用户名: 密码: 验证码:
阵列信号二维到达角估计算法理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于相位干涉仪测向体制的传统反辐射导弹(ARM:Anti Radiation Missile)被动雷达导引头(PRS:Passive Radar Seeker)存在着精度不高、分辨率差、不能处理同时到达信号等缺点。本文致力于将性能优良的基于阵列信号处理的谱估计算法应用到被动雷达导引头实际工程中,以实现高精度、超分辨、高实时性的二维到达角(DOA:Direction of Arrival)估计。主要研究工程应用中所需要解决的信源数估计问题、基于极化敏感阵列测向算法问题、阵列结构性能优化问题以及谱估计算法的快速实现问题。
     谱估计算法的优良性能是建立在精确已知信源数的基础上,因此正确估计信源数是实现精确测向的基础。第三章研究了不同条件下的信源数估计方法。当实际系统的性能理想时,在高斯白噪声背景下,可以通过基于信息论准则的方法实现信源数估计,该方法简便有效;在色噪声背景下,可以通过基于协方差矩阵对角加载的信息论方法或者盖尔圆盘定理的方法估计信源数。当实际系统性能不够理想,存在阵元间互耦以及通道不一致性时,噪声会变成空间色噪声,对此提出了基于改进参数空间的信息论准则的方法来估计信源数。计算机仿真和实测数据实验验证了该方法的有效性。
     以多重信号分类(MUSIC:Multiple Signal Classification)算法为代表的谱估计算法具有高精度、超分辨的性能。而在实际工程中,由于只能有限快拍采样,以及存在互耦、不一致性等问题使得算法对单个信号具有很高的精度,但对多个信号的分辨力不高。第四章研究了利用极化敏感阵列来提高谱估计算法的分辨率,实现二维超分辨测向。首先基于MUSIC算法形成了空域-极化域联合谱,并通过理论分析和计算机仿真分析了联合谱的超分辨性能。其次介绍了基于总体最小二乘准则的借助旋转不变技术估计信号参数(TLS-ESPRIT:Totla Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques)算法的联合谱估计。最后提出了基于极化旋转矩阵的MUSIC算法。该方法将四维谱搜索降为二维谱搜索,极大地提高了实时性,同时保持了联合谱的超分辨性能,通过计算机仿真表明了该方法的有效性。
     在阵列信号测向中,不同的算法会有不同的到达角(DOA:Direction of Arrival)估计性能,同时阵列结构对算法的最终性能也有重要的影响。第五章通过阵列流形的微分几何研究了不同阵列的精度性能以及分辨性能,并且利用微分几何在理论上探讨了阵列设计的方法。然后对测向中影响最严重的一阶模糊问题进行了研究,对任意平面阵推导了一个阵列不存在一阶模糊的充分条件,能够指导工程中充分利用阵列孔径而不产生一阶模糊。
     基于阵列信号处理的谱估计算法具有高精度、超分辨的良好性能,但其代价是相比于传统的测向体制它的算法复杂得多,因而运算量大、实时性差。为了保证实时性,第六章在原有被动探测及测向的实验平台上,通过硬件和算法软件的设计,研制了一个基于MUSIC算法的高速测向器。该测向器在硬件上采用四片ADI公司高性能浮点DSP TS201S共享总线紧耦合并行处理的设计,软件流程上提出了利用导向矢量查表计算空间谱值的方法,最后能够实现快速实时测向。进行了测向器测角精度和实时性指标的测试实验,测试结果为研制新型被动雷达导引头提供了非常有价值的参考。
The conventional anti radiation missile (ARM) passive radar seeker (PRS) has the disadvantages including low precision, poor resolution and disability to handle simultaneous signals based on phase interferometer mechanism. This dissertation applys spectral estimation algorithm based on array signal processing to PRS, in order to achieve two-dimensional high-precision, super-resolution, real-time direction of arrival (DOA) estimation. The problems in practices including source number estimation, utility of polarization sensitive array, array geometry designing optimization and fast implementation of spectral estimation algorithm are mainly researched in this thesis.
