用户名: 密码: 验证码:
ISAR目标运动参数估计及成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波成像雷达具有全天时、全天候、远距离提供高分辨图像的能力。由于它在复杂的环境条件下,可完成常规监视系统(光学、红外成像等)难以胜任的任务,因此,在军事和民用领域受到了越来越广泛的关注和应用。随着海洋和空间资源的不断开发和利用,海域和领空资源监测与安全防御也将变得更为重要,因此,对海面或空间目标进行检测和高分辨逆合成孔径雷达(ISAR)成像,实现目标的监测和识别,将显得尤为重要,具有重大的经济、军事和科研价值。
     本文主要研究海面或空间目标的运动参数估计和ISAR成像方法。提出了基于相邻相关法的宽带信号的运动参数估计方法;建立了目标复杂运动回波信号模型,分析了目标运动给方位聚焦带来的影响,提出了基于时频分布尺度变换和时间-调频率分布的ISAR成像方法;在已有的技术基础之上,把雷达推广到机载平台上,实现舰船目标的合成孔径雷达高分辨成像。具体的工作概括如下:
     1、论文的第一章为绪论,主要回顾了目标检测和ISAR成像的发展历程,并介绍了本文的研究背景和主要工作。
     2、第二章介绍了ISAR成像的基本原理。对常规ISAR成像中所用到的运动补偿技术和方位聚焦方法进行了概述。同时,分析了时频分析在ISAR成像中的应用,介绍了几种常用的ISAR瞬时成像方法。
     3、第三章提出了一种有效的高机动目标宽带信号参数估计的方法。先通过相邻相关法对目标回波信号进行降阶处理,除去包络弯曲的影响;后利用keystone变换除去单元内剩余包络走动的影响,对每个距离单元进行瞬时相关尺度变换,并沿方位相干积累在低信噪比情况下检测运动目标。利用瞬时相关尺度变换并相干积累所得到的信号峰值的位置估计目标的径向加速度和加加速度的值,同时,在原始回波信号的相邻相关值中补偿掉高次相位,利用方位相干积累得到的信号峰值位置来估计目标的径向速度。
     4、对检测之后的目标进行高分辨的ISAR成像,除了直接发射宽频带的信号产生目标的高分辨一维距离像之外,还可以通过窄频带的合成技术实现高分辨的ISAR成像。因此,第四章重点介绍了一种适用于ISAR成像的距离合成高分辨技术,根据ISAR成像的特点,分析了目标运动特性对距离高分辨合成及ISAR成像的影响,提出了基于合成距离包络的运动补偿技术和ISAR成像方法。
     5、第五章提出了一种基于时频分布尺度变换的ISAR成像新方法,在不需要进行参数估计和运动补偿的情况下,能有效解决方位二次相位项造成方位散焦的问题。把包络对齐后的各距离单元数据变换到时频平面内,通过尺度变换,解信号瞬时时间和相关函数延迟量的耦合影响,把方位二次相位项所产生的时频平面内的斜线校正成平行于时间轴的直线,并沿时间轴进行能量积累,减少交叉项的影响,最终对复杂运动目标进行高分辨ISAR成像。
     6、第六章提出了一种新的基于时间-调频率平面的解线调频Clean搜索(TC-DechirpClean)的瞬时成像方法。有效地解决了目标复杂运动引起的调频率变化所导致的方位聚焦质量下降问题。在方位信号的时间-调频率平面内,利用信号散射点调频率变化率的一维搜索方法得到信号的调频率的变化率和调频率值,同时,在补偿高次相位后做FFT变换,根据幅度最大的位置来确定信号的中心频率和幅度信息,重构有用的回波信号,最终对目标进行ISAR成像。
     7、第七章提出了一种机载雷达对舰船目标的成像方法。在对回波序列进行运动补偿之后,利用广义二阶keystone变换同时结合孤立的散射点作WVD变换,估计多普勒参数并且构造相应的补偿函数来消除距离弯曲和距离走动,并最终实现舰船目标的高分辨成像。
     8、最后一章对全文工作进行了总结,并指出需要进一步研究的问题。
Microwave imaging radar has an ability that can provide a high resolution radar image in all-weather, day/night and long range condition. Because the imaging radar can be competent for some missions that are difficult for some general surveillance systems, such as optics and infrared systems, it is being more and more widely used in military and civil fields. With the increased exploitation and utilization of ocean and space resource, the surveillance and safety protection of ocean and space resource will become more and more important. So, the detection and ISAR imaging of moving targets will play an important role in inspecting and identifying targets and have an important military and scientific research value.
     An emphasis will be put on the research of the detection and ISAR imaging of sea or space targets in the paper, which proposes a method for detecting wideband signal based on Crosscorrelation Function, builds the echo signal model of complexly moving targets, and proposes two methods based on the scale transform in time-frequency distribution plane (STTFD) and the time-chirp Clean (TC-DechirpClean) for targets ISAR imaging. Finally, a shown method is used for achieving ship imaging in airborne radar system. The main work of this dissertation is as follows:
     [1] Chapter 1 is the introduction. It reviews targets detection and ISAR development, then introduces the dissertation’s research background and main work.
     [2] Chapter 2 overviews conventional ISAR imaging principle and various technological methods used for ISAR imaging.
     [3] Chapter 3 studies a targets detection technology in wideband signal. The proposed parameter estimation algorithm is composed of the following steps: Firstly, do adjacent cross correlation between received signals to eliminate target’s translational motion effect, and reduce the range cell migration; then apply Keystone transform to eliminate the couple effect of range and cross range; next detect moving targets with coherent accumulation of correlation function after an scale transformation to each range cell data. The acceleration and the change of acceleration in range direction of targets can be estimated based on the peak position of the processed adjacent correlation function of echo signals. The velocity of target is estimated based on the peak position of the cross range accumulated signal after the high order phase term having been compensated, which is calculated based on the estimation acceleration.
