研究,哈尔滨工业大学博士论文,2002
    [46]侯杰昌,吴世才,杨子杰等,武汉大学学报-海洋探测专刊.武汉,1994
    [47]文必洋,黄为民等,OSMAR2000探测海面风浪场原理与实现.武汉大学学报(理学版),2001,47(5):642-64
    [48] http://www.acca21.net.cn/ocean/ly/news070820_2.html
    [49] C. Baixiao, C. Duofang,“Experimental System and Results for coast-ship Bi/multistatic Ground-wave Over-the-horizon Radar,”Proc. of CIE International Conf. on Radar, 2006, pp.36-39
    [1] Levent Sevgi, Anthony Ponsford, and Hing C. Chan.‘An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 1: Theoretical Background and Numerical Simulations’, IEEE Antennas and Propagation Magazine, 2001, 43(4): 593-598.
    [2] Anthony Ponsford, Levent Sevgi, and Hing C. Chan.‘An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 2: Operation Status and System Performance’, IEEE Antennas and Propagation Magazine, 2001, 43(5): 52-63.
    [3] D. E. Barrick, EEZ surveillance the compact HF radar alternative. EEZ technology, 115-118.
    [4] W. Xianrong, Z. Sifeng, K. Hengyu et al,‘Target detection with high frequency surface wave radar in co-channel interference’, IEE Proc. Radar Sonar Navig., 2005,152(2): 97-103.
    [5] R. H. Khan, E. W. Gill, and B. J. Dawe, et al.,‘Experimental Results form a Long-Range HF Ground Wave Coastal Surveillance Radar’, Proc. of IEEE Radar Conference’1993: 108-112.
    [6] H. Leong,‘Adaptive Nulling of Skywave Interference using Horizontal Dipole Antennas in a Coastal Surveillance Surface Wave Radar System’, Proc. of IEEE Radar Conference’1997: 26-30.
    [7] Jian Wang, R. L. Kirlin, Xiaoli Lu and R. Dizaji, Ship Detection with HF Radar using an Adaptive Ocean Clutter Pre-Whitening Subspace Method’, Proc. of IEEE Radar Conference’02: 92-95.
    [8] Junhao Xie, Yeshu Yuan, and Yongtan Liu, Optimum Weights of DPCA Processing for Shipborne HFSWR, Proceedings of ICSP’98, pp1544-1547.
    [9] E. D. Shearman, M. D. Moorhead, A Coastal Ground-wave HF Radar for Current, Wind, and Wave Mapping to 200Km Range. Proc. of IGARSS’88: 773-776.
    [10] Khan R. H.,‘Target detection and tracking with high frequency surface wave radar’, IEEE Journal of ocean engineering, 19(4), pp.540-548.
    [11] Y. I. Abramovich, N. K. Spencer, S. J. Anderson, Experimental study of the spatial dynamics of environmental noise for a surface-wave OTHR application. Proc. HFRST-2000, Guildford, UK: 357-361
    [12] S.J. Anderson, P.J. Edwards, P. Marrone, et al. Investigations with SECAR - abistatic HF surface wave radar [J]. IEEE International Conference on Radar, 2003: 717-722.
    [13] E. W. Gill and J. Walsh,‘Bistatic form of the electric field equations for the scattering of vertically polarized high-frequency ground wave radiation from slightly rough, good conducting surfaces,’Radio Sci., vol. 35, no. 6, pp. 1323–1335, 2000.
    [14]陈伯孝,许辉,张守宏.舰载无源综合脉冲孔径雷达及其若干关键问题[J].电子学报,2003, 31(12): 1776-1779.
    [15]地波岸-舰双/多基地超视距雷达试验系统论证报告[R]. 2003.2.
    [16]陈伯孝. SIAR四维跟踪及其长相干积累等技术研究[D].西安电子科技大学博士论文,1997
    [17]保铮,张庆文.一种新型的米波雷达-综合脉冲与孔径雷达[J].现代雷达,1995.2
    [18]张庆文,保铮,张玉洪.稀布阵综合脉冲和孔径雷达的接收信号处理[J].现代雷达,1992.10
    [19]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达发射信号频率编码的研究[J].电子学报,1997,25(9): 64-68
    [20]张庆文,保铮,张玉洪.一种在接收端综合发射阵列波束的新方法[J].现代雷达,1992.14(3): 41-51
    [21]付银娟,岸-舰双(多)基地雷达中同步技术及精度分析[D].西安电子科技大学硕士论文,2005.