     The excellent performance of spectral estimation algorithm is under the assumption of knowing the source number precisely, so the correct estimation of source number is the precondition to achieve precise DOA estimation. Source number estimation methods under different conditions is studied. While the practical system is ideal, source number can be estimated by information theory criteria method with the Gaussian white noise background, or by diagonal loading to the covariance matrix information criteria or Gerschgorin disk theorem with the colored noise background. When the practical system is not ideal, the noise will become spatial colored in respect of the existence of mutual coupling and channel mismatch. To deal with this case, a new method called improving the parameter space of information criteria is proposed. Simulation and experimental measurement results illustrate the effectiveness of the new method.
     The spectral estimation algorithms represented by multiple signal classification (MUSIC) algorithm have the performance of high-precision and super-resolution. However, in practices, it has been proved that due to the limited snapshots, the existence of mutual coupling and channel mismatch and some other factors, the algorithms perform well with high precision only when dealing with single source, and would result in quite poor resolution when dealing with multiple sources. How to improve the resolution of spectral estimation algorithms to achieve high-resolution performance by using polarization sensitive arrays is proposed and studied. With polarization sensitive array, the spatial and polarizational joint spectrum is defined by using MUSIC algorithm. And the super-resolution performance of the joint spectrum was analysed through theoretical analysis and simulation. Then the joint spectrum estimation based on TLS-ESPRIT algorithm is introduced. Finally, a new algorithm called MUSIC algorithm based on polarization rotation matrix is proposed. This method reduces four-dimensional spectrum search to two-dimensional, which greatly improves the real-time performance while maintains the super-resolution of joint spectrum. The simulation results show the effectiveness of this method.
     In array signal direction finding, different algorithms lead to different performance of direction of arrival (DOA) estimation. Meanwhile, the array geometry has important impact on the final performance of direction finding algorithm. The precision and resolution performance of different array geometry is studied by array differential geometry, and also array designing method is discussed theoretically. And the rank-1 ambiguity issue which has the most serious effectiveness in direction finding is studied. A sufficient condition of non-existing of rank-1 ambiguity is derived based on arbitrary planar array, which can guide to making full use of array aperture without creating rank-1 ambiguity in practical projects.
     The spectral estimation algorithm based on array signal processing has excellent performance of high-precision and super-resolution, but it is much more computational complicated than conventional DF mechanism. It needs a large quantity of computation, and as a result, its real-time performance is comparably much poorer. In order to guarantee real-time performance, a design of high-speed DF device based on MUSIC algorithm is developed. The DF device works with an existed experimental PRS platform. It makes use of four ADI' high performance floating point DSPs TS201S in hardware design of the DF device. And the four DSPs combine a parallel digital signal processor by sharing bus and tightly coupling. In software design, a method of computing spectrum by steering vector table search is proposed. And thus the DF device achieves very high speed. The experimental test results about accuracy and real-time performance of the DF device provide a very valuable reference for developing new PRS.
引文
[1]司锡才,赵建民编著.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工程大学出版社,1996:27-102.
    [2]Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation,1986,34(3):276-280.
    [3]Burg, J P. Maximum entropy spectral analysis[J]. Proc.of the 37th Meeting of the Annual Int. Society of Exploration Geophysicists meeting, Oklahoma City, OK,1967.
    [4]Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. of IEEE,1969,57(8):1408-1418.
    [5]Rao B D, Hari K V S. Performance analysis of root-MUSIC[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989,37(12):1939~1949.
    [6]Kumaresan R, Tufts D W. Estimating the angle of arrival of multiple plane waves[A]. IEEE Trans. on Aerospace Electron Systems,1983,19(1):134-139.
    [7]Li F, Vaccaro J, Tufts D W. Min-norm linear prediction for arbitrary sensor array [A]. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, Glasgow, UK. May 1989,2613-2616.
    [8]BOHME J F.Estimation of source parameters by maximum likelihood and nonlinear regression[A]. Proc. ICASSP'84[C]. Bostoa, MA, USA:IEEE, Apr. 1984:731-734.