     [4] Chapter 4 proposes an ISAR imaging algorithm based on linearly modulated frequency stepped (LMFS) signal. The method makes full use of the information of range envelope and azimuth Doppler to estimate the radial velocity and acceleration and makes compensation for motion parameters in the raw data. At the same time, this method was also applied to the imaging of ISAR in low signal to noise rate (SNR). At the end, the detailed imaging steps of LMFS ISAR are put forward and the simulated results with different SNR confirms this method.
     [5] Chapter 5 presents a new method based on a scale transform in time-frequency distribution plane (STTFD). After range envelop alignment, the data of each range cell is transmitted into the new ones in a time-frequency domain. A scale transform is applied to the time-frequency domain data to remove the coupling effect between signal time and the correlation function delay. After the above transforms, the bias distribution in the time-frequency plane of each scatterer signal result of the cross-range quadratic phase term is changed to a beeline distribution parallel to the time axis. Therefore, a high resolution ISAR image for a maneuvering moving target is obtained by the Fourier transform to the processed data. The proposed ISAR imaging algorithm is verified by simulation and raw radar data results.
     [6] Chapter 5 studies a new method based on the time-chirp distribution for imaging complexly moving targets. we first model the complex motion of ship target with cubic phase terms (parameterized on chirp rate and its change rate), then a new ISAR imaging method, referred to as TC-DechirpClean, is proposed, which estimates the chirp rate and the change rate of chirp rate of all scatters in the time-chirp distribution plane. Both numerical and experimental results are provided to demonstrate the performance of the proposed method.
     [7] Chapter 7 presents an imaging algorithm for achieving ship imaging in airborne radar system. An effective method based on an idea that uses motion compensation, general second-step keystone transform twice and at the same time, finds an isolated point and adopts WVD transform to estimate Doppler parameters for removing range walk and curvature. And what is more, the detailed deductions are given in this paper. Finally, the SAR image of moving ship is acquired in the azimuth frequency field. The simulation result of three moving point-targets and the imaging result of real ship data confirm this method.
     [8] Chapter 8 is the summary of the dissertation. It also discusses future research areas to be further studied.
引文
[1]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005。
    [2]张直中,微波成像技术。北京:科学出版社,1990。
    [3]张澄波,综合孔径雷达。北京:科学出版社,1989。
    [4]刘永坦,雷达成像技术。哈尔滨:哈尔滨工业大学出版社,1999。
    [5] V. C. Chen, L. Hao, Time-Frequency Transforms For Radar Imaging And Signal Analysis, Artech House, Inc, 2002.
    [6] J. C. Curlander, R. N. McDonough. Synthetic aperture radar: system and signal processing, Jone Wiley & Sons, Inc, 1991.
    [7] R. L. Jordan, B. L. Huneycutt, M. Werner,“The SIR-C/X-SAR Synthetic Aperture Radar System”. Proc. IEEE, 1991, 79(6): 827-838.
    [8] F. H. Wong, T. S. Yeo,“New applications of nonlinear chirp scaling in SAR data processing”, IEEE Trans. on GRS, 2001, 39(5): 946-953.
    [9] G. Fronaro,“Trajectory deviations in airborne SAR: analysis and compensation”, IEEE Trans. on AES, 1999, 35(3): 997-1009.
    [10] A. Moreira, Y. Huang,“Airborne SAR processing of highly squinted data using a Chirp Scaling approach with integrated motion compensation”, IEEE Trans. on GRS, 1994, 32(5): 1029-1039.
    [11] E. Aliviazatos, A. Potsis, A. Reigber,“SAR Processing with motioncompensation using the extended wavenumber algorithm”, Proc. EUSAR2004, Ulm, Germany, 2004.
    [12]邢孟道,保铮,“基于运动参数估计的SAR成像”,电子学报,2001,29(12): 1824-1828。.
    [13]黄源宝,“机载合成孔径雷达成像算法及运动补偿的研究”,西安电子科技大学博士学位论文, 2005。.
    [14]郑义明,“SAR/ISAR运动补偿新方法研究”,西安电子科技大学博士学位论文, 2000。.
    [15] C. Wu, K. Liu, M. Jin,“Modeling and a correlation algorithm for spaceborne SAR signals”, IEEE Trans. on AES, 1982, AES-18, pp. 563-575.
    [16] G. W. Davidson, I. G. Cumming, M. R. Ito,“A chirp scaling approach for processing squint model SAR data”, IEEE Trans. on AES, 1996, 32(1): 121-133.
    [17] J. Kirk,“Motion compensation for SAR”, IEEE Trans. on AES, 1975, 3: 338-348.
    [18]邢孟道,“基于实测数据的雷达成像算法研究”,西安电子科技大学博士论文,2002,3。
    [19] M. Y. Jin, C. Wu,“A SAR correlation algorithm which accommodates large range migration”, IEEE Trans. on GRS, 1984, 4(3): 592-595.
    [20] G. Hajduch, J.M. Le Caillec, R.Garello,“Airborne high-resolution ISAR imaging of ship targets at sea”, IEEE Trans. on AES, 2004, 40(1): 378-384.
    [21] W. Haiqing, G.Y.Delisle,“Precision Tracking Algorithm for ISAR Imaging”, IEEE Trans. on AES, 1996, 32(1): 243-254.