    [22]黄红云,陈伯孝,张守宏.岸-舰多基地地波雷达一种新的时间同步技术[J].现代雷达.
    [23]陈伯孝,朱旭花,张守宏.运动平台上多基地雷达时间同步技术[J].系统工程与电子技术,2005, 27(10): 1734-1737.
    [24] Barrick D. E., FM/CW radar signals and digital processing. NOAA Tech. Rep. ERL283-WPL 26, 1973
    [25] Jerry L. E., Edward K. R.,现代雷达原理[M].北京:电子工业出版社,1986.
    [26]杨子杰,吴世才等,高频地波雷达总体方案及工程实施中的几个主要问题[J].武汉大学学报(理学版),2001,47(5):513-518.
    [27] Khan R. H., Mitchell D. K., Waveform analysis for high-frequency FMICW radar. IEE Proceedings-F, 1991, 138(5): 411-419
    [28] Shearman E. D., Burrows G. D., and Moorhead M. D., An FMICW ground-wave radar for remote sensing of ocean waves and currents. IEE Conference Radar 87, London, 1987
    [29]杨子杰,柯亨玉等.高频地波雷达波形参数设计[J].武汉大学学报(理学版),2001,47(5):528-531.
    [30]吴世才,杨子杰等.高频地波雷达信号波形分析[J].武汉大学学报(理学版),2001,47(5):519-527.
    [31]时玉彬,杨子杰,两种脉冲压缩方法性能比较[J].武汉大学学报(理学版),2001,47(5):589-592.
    [32] Poole, A. W. V.,‘On the use of pseudorandom codes for chirp radar’, IEEE Trans. 1979, AP-27: 480-485.
    [33]陈伯孝,孟佳美,张守宏.岸-舰多基地地波超视距雷达的发射波形及其解调[J].西安电子科技大学学报, 2005, Vol.32, No.1, 7-11.
    [34] Skolnik M. I.主编,王军等译.雷达手册(第二版)[M].北京:电子工业出版社,2003, 7: 24-12
    [35]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达基于单脉冲测角方法的研究[J].现代雷达,1996, 5: 12-20
    [36] TSAO T., SLAMANI M., VARSHNEY P. et al. Ambiguity function for a bistatic radar [J]. IEEE Trans. on AES, 1997, 33(3): 1041-1051
    [37] Ponsford A. M., Dizaji R. M., and Mcherracher R., HF surface wave radar operation in adverse conditions. Proc. Int. Conf. on Radar, 2003: 593-598.
    [38]冀振元,孟宪德,周和铋.高频地波超视距雷达海杂波信号分析[J].系统工程与电子技术,Vol.22, No.5:12-15, 2000.
    [39] www.CODAR.com/CODAR Ocean Sensor, Ltd.
    [40]肖景明,电波传播工程计算[M].西安:西北电讯工程出版社,1984.
    [41] Barrick D. E., First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. On AP, 1972, 20: 2-10.
    [42] Barrick D. E., Extraction of wave parameters from measured HF radar sea-echo. Radio Sci., 1977, 12(3):415-424.
    [43] Lipa B., Derivation of directional ocean-wave spectra by integral inversion of second-order radar echoes. Radio Sci., 1977, 12(3): 425-429.
    [44] Shawn Kraut, Kerem Harmancl, and Jeflrey Krolik, Space-time Adaptive Processing for Over-the-horizon Spread-Doppler Clutter Mitigation. Proc. of IEEE Conf. on Radar 2001: 245-249.
    [45] Li Lei, Xu Rongqing, Li Gaopeng, Ionospheric clutter mitigation with knowledge aided pre-whiten in High Frequency Surface Wave Radar. Proc. of IEEE Radar Conf. 2008: 559-561.
    [46]苏洪涛,保铮,张守宏.自适应地波超视距雷达高频通信干扰抑制[J].电波科学学报,2003, 18(3): 270-274.
    [47] Fabrizio G. A., Gershman A. B., Turley M. D., Robust adaptive beamforming for HF surface wave radar. IEEE Trans. On AES, 2000, 36: 132-150.
    [48] Wan X. R., Wen B. Y., Ke H. Y., Adaptive co-channel interference mitigation based on subarrays for HFSWR. IEEE SP letters, 2005, 12(2): 162-165.