    [9]B. Ottersten, Viberg M, P. Stoica and A. Nehorai. Exact and large sample ML techniques for parameter estimation and detection in array processing[J]. IN Haykin, Litva and shepherd editors, Radar arrar processing, Springer-Verlag, Berlin,1993:99-151.
    [10]Viberg M, Otterstem B. Sensor array processing based on subspace fitting[J]. IEEE Trans. on Signal Processing,1991,39(5):1110-1121.
    [11]Cadzow J A. A high resolution direction-of-arrival algorithm for narrow- band coherent and incoherent sources[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1988,36(7):965-979.
    [12]Viberg M, Otterstern B. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans. on Signal Processing,1991, 39(11):2436-2449.
    [13]Schmidt R O. A signal subspace approach to multiple emitter location and spectrum estimation[D]. Stanford University., Stanford, CA,1981.
    [14]Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Trans. on Acoust Speech and Signal Processing,1985,33(2):387-392.
    [15]Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals in presence of white noise[J]. Multivariate Anal,1986,20:1-25.
    [16]Zhang Q, Wong K M. Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989, 37(10):1557-1567.
    [17]Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals when the noise covariance matrix is arbitrary[J]. Multivariate Anal,1986,20: 26-49.
    [18]Zhao L C, Krishnaiah P R, Bai Z D. Remarks on Certain Criteria for Detection of Number of Signals[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1987,35(2):129-132.
    [19]Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989, 37(8):1190-1196.
    [20]Wong K M, Zhang Q, Reilly J P. On information theoretic criteria for determining the number of signals in high resolution array processing[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1990,38(1): 1959-1971.
    [21]E. Fishler, H. Messer. Order statistics approach for determining the number of sources using an array of sensors[J]. IEEE Single Processing Letters,1999 7(6):179-182
    [22]. E. Fishler, H. Messer. On the use of order statistics for improved detection of signals by the MDL criterion[J]. IEEE Trans. on Signal Processing,2000, 48(8):2242-2247.
    [23]Chen W G, Wong K M, Reilly J P. Detection of the number of signals:a predicted eigen-threshold approach[J]. IEEE Trans. on Signal Processing, 1991,39(5):1088-1098.
    [24]Shan T J, Paulray A, Kailath T. On smoothed rand profile tests in eigen structure methods for directions-of-arrival estimation[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1987,35(10):1377-1385.
    [25]Cozzens J H, Sousa M J. Source enumeration in a correlated signal environment[J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1994,42(2):304-317.
    [26]Di A. Multiple sources location-a matrix decomposition. approach[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1985,35(4):1086-1091.
    [27]H. T. Wu, J. F. Yang, F. K. Chen. Source number estimator using Gerschgorin Disks[J]. Proc. ICASSP, Adelaide, Australia,1994:261-264.
    [28]H. T. Wu, J. F. Yang, F. K. Chen. Source number estimation using transformed Gerschgorin Radii[J]. IEEE Trans. on Signal Processing,1995, 43(6):1325-1333.
    [29]Petre Stoica, Mats Cedervall. Detection tests for array processing in unknown correlated noise fields[J]. IEEE Trans. on Signal Processing,1997, 45(9):2351-2362.
    [30]Zhang Q T, Wang K M. Information theoretic criteria for the determination of the number of signals in spatially correlated noise[J]. IEEE Trans. on Signal Processing,1993,41(4):1652-1663.
    [31]Jean-Jacques Fuchs. Estimation of the number of signals in the presence of unknown correlated sensor noise[J]. IEEE Trans. on Signal Processing,1992, 40(5):1053-1061.
    [32]Pascale C, Joel G, Pascal L et al. Estimation of the number of signals from features of the covariance matrix:a supervised approach[J]. IEEE Trans. on Signal Processing,1999,47(11):3108-3115.
    [33]张杰,廖桂生,王珏.对角加载对信源数目估计性能的改善[J].电子学报,2004,12(33):2094-2097.
    [34]刘君.色噪声背景中信源数检测方法研究[D].西安电子科技大学硕士学位论文,2004:33-35.