    [22]王琦,“空间目标ISAR成像的研究”,博士学位论文,西安电子科技大学,2007,10。
    [23]张焕颖,“高速运动目标ISAR成像方法研究”,博士学位论文,西安电子科技大学,2007,10。
    [24] A. Farina, F. A. Studer,“Detection with High Resolution Radar: Great Promise, Big Challenge”, Microwave Journal, 1991, 5(1): 263-273.
    [25]陆林根,“逆合成孔径(ISAR)雷达目标检测方法”,电子学报,2000,28(3):29-31。
    [26] X. Zhang,“al-Wavelet Detectors for Wideband Radar Signals”, CIE International Radar Conference on Radar, 1996, pp. 289-292.
    [27]孙文峰,何松华,郭桂蓉,“强杂波背景中高距离分辨率雷达运动目标的积累检测”,电子学报,1998,26(12): 12-15。
    [28]王俊,张守宏,“微弱目标积累检测的包络移动补偿方法”,电子学报,2000,28(12):56-59。
    [29]杨建宇,李俊生,“高分辨臂达目标的随机参量脉冲串检测方法”,电子学报,2004,32(6): 1044-1046。
    [30]陆林根,“高距离分辨(HRR)雷达单个H标回波信号检测”,系统工程与电子技术,1999,21(9): 22-25。
    [31]朱永锋,李为民,陈远征,“Chirp雷达对高速运动目标有效相参积累的算法研究”,系统工程与电子技术,2004,26(10): 1396-1399。
    [32] C. A. Wiley,“Synthetic Aperture Radar”, IEEE Trans. on AES, 1985, 21(3): 440-443.
    [33] J. J. Kovaly,“High Resolution Radar Fundamentals”, In Eli Broakner(Ed.), Radar Technology, Dedham. Mass, Artech House, Inc. 1977.
    [34] D. A. Ausherman, A. Kozma, J. L. Walker,“Developments in Radar Imaging”, IEEE Trans. on AES, 1984, 20(4): 363-400.
    [35] D. D. Aush erman, A. Kozma,“Development In Radar Imaging”, IEEE Trans. on AES, 1984, 20(4): 363-399.
    [36] W. M. Brown, R. J. Fredericks,“Range-Doppler Imaging with Motion Through Resolution Cells”, IEEE Trans. on AES, 1984, 20(4): 98-102.
    [37] C. C. Chen, H. C. Andrews,“Target-motion-induced Radar Imaging”, IEEE Trans, on AES, 1980, 16(1): 2-14.
    [38] C. C. Chen, H. C. Andrews,“Multifrequency Imaging of Radar Turntable Data”, IEEE Trans, on AES, 1980, 16(1): 15-22.
    [39] D. R. Wehner, High-Resolution Radar, 2nd Edition, Artech House, Inc., 1987.
    [40] M. Soumekh, S. Nugroho. ISAR imaging of an airborne DC-9. Proc ICASSP. 1993. 465-468.
    [41] R. Goodman, W, Nagy, Wilelm. A high fidelity ground to air imaging radar system. IEEE National Radar Conference Record. 1994. 29-34.
    [42] D.J. Klass. Inverse synthetic aperture technology aids radar identification of ships. AE&ST, Sept.1987.
    [43] R. Voles,“Resolving Revolutions: Imaging and Mapping by Modern Radar”, Proc. IEE-F, 1993, 140(1): 1-11.
    [44] F. E. McFadden, S. A. Musman,“Optimizing Ship Length Estimates From ISAR Images”, Proc. of the IEEE-INNS-ENNS, 24-27 July, 2000, vol. 1, pp. 163-168.
    [45] F. Berizzi, M. Diani,“Multipath Effects on ISAR Image Reconstruction”, IEEE Trans. on AES, 1998, 34(2): 645-653.
    [46] F. Berizzi, E. Dalle-Mese,“Scattering From a 2D Sea Fractal Surface: FractulAnalysis of The Scattered Signal”, IEEE Trans on AP, 2002, 50(7): 912-925.
    [47] K. K. Eerland,“Application of inverse synthetic aperture radar on aircraft”, Proc International Conference on Radar. Paris, 1984, pp: 618-623.
    [48] V. C. Chen, S. Qian,“Joint Time-Frequency Transform for Radar Range-Doppler Imaging”, IEEE Trans. on AES, 1998, 34(2): 486-499.
    [49] V. C. Chen,“Adaptive Time-Frequency ISAR Processing”, SPIE 1996, vol.2845, pp: 133-140.
    [50] V. C. Chen,“Analysis of radar micro-Doppler with time-frequency transform”, Proc. 10th IEEE Workshop on Statistical signal and array processing, Pocono Manor, PA, USA, Aug. 2000, pp: 463-466.
    [51] J. Li, H. Ling,“Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts”, IEE Proc.-Radar Sonar Navig. August 2003, 150(4): 284-291.
    [52] J. F. Li,“Model-Based Signal Processing for Radar Imaging of Targets with Complex Motions”, The University of Texas at Austin August 2002 Dissertation.
    [53] V. C. Chen, F. Li, S. Ho. et al.,“Micro-doppler effect in radar-phenomenon, model and simulation study”, IEEE Trans. on AES, 2006, 42(1): 2-21.
    [54] I. J. Gupta,“High-resolution radar imaging using 2-D linear prediction”, IEEE Trans. on AP, 1994, 42(1): 31-37.
    [55] K. M. Cuomo, J. E. Piou, J. T. Mayhan,“Ultrawide-band coherent processing”, IEEE Trans. on AP, 1999, 47(6): 1094-1107.
    [56] S. L. Borison, S. B. Bowling, K. M. Cuomo,“Super-resolution methods for wideband radar”, Lincoln Lab. J., 1992, 5(3):441-446.