    [49] H. Leong,‘Adaptive Nulling of Skywave Interference using Horizontal Dipole Antennas in a Coastal Surveillance Surface Wave Radar System’, Proc. of IEEE Radar Conference’1997: 26-30.
    [50]杨俊,文必洋,吴世才等.用水平天线消除天波干扰的算法研究[J].电波科学学报,2004, 19(2): 176-181.
    [51]周浩,文必洋,吴世才等.应用时频分析进行射频干扰抑制[J].电子学报,2004, 32(9): 1546-1548.
    [52] Y. Jun, W. Biyang, and W. Shicai, Method to suppress radio-frequency interference in HF radar. IEE Proc. of Electronics Letters, 2004, Vol.40, No.2.
    [53] H. Zhou, B. Wen, and S. Wu:‘Dense radio frequency interference suppression in HF radar’, IEEE Signal Processing letters, 2005, 12, (5), pp.361-364.
    [54] Khan R. H., Ocean-clutter model for high-frequency radar. IEEE Journal of oceanic engineering, 1991, 16(2): 181-188.
    [55] Khan R. H., Power D., and Walsh J. R., Ocean clutter suppression for an HF ground wave radar. CCECE’97, 1997: 512-515.
    [56] Martin W. Y., Khan R. H., and Son Le-Ngoc, A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans. On SP, 1993, 41(3): 1421-1425.
    [57] Zhou G. J., Dong H. C., and Quan T. F., HF ground wave radar sea clutter cancellation based on chaotic prediction. Proceedings of ICSP’04, 2004: 2136-2139.
    [58] Marc Lesturgie. Use of STAP technique to enhance the detection of slow targets in shipborne HFSWR [J]. Int. Conf. on Radar, Australia, pp.504-509, 2003.
    [59]谢俊好,许荣庆等.高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998, 20(2): 30-36.
    [60] Xie J. H., Yuan Y. S., and Liu Y. T., Optimum weights of DPCA processing for shipborne HFSWR. Proceedings of ICSP’98, 1998: 1544-1547.
    [1] Khan R. H.,‘Target detection and tracking with high frequency surface wave radar’, IEEE Journal of ocean engineering, 19(4), pp.540-548.
    [2] Jian Wang, R. Lynn Kirlin, Xiaoli Lu and Reza Dizaji, Small ship detection with high frequency radar using an adaptive oceanic clutter pre-whitened subspace method, Proc. of IEEE Radar Conference’02: 92-95.
    [3] Levent Sevgi, Anthony Ponsford, and Hing C. Chan.‘An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 1: Theoretical Background and Numerical Simulations’, IEEE Antennas and Propagation Magazine, 2001, 43(4): 593-598.
    [4] Khan R.H., Mitchell D.K., Waveform analysis for high-frequency FMICW radar. IEE Proceedings-F, 1991, 138(5): 411-419.
    [5]尚海燕,陈伯孝,苏洪涛等.一种综合发射波束的超分辨处理方法[J].西安电子科技大学学报(自然科学版),2005, 32(4): 599-602.
    [6]苏洪涛,张守宏,保铮.空时超分辨方法在高频地波超视距雷达中的应用[J].电子学报, 2006, 34(3): 437-440.
    [7]谢处方,天线原理与设计[M].西安:西北电讯工程学院出版社,1985.
    [8]王永良,陈辉,彭应宁等著,空间谱估计理论与算法[M].北京:清华大学出版社.
    [9] Moffet A. T., Minimum-redundancy linear arrays. IEEE Trans. On Antenna Propagat., 1968, 16: 172-175.
    [10] Abramovich Y. H., Gray D. A., Gorokhv A. Y. et al., Comparison of DOA estimation performance for various types of sparse antenna array geometries. in Proc. Of EUSIPCO, Trieste, Italy, 1996, 2: 915-918.
    [11] Gershman A. B., Bohme J. F., A note on most favorable array geometries for DOA estimation and array interpolation. IEEE Signal Processing Letters, 1997, 4(8): 232-235.
    [12] Abramovich Y. I., Spencer N. K., Gorokhv A. Y., Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays– Part II: Partially-augmentable arrays. IEEE Trans. On Signal Processing, 1999, 47(6): 1502-1521.
    [13]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达发射信号频率编码的研究[J].电子学报,1997,25(9): 64-68.