    [35]包志强,韩冰,吴顺君.基于模糊聚类的信源个数检测新算法[J].电子与信息学报,2006,28(10):1761-1765.
    [36]GuoqingLiu, JianLi. Moving target detection via airborne HRR phased array radar[J]. IEEE Trans. AES,2001,37(3):914-923
    [37]JianLi, R.T. Compton, Jr. Angle and Polarization estimation using ESPRIT with a polarization sensitive array[J]. IEEE Trans. AP,1991, 39(9):1376-1383.
    [38]Jian Li, R.T. Compton, Jr. Angle estimation using a polarization sensitive array[J]. IEEE Trans. AP,1991,39(10):1539-1543.
    [39]Jian Li. On polarization estimation using a polarization sensitive array[J]. IEEE Proc. Sixth workshop onSatistical Signal and Array Proeessing,1992, 465-468.
    [40]Jian Li, R.T. Compton, Jr. Two-dimensional angle and estimation using the ESPRIT algorithm[J]. IEEE Trans. AP,1992,40(5):550-555.
    [41]Yingbo Hua. A Pencil-MUSIC algorithm for finding two-dimensional angles polarizations using crossed dipoles[J]. IEEE Trans. AP,1993,41(3):370-376.
    [42]Qi Cheng, Yingbo Hua. Further study of the pencil-music algorithtm[J]. IEEE Trans. AES,1996,32(1):284-299.
    [43]Arye Nehorai, Eytan Paldi. Vector-sensor array processing for electro-magnetic source localization[J]. IEEE Trans. SP,1994,42(2):376-398.
    [44]Anthony J. Weiss, Benjamin Friedlander. Direction finding for diversely polarized signals using polynomial rooting[J]. IEEE Trans. SP,1993, 41(5):1893-1905.
    [45]K.T. wong, M.D. Zoltowski. Diversely Polarized root-MUSIC for azimuth- elevation angle of arrival estimation[J]. IEEE APS,1996,1352-1355.
    [46]K.T. Wong, M.D. Zoltowski. Uni-vector-Sensor ESPRIT for multisource azimuth, elevation, and polarization estimation[J]. IEEE Trans. AP,1997, 45(10):1467-1474.
    [47]K.T. Wong, M.D. Zoltowski. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unkown locations[J]. IEEE Trans. AP,2000,48(5):671-680.
    [48]K.T. Wong, M.D. Zoltowski, K.T. Self-initiating MUSIC based direction finding and polarization estimation in spatio-polarizational beamspace[J]. IEEE Trans. AP,2000,48(8):1235-1245.
    [49]王建英.阵列信号多参量联合估计技术研究[D].电子科技大学博士学位论文,2000
    [50]徐振海.极化敏感阵列信号的处理研究[D].国防科学技术大学博士学位论文,2004:145-191.
    [51]王兰美.极化阵列的参数估计和滤波方法研究[D].西安电子科技大学博士学位论文,2005:30-35.
    [52]I. Dacos, A. Manikas. Estimating the manifold parameters of one dimensional arryays of sensors[J]. Journal of the Franklin Institute, Engineering and Applied Mathematies,1995,332B(3):307-332.
    [53]A. Manikas, A. Sleimna, I. Dacos. Manifold studies of nonlinear antenna array[J]. IEEE Trans. SP,2001,49(3):497-505.
    [54]Manikas, H.R. Karimi, I. Dacos. Study of the dieretion and resolution capabailities of a one-dimensional array of sensors by using diefferential geometry[J]. IEE Proc. Radar sonar and Navigation,1994,141(2):83-92.
    [55]H. R. Karimi, A. Manikas. Manifold of a planar array and its effects on the accuracy of direction-finding systems[J]. IEE Pore. Radar sonar and Navigation,1996,143(6):349-357.
    [56]A. Manikas, A. Alexiou, H. R. Karimi. Comparison of the ultimate direction-finding capabilities of a number of planar array geometries [J]. IEE Proc. Radar sonar and Navigation,1997,144(6):321-329.