    [57] H. J. Li, N. H. Farhat, Y. S. Shen,“A new iterative algorithm for extrapolation of data available in multiple restricted regions with applications to radar imaging”, IEEE Trans. on AP, 1987, 35(5):581-588.
    [58] S. R. Degraaf,“Parametric estimation of complex 2D sinusoids”, Proc. 4th IEEE ASSP Soc. Annu. Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, Aug. 1988, pp. 391-396.
    [59] M. W. Tu, I. J. Gupta, E. K. Walton,“Application of maximum likelihood estimation to radar imaging”, IEEE Trans. on AP, 1997, 45(1): 20-27.
    [60] J. Li, P. Stoica,“Efficient mixed-spectrum estimation with applications to target feature extraction”, IEEE Trans. on SP, 1996, 44(2): 281-295.
    [61] Z. Bi, J. Li, Z. Liu,“Super resoltion SAR imaging via parametric spectral estimation methods”, IEEE Trans. on AES, 1999, 35(1): 267-281.
    [62] R. Wu, J. Li, P. Stoica,“SAR image formation via semiparametric spectral estimation”, IEEE Trans. on AES, 1999, 35(4):1318-1333.
    [63] S. R. DeGraaf,“SAR imaging via modern 2-D spectral estimation method”, IEEE Trans. on Image Process., 1998, 7(5): 729-761.
    [64] J. W. Odendaal, E. Bernard, C. W. I. Pistorius,“Two dimensional supperresolution radar imaging using the MUSIC algorithms”, IEEE Trans. on AP, 1994, 42(10): 1386-1391.
    [65] J. Li, P. Stoica,“An adaptive filtering approach to spectral estimation and SAR imaging”, IEEE Trans. on SP, 1996, 44(6): 1469-1484.
    [66] M. R. Palsetia, J. Li,“Using APES for interferometric SAR imaging”, IEEE Trans. on Image Process., 1998, 7(9): 1340-1353.
    [67] C. C. Chen, H. C. Andrews,“Target-Motion-Induced Radar Imaging”, IEEE Trans. on AES, 1980, 16(1): 2-14.
    [68] T. Sauer, A. Schroth,“Robust range alignment algorithm via Hough transform in an ISAR imaging system”, IEEE Trans. on AES, 1995, 31(8): 1173-1177.
    [69]王根原,保铮,“逆合成孔径雷达运动补偿中包络对齐的新方法”,电子学报,1998,26(6): 5-8。
    [70]邢孟道,保铮,郑义明,“用整体最优准则实现ISAR成像的包络对齐”,电子学报,2001,29(12): 1807-1811。
    [71] X. Li, G. Liu, J. Ni,“Autofocusing of ISAR images based on entropy minimization”, IEEE Trans. on AES, 1999, 35(9): 1240-1251.
    [72] R. Q. Xu, Z. D. Cao, Y. T. Liu,“Motion Compensation for ISAR and Noise Effect”, IEEE Trans. on AES, 1990, 5(6): 20-22.
    [73] D. E. Wahl, P. H. Eichel, D. C. Ghigetia,“Phase Gradient Autofocus-Robust Tool for High Resolution SAR Phase Correction”, IEEE Trans. on AES, 1994, 30(3): 827-835.
    [74] W. Ye, T. S. Yeo, Z. Bao,“Weighted least-squares estimation of phase errors for SAR/ISAR autofocus”, IEEE Trans. on GRS, 1999, 37(5): 2487-2494.
    [75]保铮,叶炜,“ISAR运动补偿聚焦方法的改进”,电子学报,1996,24(9): 74-79。
    [76]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277.
    [77]丁海林,“舰船目标成像研究”,硕士学位论文,西安电子科技大学,2008。
    [78] G. Y. Wang, X. G. Xia, V. C. Chen,“Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers”, IEEE Trans. on Image Process.,10(3): 436-447.
    [79] Q. Zhang, T. S. Yeo, G. Du, S. Zhang,“Estimation of Three-Dimensional Motion Parameters in Interferometric ISAR Imaging”, IEEE Trans. on GRS. 2004, 42(2): 292-300.
    [80] X. J. Xu, R. M. Narayanan,“Three-Dimensional Interferometric ISAR Imaging for Target Scattering Diagnosis and Modeling”, IEEE Trans. on Image Process., 2001, 10(7): 1094-1102.
    [81] R. Bhalla, L. Hao,“Three-Dimensional Scattering Center Extraction Using the Shooting and Bouncing Ray Technique”, IEEE Trans. on AP. 1996, 44(11): 1445-1453.
    [82] Xixing. Z, Minhui. Z,“The development of on-board imaging processor for airborne SAR in China”, EUSAR'96, Germany.
    [83]保铮,王根原,罗琳,“逆合成孔径雷达的距离-瞬时多普勒成像方法”,电子学报,1998,26(12): 79-83.
    [1] D. R. Wehner,“High-Resolution Radar”, Second Edition, Artech House, Inc. 1994.
    [2] J. S. Son, G. Thomas, B. Flores,“Range-Doppler Radar Imaging and Motion Compensation”, Artech House, Inc. 2000.
    [3] H. Wu,“Translational Motion Compensation in ISAR Image Processing”, IEEE Trans. on Image Process., 1995, 14(11): 1561-1571.
    [4] I. J. Gupta,“High-Resolution Radar Imaging Using 2-D Linear Prediction”, IEEE Trans. on AP, 1994, 42(1): 31-37.