    [14] Abramovich Y. I., Spencer N. K., Gorokhv A. Y., Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays– Part I: Fully-augmentable arrays. IEEE Trans. On Signal Processing, 1998, 46(9): 2458-2471.
    [15]苏洪涛,超视距雷达目标检测与干扰抑制方法研究[D].西安电子科技大学博士论文,2004.
    [16] J. Xie, Y. Yuan, Y. Liu, Super-Resolution Processing for HF Surface Wave Radar Based on Pre-Whitened MUSIC, IEEE J. of Oceanic Engineering, 1998, 23(4):313-321.
    [17] Stoica P., Nehorai A., MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. On ASSP, 1989, 37(5): 720-741.
    [18] Stoica P., Nehorai A., MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. On ASSP, 1990, 38(12): 2140-2150.
    [19] Chambers C., Tozer T. C., Sharman K. C., et al., Temporal and spatial sampling influence on the estimations of superimposed narrowband signals: when less can mean more. IEEE Trans. On Signal Processing, 1996, 44(12): 3085-3098.
    [20] Xu X. L., Buckley K. M., Bias analysis of the MUSIC location estimator. IEEE Trans. On SP, 1992, 40(10): 2559-2569.
    [21] Zhou C., Haber F., Jaggard D. L., A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference. IEEE Trans. On SP, 1991, 39(2): 454-463.
    [22] Friedlander B., A sensitivity analysis of the MUSIC algorithm. IEEE Trans. on ASSP, 1990, 38(10): 1740-1751.
    [23] Friedlander B., Sensitivity analysis of the maximum likelihood direction-finding algorithm. IEEE Trans. on AES, 1990, 26(6): 953-968.
    [24] Swindlehurst A. L., Kailath T., A performance analysis of subspace-based methods in the presence of model errors, part I: the MUSIC algorithm. IEEE Trans. on SP, 1992, 40(7):1758-1773.
    [25] Swindlehurst A. L., Kailath T., A performance analysis of subspace-based methods in the presence of model errors, part II: the multidimensional algorithm. IEEE Trans. on SP, 1992, 41(9): 2882-2890.
    [26]王炎,徐善驾.发射阵列互耦校正[J].电子与信息学报, 2004,25(6): 979-983.
    [27]苏洪涛,张守宏,保铮.发射阵列互耦及幅相误差校正[J].电子与信息学报, 2006, 28(5): 941-944.
    [28] Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm [J]. IEEE Trans. on SP, 1994, 42(6): 1519-1526.
    [29]王永良,陈辉等著,空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [30] Weiss A J, Friedlander B., Eigenstructure methods for direction finding with sensor gain and phase uncertainties, Circuit, Syst. SP, 1990, 9(3): 271-300.
    [31] Friedlander B., Weiss A J., Performance of direction finding systems with sensor gain and phase uncertainties, Circuit, Syst. SP, 1993, 12(1): 3-33.
    [32] G. C. Brown, J. H. McClellan, and E. J. Holder, A phased array calibration technique using eigenstructure method, Proc. of IEEE Int. Conf. on radar, 1990: 304-308.
    [33] Weiss A J, Friedlander B., Direction finding in the presence of mutual coupling, Maple press, 1988: 598-602
    [34] Eric. E. K. Hung, A critical analysis of a self-calibrating direction-finding method for arrays, IEEE Trans. on SP, 1994, 42(2): 471-474.
    [1] Y. I. Abramovich, Impulse noise mitigation in spatial and temporal domains for surface wave over-the-horizon radar. Proc. of APAP’2001, MIT Lincoln Lab, MA, pp.19-24.
    [2] R. B. James, E. S. Erick, Over-the-horizon radar sensitivity enhancement by impulse noise excision. IEEE Conf. on radar, Syracuse, NY, 1997, pp.22-25.
    [3] M. Turley, Impulse noise rejection in HF radar using a linear prediction technique. Proc. of Int. Conf. on Radar, Adelaide, Australia, 2003, pp.358-362.
    [4] S. J. Anderson, F. J. Mei, and P. N. Jiao, Enhanced OTHR ship detection via dual frequency operation. Proc. of Int. Conf. on Radar, Beijing, China, 2001, pp.85-89.
    [5] T. Thayananthan and M. John, Evaluation of Ionospheric Sporadic-E Clutter in an Arctic Environment for the Assessment of High-Frequency Surface-Wave Radar Surveillane [J]. IEEE Trans. on GRS, 2005, 43(5): 35-38.