    [57]N. Dowlut, A. Manikas. A polynomial rooting approach to supei-resolution array design[J]. IEEE Trans. SP,2000,48(6):1559-1569.
    [58]J.S. Goldstein, I.S. Reed. A new method of Wiener filtering and its application to intereference mitigation for communications[J]. In Proc. IEEE MILCOM, Monterey, CA,1997,3:1087-1091.
    [59]W. Xiao, M. L. Honig. Convergence analysis of adaptive full-rank and multistage reduced-rank interference suppression[J]. In Conference on Information Sciences and Systems, Princeton, NJ, March 2000.
    [60]J.S. Goldstein, I.S. Reed, L.L. Scharf. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Trans. Inofmration Theory,1998,44(7):2943-2959.
    [61]M.L. Honig, W. Xiao. Performance of reduced rank linear interferences supression[J]. IEEE Trans. Information Theory, July2001,47(5):1928-1946.
    [62]M. Joham, M. D. Zoltowski. Interpretation of the multi-stage nested wiener filter in the Krylov subspace framework[J]. Tech. Rep. TUM-LNS-TR-00-6, Munich University of Technology, November 2000.
    [63]J.S. Goldstein, I.S. Reed. Subspace selection for Partially adaptive sensor array processing[J]. IEEE Trans. AES,Apr,1997,33(4):539-543.
    [64]U. Madhow, M. L. Honig. MMSE interference suppression for direct-sequence spread-spectrum CDMA[J]. IEEE Trans. On Comrn.1994, 42(12):3178-3188.
    [65]W. Xiao, M. L. Honig. Convergence analysis of adaptive full-rank and multistage reduced-rank interferences suppression[J].In Conference on Information Sciences and Systems, Princeton,NJ, March 2000.
    [66]S. W. Lang, G L. Duckworth, J. H. McClellan. Array design for MEM and MLM array Proeessing[J]. IEEE ICASSP Proc.1981,1(3):145-148.
    [67]Y. T. Lo, S. W. Lee. Aperiodic Arrays, in Antenna Handbook, Theory Applications and Design[M].Van Nostrand, NewYork,1988.
    [68]X. Hunag, J.P. Reilly, M. Wong. Optimal design of linear array of sensors[J]. IEEE ICASSP Proc.1991,1(5):1405-1408.
    [69]H. Unize. Linear arrays with arbitrarily distributed elements[J]. IEEE Trans. AP. Mar.1960,8(5):222-223.
    [70]D. Pearson, S.U. Pillai, Y. Lee. An algorithm for near-optimal placement of sensor elements[J]. IEEE Trans. Inform. Theory. Nov.1990, 36(11):1280-1284.
    [71]陈昊.空间谱估计算法的高速实现[D].电子科技大学硕士学位论文,2003:1-4.
    [72]肖先赐,魏平.空间谱估计测向实验系统[J].电子科技大学学报,1995,24(7):113-120.
    [73]李民,赵益民.基于TMS320C6711的MUSIC算法实现[J].电子对抗技术,2005,20(3):36-39.
    [74]董照飞.基于DSP的MUSIC算法的实现[J].现代电子技术,2006,238(23):21-23.
    [75]高勇,刘皓,肖先赐等.MUSIC算法在高速DSP上的并行实现[J].通信学报,2000,21(4):84-88.
    [76]谢纪岭.二维超分辨测向算法理论及其应用研究[D].哈尔滨工程大学博士学位论文,2008.
    [77]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社,1999.
    [78]A. Nehorai, E. Paldi. Vector sensor processing for electromagnetic source location[J]. Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Pacific Grove,California,IEEE Computer Society Press, 1991:566-572.
    [79]数学手册编写组.数学手册[M].高等教育出版社,1979:440-441.
    [80]A. Nehorai, E. Paldi. Vector-sensor array processing for electronic source localization[J]. IEEE Trans.on SP,1994,42(2):376-398.
    [81]Jian Li.Direction and polarization estimation using arrays with small loops and short dipoles.IEEE Trans.on AP,1993,41(3):379-387.