    [5]保铮,叶炜,“ISAR运动补偿聚焦方法的改进”,电子学报,1996,24(9): 83-88。
    [6]邢孟道,保铮,“一种逆合成孔径雷达成像包络对齐的新方法”,西安电子科技大学学报,2000,27(1): 93-96。
    [7]王琦,“空间目标ISAR成像的研究”,博士学位论文,西安电子科技大学,2007,10。
    [8]张焕颖,“高速运动目标ISAR成像方法研究”,博士学位论文,西安电子科技大学,2007,10。
    [9]汪玲,“逆合成孔径雷达成像关键技术研究”,博士学位论文,南京航空航天大学,2006,8。
    [10] Z. S. She, D. A. Gray, R. E. Bogner,“Autofocus for inverse synthetic aperture radar (ISAR) imaging”, Signal Processing, 2001, 81(2): 275-291.
    [11] V. C. Chen, W. J. Miceli,“Time-varying spectral analysis for radar imaging of maneuvering targets”, IEE Proc.-Radar. Sonar Navig., 1998, 145(5): 262-268.
    [12]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [13]张澄波,综合孔径雷达。北京:科学出版社,1989。
    [14] V. C. Chen, L. Hao, Time-Frequency Transforms For Radar Imaging And Signal Analysis, Artech House, Inc, 2002.
    [15] Z. Bao, C. Y. Sun, M. D. Xing,“Time-Frequency Approaches to ISAR Imaging of Maneuvering Targets and Their Limitations”, IEEE Trans. on AES, 2001, 37(3): 1091-1099.
    [16] G. Wang, Z. Bao, L. Luo,“Inverse synthetic aperture radar imaging of maneuvering targets”, Optical Engineering, 1998, 37(5): 1582-1588.
    [17] C. C. Chen, H. C. Andrews,“Target-Motion-Induced Radar Imaging”, IEEE Trans. on AES, 1980, 16(1): 2-14.
    [18] G. Y. Wang, Z. Bao,“The minimum entropy criterion of range alignment in ISAR motion compensation”, Proceeding Conference Radar’97, Edinburgh UK, 1997(10): 14-16.
    [19]邢孟道,保铮,“逆合成孔径雷达运动补偿中包络对齐的新方法”,西安电子科技大学学报,2000,27(1): 93-96。
    [20]邢孟道,保铮,郑义明,“用整体最优准则实现ISAR成像的包络对齐”,电子学报,2001,29(12): 1807-1811.
    [21]王琨,罗琳,“ISAR成像中包络对齐的幅度相关全局最优法”,电子科学学刊,1998,20(3): 368-373。
    [22]邬小青,朱兆达,“同时运动补偿和雷达成像”,电子学报,1991,19(1): 123-125。
    [23] K. K. Eerland,“Application of ISAR on aircraft”, IEEE Int. Radar Conf., Paris, May 1984, pp: 618-623.
    [24] B. D. Steinberg,“Microwave imaging of aircraft”, Proc. IEEE. 1988, 76(12): 1578-1592.
    [25] B. D. Steinberg,“Radar imaging from a distorted array: the radio camera algorithm and experiments”, IEEE Trans. on AP, 1981, 29(5): 740-748.
    [26]保铮,邓文彪,杨军,“ISAR成像处理中的一种运动补偿方法”,电子学报,1992,20(6): 1-6。
    [27] M. J. Pricket, C. C. Chen,“Principle of inverse synthetic aperture radar(ISAR) imaging”, EASCON record,1980, pp: 340-345.
    [28] R. Xu, Z. Cao,Y. Liu,“A new method of motion compensation for ISAR”, Proc. IEEE Int. Radar Conf., Paris, 1990, pp: 234-237.
    [29]毛引芳,吴一戎,“以散射质心为基准的ISAR成像的运动补偿”,电子科学学刊,1992,14(5): 532-536。
    [30] M. Martorella, F. Berizzi, B. Haywood,“Contrast maximization based technique for 2-D ISAR autofocusing”, IEE Proceedings on Radar, Sonar and Navigation, 2005, 152(4): 253-262.
    [31] D. E. Wahl, P. H. Eichel, D. C. Ghiglia,“Phase gradient autofocus- A robust tool for high resolution SAR phase correction”, IEEE Trans. on AES, 1994, 30(3): 827-835.
    [32] L. Xi, L. Guosui, J. Ni,“Autofocusing of ISAR Imaging based on Entropy Minimization”, IEEE Trans. on AES, 1999, 35(4): 1240-1252.
    [33] D. Y. Zhu, Y. Li, Z. D. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.
    [34] R. P. Perry, R. C. Dipietro, R. L. Fante,“SAR imaging of moving targets”, IEEE Trans. on AES, 1999, 35(1): 188-200.
    [35]郭汉伟,“合成孔径雷达地面运动目标检测与成像技术研究”,博士学位论文,国防科技大学,2003。
    [36]李亚超,周峰,邢孟道,保铮,“一种直升机的舰船Dechirp实测数据SAR成像方法”,电子与信息学报,2007,29(8): 1794-1798。
    [37] V. C. Chen, S. Qian,“Joint time-frequency analysis for radar Range-Doppler imaging”, IEEE Trans on. AES, 1998, 34 (2): 486-499.
    [38]保铮,王根原,罗琳,“逆合成孔径雷达的距离—瞬时多普勒成像方法”,电子学报,1998,26(12): 79-83。
    [39] Z. Bao, G. Wang, L. Luo,“Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets”, Optical Engineering, 1998, 37(5): 1582-1588.