    [6] D. B. Trizna, Dual use multi-frequency radar for current shear mapping and ship target classification. Proc. of OCEANS , 4: 2325-2331.
    [7]周浩,文必洋,吴世才等.高频雷达在射频干扰下的目标检测研究[J].现代雷达,2004, 26(9): 29-32.
    [8] M. Xingpeng, L. Yongtan, D. Weibo, Radio frequency interference of HF surface wave radar. IEE Electronics letters, 2004, 40(3):202-203.
    [9] Anthony Ponsford, Levent Sevgi, and Hing C. Chan.‘An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars, Part 2: Operation Status and System Performance’, IEEE Antennas and Propagation Magazine, 2001, 43(5): 52-63.
    [10]苏洪涛,保铮,张守宏.自适应地波超视距雷达高频通信干扰抑制[J].电波科学学报,2003, 18(3): 270-274.
    [11]苏洪涛,保铮,张守宏.地波超视距雷达高频通信干扰抑制[J].西安电子科技大学学报(自然科学版),2003, 30(4): 441-445.
    [12]强勇,苏洪涛,焦李成.高频地波雷达抗短波通信干扰的研究[J].宇航学报,2003, 24(5): 529-533.
    [13] Skolnik M. I.主编,王军等译.雷达手册(第二版)[M].北京:电子工业出版社.
    [14] Wong N. F., Gott G. F.,Barclay L. W., HF spectral occupancy and frequencyplanning. IEE Proc., 1985, 132(7): 548-557.
    [15] G. A. Fabrizio, Y. I. Abramovich, S. J. Anderson, et al., Adaptive cancellation of nonstationary interference in HF antenna array. IEE Proc.-Radar, Sonar Navig., 1998, 145(1): 19-24.
    [16] Wan Xianrong, Ke Hengyu, and Wen Biyang, Adaptive Cochannel Interference Suppression Based on Subarrays for HFSWR [J]. IEEE Signal Processing letters, 2005, 12(2): 162-165.
    [17] W. Xianrong, Z. Sifeng, K. Hengyu et al, Target detection with high frequency surface wave radar in co-channel interference [J]. IEE proc.-Radar Sonar Navig., 2005, 152(2): 97-103.
    [18] H. Leong,‘Adaptive Nulling of Skywave Interference using Horizontal Dipole Antennas in a Coastal Surveillance Surface Wave Radar System’, Proc. of IEEE Radar Conference’1997: 26-30.
    [19]杨俊,文必洋,吴世才等.用水平天线消除天波干扰的算法研究[J].电波科学学报,2004, 19(2): 176-181.
    [20]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报,2001, 29(9): 1206-1209.
    [21] Y. Jun, W. Biyang, and W. Shicai, Method to suppress radio-frequency interference in HF radar. IEE Proc. of Electronics Letters, 2004, Vol.40, No.2.
    [22] H. Zhou, B. Wen, and S. Wu:‘Dense radio frequency interference suppression in HF radar’, IEEE Signal Processing letters, 2005, 12, (5), pp.361-364.
    [23]张雅斌,陈伯孝,张守宏.舰载无源综合脉冲孔径雷达射频干扰抑制[J].西安电子科技大学学报,2007, 34(4): 514-517.
    [24] Z. Hao, W. Biyang, W. Shicai et al., Radio frequency interference suppression in HF radar. IEE Proc. of Electronics Letters, 2003, 39(12): 925-927.
    [25]周浩,文必洋,吴世才等.应用时频分析进行射频干扰抑制[J].电子学报,2004, 32(9): 1546-1548.
    [26] D. J. Rabideau, Nonlinear synthetic wideband waveforms. Proc. of IEEE Radar Conf., 2002, pp.212-219.
    [27]沈琪琪,朱德生.短波通信.西安:西安电子科技大学出版社,1989.
    [28]杨小牛,楼才义,徐建良编著.北京:电子工业出版社,2006.
    [1] Crombie D D, Doppler Spectrum of Sea Echo at 13.56Mc/s [J]. Nature, 175, pp.681-682, 1955.
    [2] J. R. Wait. Theory of HF Ground Wave Backscatter from Sea Waves [J]. Geophys Res. 1966(71): 4842-4839.