    [82]Chen W, Reilly J P. Detection of the number of signals in noise with banded-covariance matrices[J]. IEEE Trans, on SP,1992,42(5):377-380.
    [83]Wong K M, Wu Q, Stoica P. Generalized correlation decomposition applied to array processing in unknown noise environments[J]. In Advances in spectrum analysis and array processing. S.Haykin, Ed. Prentice Hall,1995.
    [84]Akaike H. A new look at statistical model identification[J]. IEEE Trans. on Automatic Control,1974, (AC-19):716-722.
    [85]Rissanen J. Modeling by shortest data description[J]. Automatica,1978,14: 465-471.
    [86]Schwartz G Estimation the demension of a model[J]. Ann. Stat,1978,6: 461-464.
    [87]L.C. Zhao, P.R. Krishnaiah, Z.D. Bai. On Detection of the Number of Signals in Presence of White Noise[J]. J. Multivariate Anal,1986, Vol.20(1):1-25.
    [88]L.C. Zhao, P.R. Krishnaiah, Z.D. Bai. Remarks on Certain Criteria for Detection of Number of Signals[J]. IEEE Trans.ASSP, Feb.1987,35(2): 129-132.
    [89]K.M. Wong, Q.T. Zhang, J.P. Reilly. On Information Theoretic Criteria for Determining the Number of Signals in High Resolution Array Processing[J]. IEEE Trans, ASSP,1990,38(11):1959-1971.
    [90]E. Fisher, H. Messer. Order Statistics Approach for Determining the Number of Sources Using an Array of Sensors[J]. IEEE Signal Processing Letters, 1999,6(7):179-182.
    [91]E. Fisher, H. Messer. On the Use of Order Statistics for Improved Detection of Signals by the MDL Criterion[J]. IEEE Trans.SP,2000,48(8):2242-2247.
    [92]Anderson T W. Asymptotic theory for principle component analysis[J]. Ann. Math. Statist.1963,34(4):122-148.
    [93]Wax M, Kailath T. Determining the number of signals by information theoretic criteria [J]. ICASSP, San. Diego,1984:631-634.
    [94]Calson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Trans. on Aerospace and Electronics Systems, 1988,24(7):397-401.
    [95]Ning Ma, Joo Thiam Goh. Efficient method to determine diagonal loading value[J]. Proc. ICASSP,2003,15(4):341-344.
    [96]王雪松.宽带极化信息处理的研究[D].长沙:国防科技大学博士论文.1999.
    [97]Mostafa Kaven, Arthur J. Barabell. The statistical performance of the MUSIC and the Minimum-Norm algorithms in resolving plane waves in noise[J]. IEEE Trans. ASSP,1986,34(2):331-340
    [98]Harry B. Lee, Michael S. Resolution threshold of beamspace MUSIC for two closely spaced emmitters[J]. IEEE Trans.ASSP,1990,38(9):1545-1559.
    [99]Benjamin Friedlander, A. J. Weiss. The resolution threshold of adirection-finding algorithm for diversely polarized arrays [J]. IEEE Trans. SP,1994,42(7):1719-1727.
    [100]Benjamin Friedlander. A sensitivity analysis of the MUSIC algorithtn[J]. IEEE Trans.ASSP,1990,39(10):1740-1751.
    [101]A. J. Weiss, Benjamin Friedlander. Performance analysis of diversely polarized antenna arrays[J]. IEEE Trans.SP,1991,39(7):1589-1603
    [102]R. Roy, T. Kailath. ESPRIT-estimation of signal parameters via rotation invariance techniques[J]. IEEE Trans, ASSP,1989,37(7):984-995.
    [103]殷勤业,邹理和,Robert WN.一种高分辨率二维信号参量估计方法—波达方向矩阵法[J].通信学报,1991,12(3):1-7.
    [104]金梁,殷勤业.时空DOA矩阵方法[J].电子学报,2000,28(6):8-14.
    [105]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J].电子学报,2001,29(3):300-303.