    [40]金添,常文革,“基于Radon-ambiguity变换的ISAR成像算法”,现代雷达,2004,26(11): 18-21。
    [41]刘爱芳,刘中,陆锦辉,“基于Radon-ambiguity变换的ISAR成像算法”,现代雷达,2003,25(6): 13-14。
    [42] G. Lu, Z. Bao,“Compensation of scatterers migration through resolut ion cell in inverse synthetic aperture radar imaging”, IEEE Proceeding, Radar Sonar Navigate. 2000, 147(2): 80-85.
    [43]卢光跃,保铮,“基于瞬时谱估计的ISAR距离瞬时多普勒成像算法”,西安电子科技大学学报,1998,25(5): 593-597。
    [44]张贤达,保铮,“非平稳信号分析与处理”,北京:国防工业出版社,1998。
    [45] V. Namias,“The fractional Fourier transform and its application in quantum mechanics”, J. Inst. Math. Its Appl.,1980, pp: 241-265.
    [46] J. Li, H. Ling,“Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts”, IEE Proc., Radar Sonar Navig., 2003, 150(4): 284-291.
    [47] G. Wang, Z. Bao,“Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition”, Optical Engineering, 1999, 38(9): 1534-1541.
    [48] J. Li, H. Ling,“Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts”, IEE Proc., Radar Sonar Navig., 2003, 150(4): 284-291.
    [49]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277。
    [50]郑义明,邢孟道,保铮,“基于多分量多项式信号参数估计的机动目标成像”,西安电子科技大学学报,2000,27(4): 471–475。
    [51]李亚超,苏军海,邢孟道,保铮,“利用时间-调频率分布特性的复杂运动目标ISAR成像研究”,西安电子科技大学,2008,35(1): 1-7。
    [52]王勇,成萍,姜义成,“变加速旋转目标ISAR成像距离-瞬时多普勒法”,现代雷达,2005,27(5): 25-27。
    [1] W. G. Carrara, R. S. Goodman, R. M. Majewski,“Spotlight Synthetic ApertureRadar: Signal Processing Algorithms”, Boston: Artech House, 1995.
    [2] M. Xing, R. Wu, Z. Bao,“High resolution ISAR imaging of high speed moving targets”, IEE Proc. Radar Sonar Navig., 2005, 152(2): 58-67.
    [3] M. Soumekh,“Synthetic Aperture Radar Signal Processing with MATLAB Algorithms”, John Wiley&Sons, Inc, 1999.
    [4] D. E. Wahl, C. V. Jakowatz, P. A. Thompson, D. C. Ghiglia,“Autofocus-New Approach to Strip-map SAR Autofocus”, IEEE Digital Signal Processing Workshop, 1994, pp: 53-56.
    [5] H. L. Chan, T. S. Yeo,“Noniterative Quality Phase-Gradient Autofocus Algorithm for Spotlight SAR Imagery”, IEEE Trans. on AES, 1994, 30(3): 827-834.
    [6]邢孟道,保铮,“基于运动参数估计的SAR成像”,电子学报,2001,29(12): 1824-1828。
    [7]邢孟道,“基于实测数据的雷达成像算法研究”,博士学位论文,西安电子科技大学,2002,3。
    [8] J. C. Curlander, R. N. McDonough,“Synthetic Aperture Radar: Systems and Signal Processing”, John Wiley&Sons, Inc, 1991.
    [9] V. C. Chen, R. Lipps,“ISAR imaging of small craft with roll, pitch and yaw analysis”, Radar Conference, 2000, The Record of the IEEE 2000 International, pp: 493-498.
    [10] Z. Bao, G. Wang, L. Luo,“Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets”, Optical Engineering, 1998, 37(5): 1582-1588.
    [11]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [12]张澄波,综合孔径雷达。北京:科学出版社,1989。
    [13]张直中,微波成像技术。北京:科学出版社,1990。
    [14] R. S. Blum,“Distributed Detection of Narrowband Signals”, IEEE Trans. on Information Theory, 1995, 41(2): 519-523.
    [15] K. M. Hock,“Narrowband Weak Signal Detection by Higher Order Spectrum”, IEEE Trans. on SP, 1996, 44(4): 874-879.
    [16] L. M. Garth, Y. Bresler,“The Degradation of Higher Order Spectral Detection Using Narrowband Processing”, IEEE Trans. on SP, 1997, 45(7): 1770-1784.
    [17] Z. Wang, P. Willett, R. Streit,“Detection of Long-Duration Narrowband Processes”, IEEE Trans. on AES, 2002, 38(1): 211-227.
    [18]张顺生,曾涛,“基于keystone变换的微弱目标检测”,电子学报,2005,33(9): 1675-1678。
    [19]王俊,张守宏,“微弱目标积累检测的包络移动补偿方法”,电子学报,2000,28(12): 56-59。
    [20] A. Farina, F. A. Studer, R. Vitiello,“High resolution radar for enchanced target detection”, Radar’92. International Conference, 1992, pp: 163-166.
    [21] A. Farina, F. A. Studer,“Detection with High Resolution Radar:Great Promise, Big Challenge”, Microwave Journal, 1991, 34(1): 263-273.
    [22] P. K. Hughes,“High resolution radar detection strategy”, IEEE Trans. on AES, 1983, 19(5): .169-178.
    [23]陆林根,“逆合成孔径(ISAR)雷达目标检测方法”,电子学报,2000,28(3): 29-31。
    [24]郭汉伟,“合成孔径雷达地面运动目标检测与成像技术研究”,博士学位论文,国防科学技术大学,2003,9。
    [25] R. P. Perry, R. C. Dipietro, R. L. Fante,“SAR imaging of moving targets”, IEEE Trans. on AES, 1999, 35(1): 188-199.
    [26] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.