    [3] D. E. Barrick. First-order Theory and Analysis of MFC-IFNHF Scatter from the Sea [J]. IEEE Trans. on AP., 1972, AP-20(1): 2-10.
    [4] D. E. Barrick. Remote Sensing of Sea State by Radar. Ch.12 of Remote Sensing of the Troposphere [J]. NOAA/Environmental Research laboratories, 1972: 12(1)-12(46).
    [5] J. Walsh, R. Howell and B. Dawe. Model Development for Evaluation Studies ofGround Wave Radar [J]. Centre Cold Ocean Resources, Eng., Contract Rep.90C14, 1990.
    [6] J. R. Walsh, E. W. Gill, An analysis of the scattering of high frequency electromagnetic radiation from rough surface with application to pulse radar operating in backscatter mode [J]. Radio Science, 2000, 35(6): 1323-1336.
    [7] E. W. Gill, J. R. Walsh, High-frequency bistatic cross sections of the ocean surface [J]. Radio Science, 2001, 36(6): pp1459-1475.
    [8] E.W. Gill, J. Walsh. On the Second-Order High Frequency Bistatic Ground Wave Radar Cross Section of the Ocean Surface [J]. Canadian Conference on Electrical and Computer Engineering. 1997, 2: 516-519.
    [9]周志鑫,HF地波超视距雷达海态遥感机理及信息提取[M].哈尔滨工业大学博士论文,1997.
    [10]梁宏宇,吴世才,侯杰昌等,窄波束高频雷达一阶及二阶海面回波谱的数值模拟[J].武汉大学学报(自然科学版), 1994, 40(7): 134-139.
    [11]吴庆麟,管琛帜,邱昌熔等,高频雷达海面回波截面方程改进[J].武汉大学学报(自然科学版), 1996, 42(3): 375-380.
    [12]冀振元,舰载超视距雷达目标与海杂波特性分析与模拟[M].哈尔滨工业大学博士论文,2001.
    [13] J. Xie, Y. Liu, Experimental analysis of sea clutter in shipborne HFSWR [J]. IEE Proc.- Radar, Sonar and Navig., 2001, 148(2): 67-71.
    [14]高兴斌,宗成阁,袁业术,高频地波舰载超视距雷达的海杂波对消[J].电子学报, 2000, 28(3): 5-8.
    [15]谢俊好,许荣庆等高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998, No.2: 30-36.
    [16] M. K. McDonald, V. Varadon and H. Leung, Chaotic behavior and non-linear prediction of airborne radar sea clutter data, Proceedings of the IEE Radar Conference, 2002, 4: 331-337.
    [17] Simon Haykin and Sadasivan Puthusserypady, Chaos, sea Clutter, and Neural Networks [J]. Proc. of the IEEE Radar Conf., 1998: 1224-1227.
    [18] G. Zhou, H. Dong, and T. Quan, HF Ground wave radar sea clutter cancellation based on chaotic prediction [J]. Proceedings of ICSP, 2004: 2136-2139.
    [19] Ji Chen, Titus K . Lo, Hebry Leung, The Use of Fractals for Modeling EM Waves Scattering from Rough Sea Surface, IEEE Trans. on GRS, 1996, 7.
    [20] Macro Martorella, Fabrizio Berizzi, and Enzo Dalle Mese, On the Fractal Dimension of Sea Surface, IEEE Trans. On AP, 2004, 52(5).
    [21] G. L. Tyler, W.E. Faulkerson, A.M. Peterson and C.C. Teague. Second-Order Scattering from the Sea: Ten-Meter Radar Observations of the Doppler Continuum [J]. Science, 1972, 177: 349-351
    [22] Dennis Trizna, James Gordon, Results of a Bistatic HF Radar Surface Wave Sea Scatter Experiment [J]. IEEE Radar’2002: 1902-1904.
    [23] D. E. Banick and J. B. Snider, The Statistics of HF Sea-echo Doppler Spectra [J]. IEEE Trans. on AP, 1977, 25(1): 19-28.