    [106]刘福来,汪晋宽,杜瑞燕.DOA矩阵方法及其性能分析[J].东北大学学报,2006,27(11):1120-1123.
    [107]P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans. Signal Prosessing,1989,37(5):720-741.
    [108]A. Manikas, H.R. Karimi, I. Dacos. Study of the direction and resolution capabilities of a ome-dimensional array of sensors by using differential geometry[J]. IEE Proc.Radar, sonar Navig.1994,141(2):83-92.
    [109]H.R. Karimi, A. Manikas. Manifold of a planar array and its effects on the
    accuracy of direction-finding systems [J].IEE Proc. Radar, sonar Navig. 1996,143(6):349-357.
    [110]A. Manikas, A. Alexiou, H.R. Karimi. Comparison of the ultimate direction-finding capabilities of a number of planar array geometries[J]. IEE Proc. Radar, sonar Navig.1997,144(6):321-329.
    [111]S.W. Lang, G.L. Duekworth, J.H. MeClellan. Array design for MEM and MLM array Proeessing[J]. IEEE ICASSP Proe.,Mar.1981,1:145-148.
    [112]Y.T. Lo, S.W. Le. Aperiodic Arrays, in Antenna Hanbdook, Theory Applications and Design[M]. Vna Nostrnad, NewYork,1988.
    [113]X. Hunag, J.P. Reilly, M. Wong. Optimal design of linear array of sensors[J]. IEEE ICASSP Proc., May1991,1:1405-1408.
    [114]L.C. Godara, A. Cantoni. Uniqueness and linear independence of steering vectors in array space[J]. J.Acoust.Soc.Amer.,1970(2):467-475.
    [115]J.T. H Lo, S.L. Marple. Observability conditions for multiple signal direction finding and array sensor localization[J]. IEEE Trans.Signal Prosessing,1992,40(11):2641-2650.
    [116]K.C. Tan, S.S. Goh, E.C. Tan. A study of the rank-ambiguity issues in direction-of-arrival estimation[J]. IEEE Trans.Signal Prosessing, 1996,44(4):880-887.
    [117]Gavish M, Weiss A J. Array geometry for ambiguity resolution in direction finding[J]. IEEE Trans on AP,1996,44(6):889-895.
    [118]Miljko E, Aleksa Z, Milorad O. Ambiguity characterization of arbitrary antenna array type Ⅰ ambiguity[J]. IEEE,1998:399-404.
    [119]Miljko E, Aleksa Z, Milorad O. Ambiguity characterization of arbitrary antenna array type Ⅱ ambiguity[J]. IEEE,1998:955-959.
    [120]Dowlut N. An extended ambiguity criterion for array design[J]. IEEE, 2002,3:189-193.
    [121]I. Dacos, A. Mnaikas. Estimating the manifold parameters of one dimensional arrays of sensors[J]. Journal of the Franklin Institute, Engineering and Applied Mathematies,1995,332B(3):307—332.
    [122]N. Dowlut, A. Manikas. A polynomial rooting approach to super-resolution array design[J]. IEEE Trans.Signal Prosessing,2000,48(6):1559-1569.
    [123]P. Stoica, A. Nehorai. Performance study of conditional and unconditional direction-of-arrival estimation[J]. IEEE Trans.Signal Prosessing,1990,38(10): 1783-1795.
    [124]K.-C. Tan, G.-L. Oh. A study of the uniqueness of steering vectors in array processing[J]. IEEE Trans, SP,1993,34(3):245-256.
    [125]K.-C. Tan, Z. Goh. A detailed derivation of arrays free of higher rank ambiguities[J]. IEEE Trans.SP,1996,44(2):351-359.
    [126]A. Manikas, C. Proukakis. Modeling and estimation of ambiguities in linear arrays[J]. IEEE Trans.SP,1998,46(8):2166-2179.
    [127]A. Manikas, C. Proukakis, V. Lefkaditis. Investigative study of planar array ambiguities based on "hyperhelical" parameterization[J]. IEEE Trans. SP,1999,47(6):1532-1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700