    [27]邢孟道,保铮,郑义明,冯大政,“适合于大型平稳和机动目标的成像算法”,信号处理,2001,17(1): 47-55。
    [1]刘铮,“步进频率体制雷达成像技术”,博士学位论文,西安电子科技大学,2000。
    [2]马长征,“雷达目标三维成像技术研究”,博士学位论文,西安电子科技大学,1999。
    [3]朱哲勇,沈福民,陈伯孝,张守宏,“基于DSP的步进频率雷达仿真源的研制”,西安电子科技大学学报,1999,26(6): 705-708。
    [4]沈吉,向锦武,祁载康,“目标运动对步进频率毫米波雷达图像匹配识别的影响研究”,电子学报,2003,31(3): 346-348。
    [5] D. R. Wehner,“High Resolution Radar”, Aretch House, Inc, 1995.
    [6]龙腾,毛二可,何佩琨,“调频步进雷达信号分析与处理”,电子学报,1998,26(12): 84-88。
    [7]张焕颖,张守宏,李强,“调频步进雷达目标抽取算法及系统参数设计”,电子学报,2007,35(6): 1153-1158。
    [8]龙腾,李眈,吴琼之,“频率步进雷达参数设计与目标抽取算法”,系统工程与电子技术,2001,23(6): 26-31。
    [9]李眈,龙腾,“步进频率雷达目标去冗余算法”,电子学报,2000,28(6): 60-63。
    [10]毛二可,龙腾,韩秋月,“调频步进雷达数字信号处理”,航空学报,2001,22(6): 16-25。
    [11]雷文,龙腾,韩秋月,“调频步进雷达运动目标信号处理的新方法”,电子学报,2000,28(12): 34-37。
    [12]张涛,马长征,张群,“基于线性调频步进信号的ISAR成像技术研究”,电子与信息学报,2001,23(3): 268-274。
    [13]张焕颖,“高速运动目标ISAR成像方法研究”,博士学位论文,西安电子科技大学,2007,10。
    [14] J. S. Son, B. C. Flores, S. Tariq,“An efficient target motion compensation method for stepped frequency ISAR signatures”, SPIE, 1997, pp: 20-28.
    [15] H. Chen, Y. Liu,“A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms”, IEEE Trans. on GRSL, 2006, 3(3): 406-409.
    [16] W. Lei, T. Long, Y. Han,“Moving Targets Imaging for Stepped Frequency Radar”, Signal Processing Proceedings, 2000. IEEE International Conference, pp:1851-1855.
    [17] S. Chao, X. Jiang, Z. Wang,“Chirp-Pulse Stepped-Frequency Radar Based on Decorrelation Processing”, Radar Conference, 2006. The Record of the IEEE 2006 International, pp: 252-255.
    [18] R. T. Lord, M. R. Inggs,“High Resolution SAR Processing Using Stepped-frequencies”, Proc. IEEE Geoscience Remote: Sensing Symposium 1997, pp: 490-492.
    [19] R. T. Lord, M. R. Inggs,“High Range Resolution Radar using Narrowband Linear Chirps offset in Frequency”, IEEE Communications and Signal Processing, 1997, COMSIG’98. Proceedings of the 1997 South African Symposium, pp: 9-12.
    [20] P. Berens,“SAR with Ultra-High Range Resolution Using Synthetic Bandwidth”, IEEE Geoscience Remote Sensing Symposium 1999, IGARSS’99 Proceedings, pp: 1752-1754.
    [21]白霞,毛士艺,袁运能,“时域合成宽带法:一种0.1米分辨率SAR技术”,电子学报,2006,34(3): 472-477。
    [22]刘晓宏,“高距离分辨成像雷达的信号分析与处理”,硕士学位论文,西安电子科技大学,2006,3。
    [23]姚萍,王贞松,“线性调频步进式合成孔径雷达系统的信号处理”,系统工程与电子技术,2006,28(2): 159-162。
    [24] A. J. Wilkinson, R. T. Lord, M. R. Inggs,“Stepped-Frequency Processing by Reconstruction of Target Reflectivity Spectrum”, IEEE Communications and Signal Processing, 1998. COMSIG’98. Proceedings of the 1998 Soth African Symposium, pp: 101-104.
    [25] W. Nel, J. Tait, R. T. Lord, A. Wilkinson,“The Use of a Frequency Domain Stepped Frequency Technique to Obtain High Range Resolution on The CSIR X Band SR System”, Africon Conference in Africa, 2002. IEEE AFRICON. 6th, 2002, pp: 327-332.
    [26] Y. Zhang, J. Wu, H. Li,“Two simple and efficient approaches for compressing stepped chirp signals”, Asia-Pacific Conference Microwave Proceedings, 2005, pp: 327-332.
    [27]张涛,马长征,张群,张守宏,“基于线性调频步进信号的ISAR成像技术研究”,电子与信息学报,2001,23(3): 268-274。
    [28]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [29] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.
    [30]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277。
    [31] W. Ye, T. S. Yeo, Z. Bao,“Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus”, IEEE Trans. on GRS, 37(5): 2487-2494.
    [32] D. E. Wahl, P. H. Eichel, D. C. Ghigetia,“Phase Gradient Autofocus-Robust Tool for High Resolution SAR Phase Correction”, IEEE Trans. on AES, 1994, 30(3): 827-835.
    [1] M. Skolnik,“Introduction to radar systems”, New York, Inc, 1980.
    [2]郭桂容,庄钊文,陈曾平,电磁特征抽取与目标识别。长沙:国防科技大学出版社,1996。
    [3] L. M. Novak, G. J. Owirka, A. L. Weaver,“Automatic target discrimination using the Extinction-Pulse technique”, IEEE Trans. on AES, 1999, 35(1): 157-175.