    [1] Rafaat H. Khan, Ocean-Clutter Model For High-Frequency Radar [J]. IEEE Journal of Oceanic Engineering, 1991, 16(2): 181-188
    [2] Martin W. Poon, R. H. Khan, and Son Le-Ngoc, A Singular Value Decomposition (SVD) Based Method for Suppressing Oceanic Clutter in High Frequency Radar [J]. IEEE Trans. on SP, 1993, 41(3): 1421-1425
    [3] Rafaat Khan, Desmond Power, and John Walsh, Ocean Clutter Suppression for an HF Ground Wave Radar [J]. IEEE CCECE’97, 1997: 512-515
    [4] J. Xie, Y. Yuan and Y. Liu, Suppression of sea clutter with orthogonal weighting for target detection in shipborne HFSWR [J]. IEE Proc.-Radar Sonar and Navig., 2002, 149(1): 39-44
    [5]谢俊好,许荣庆等.高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998, 20(2): 30-36
    [6]谢俊好,袁业术,段凤增,基于时域插值的舰载高频地波雷达空时处理[J].哈尔滨工业大学学报,1998,30(6): 89-93
    [7] J. Xie, Y. Liu, Experimental analysis of sea clutter in shipborne HFSWR [J]. IEE Proc.- Radar, Sonar and Navig., 2001, 148(2): 67-71
    [8] J. Xie, Y. Yuan and Y. Liu, Optimum weights of DPCA processing for shipborne HFSWR [J]. Proceeding of ICSP’98, 1998: 1544-1547
    [9] H. Leung, Chaotic radar signal processing over the sea [J]. IEEE Journal of Oceanic Engineering, 1993, 18(3): 287-295
    [10] G. Zhou, H. Dong, and T. Quan, HF Ground wave radar sea clutter cancellation based on chaotic prediction [J]. Proceedings of ICSP, 2004: 2136-2139
    [11] Thayaparan T., Kennedy S., Detection of a Maneuvering Air Target in Sea-Clutter using Joint Time-Frequency Analysis Techniques[J]. IEE Proc.-Radar Sonar and Navig., 2004, 151(1): 19-30
    [12]尚海燕,岸-舰双/多基地地波超视距雷达机动目标检测[D].西安电子科技大学博士论文,2008
    [13] Dimonte, C. L., and Arun, K. S., Tracking the frequencies of superimposed time-varying harmonics [J]. Proceeding of ICSP’90, 1990: 2539-2542
    [14]何振亚,自适应信号处理[M].北京:科学出版社,2002
    [15] Brennan, L. E., and Reed, I. S., Theory of adaptive radar [J]. IEEE Trans. on Aerospace and Electronic Systems, 1973, 9(2): 237-252
    [16]廖桂生,保铮,张玉洪.相控阵AEW雷达杂波抑制的简化辅助通道法[J].电子科学学刊,1993,15(5): 475-481
    [17] Klemm R., Adaptive airborne MTI: an auxiliary channel approach [J]. IEE Proc. Pt.F, 1987, 134(3): 269-276
    [18] Wang H, Cai L., On adaptive spatial-temporal processing for airborne surveillance radar systems [J]. IEEE Trans. on AES, 1994,30(3): 660-670
    [19]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报,1993, 21(9): 1-7
    [20]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(1)[J].现代雷达,1994, 16(1): 38-48
    [21]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(2)[J].现代雷达,1994, 16(2): 17-27
    [22] Dipietro R., Extended factored space-time processing for airborne radarsystems [J]. Proceedings of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, 1992: 425-430
    [23] D. J. Rabideau, A. O. Steinhardt, Improved adaptive clutter cancellation through data-adaptive training [J]. IEEE Trans. on AES, 1999, 35(3): 879-891
    [24] Melvin W. L., Wicks M. C., Improving practical space-time adaptive radar [J]. Proc. of the IEEE National Radar Conf., Syracuse, NY, 1997: 48-53
    [25] Sarkar T. K., Wang H., Park S., et al., A deterministic least-squares approach to space-time adaptive processing (STAP) [J]. IEEE Trans. on AP, 2001, 49(1): 91-103
    [26] K. P. Ong and B. Mulgrew, Doppler Compensation for JDL for airborne bistatic radar [J]. Proc. of the IEEE National Radar Conf., 2002: 82-86
    [27] Braham Himed, Yuhong Zhang, and Abdelhak Hajjari, STAP with angle-Doppler compensation for bistatic airborne radars [J]. Proc. of the IEEE National Radar Conf., 2002: 311-317
    [28] W. L. Melvin, A STAP overview [J]. IEEE A&E System Magazine, 2004, 19(1): 19-35
    [29]王万林,非均匀环境下的相控阵机载雷达STAP研究[D].西安电子科技大学博士论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700