    [4]裴炳南,“高分辨雷达自动目标识别方法研究”,博士学位论文,西安电子科技大学,2002。
    [5] J. Li,“Statistical pattern recognition for synthetic aperture radar (SAR)/automatic target recognition (ATR)”, AFRL Technical Report, 2001.
    [6] M. A. Richards,“Fundamentals of Radar Signal Processing”, McGraw-Hill, New York, 2005.
    [7] X. J. Liao, Z. Bao,“Circularly integrated bispectra-novel shift invariant features for high resolution radar target recognition”, IEE Electronics Letters, 1998, 34(19): 1879-1880.
    [8]邢孟道,“基于实测数据的雷达成像算法研究”,博士学位论文,西安电子科技大学,2002。
    [9]王琦,“空间目标ISAR成像的研究”,博士学位论文,西安电子科技大学,2007。
    [10] V. C. Chen, L. Hao,“Time-Frequency Transforms for Radar Imaging and Signal Analysis”, Artech House, Inc, 2002.
    [11]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [12] I. G. Cumming, F. H. Wong,“Digital processing of synthetic aperture radar data”, Artech House, Inc, 2005.
    [13]刘爱芳,刘中,陆锦辉,“基于Radon-anbiguity变换的ISAR成像算法”,现代雷达,2003,25(6): 12-14。
    [14]邢孟道,保铮,冯大政,“基于调幅-线性调频信号参数估计的机动目标成像方法”,现代雷达,2000,22(6): 44-48。
    [15] M. Xing, Z. Bao,“SAR ship imaging of real data”, Journal of Electronics and Information Technology, 2001, 23(12): 1271-1277.
    [16]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277。
    [17] G. Y. Delise, H. Wu,“Moving target imaging and trajectory computation using ISAR”, IEEE Trans. on AES, 1994, 30(3): 887-889.
    [18] K. Wang, L. Luo, Z. Bao,“Global Optimum Method for Alignment in ISAR Imagery”, Proceeding Conference Radar’97, Edinburgh UK, 1997(10): 14-16.
    [19] J. Wang, D. Kasilingam,“Global Range Alignment for ISAR”, IEEE Trans. on AES, 2003, 39(1): 351-357.
    [20]邢孟道,保铮,郑义明,“用整体最优准则ISAR成像的包络对齐”,电子学报,2001,29(12): 1807-1811。
    [21]邢孟道,保铮,“一种逆合成孔径雷达成像包络对齐的新方法”,西安电子科技大学学报,2000,27(1): 93-96。
    [22]郭汉伟,“合成孔径雷达地面运动目标检测与成像技术研究”,博士学位论文,国防科学技术大学,2003,9。
    [23] R. P. Perry, R. C. Dipietro, R. L. Fante,“SAR imaging of moving targets”, IEEE Trans. on AES, 1999, 35(1): 188-199.
    [24] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.
    [25]邢孟道,保铮,郑义明,冯大政,“适合于大型平稳和机动目标的成像算法”,信号处理,2001,17(1): 47-55。
    [1] J. C. Curlander, R. N. McDonough,“Synthetic aperture radar: system and signal processing”, Jone Wiley&Sons, Inc, 1991.
    [2] G. Franceschetti, R. Lanari,“Synthetic Aperture Radar Processing”, CRC PressBoca Raton London New York Washington D.C.
    [3] C. V. Jakowatz, D. E. Wahl, P. H. Eichel,“Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach”, Boston: Kluwer Academic Publishers, 1996.
    [4] X. D. Zhang, Y. Shi, Z. Bao,“A new feature vector using selected bispectra for signal classification with application in radar target recognition”, IEEE Trans. on SP, 2001, 49(9): 1875-1885.
    [5] J. Li,“Statistical pattern recognition for synthetic aperture radar (SAR)/automatic target recognition (ATR)”, AFRL Technical Report, 2001.
    [6]刘宏伟,杜兰,袁莉,“雷达高分辨距离像目标识别研究进展”,电子与信息学报,2005,27(8): 1328-1334。
    [7]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [8]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277。
    [9]汪玲,“逆合成孔径雷达关键技术研究”,博士学位论文,南京航空航天大学,2006,8。
    [10] V. C. Chen, L. Hao,“Time-Frequency Transforms for Radar Imaging and Signal Analysis”, Artech House, Inc, 2002.
    [11] M. Xing, Z. Bao,“SAR ship imaging of real data”, Journal of Electronics and Information Technology, 2001, 23(12): 1271-1277.
    [12]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12): 1271-1277。
    [13]王根原,保铮,“一种基于自适应Chirplet分解的逆合成孔径雷达成像方法”,电子学报,1999,27(3): 29-31。
    [14] J. Li, H. Ling,“Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts”, IEE Proc.-Radar Sonar Navig, 2003, 150(4): 284-291.
    [15] K Wang, L. Luo, Z. Bao,“Global Optimum Method for Alignment in ISAR Imagery”, Proceeding Conference Radar’97, Edinburgh UK, 1997(10): 14-16.
    [16] J. Wang, D. Kasilingam,“Global Range Alignment for ISAR”, IEEE Trans. on AES, 2003, 39(1): 351-357.
    [17]郭汉伟,“合成孔径雷达地面运动目标检测与成像技术研究”,博士学位论文,国防科学技术大学,2003,9。
    [18]李亚超,周峰,邢孟道,保铮,“一种直升机的舰船Dechirp实测数据SAR成像方法”,电子与信息学报,2007,29(8): 1794-1798。
    [19] J. Tsao, B. D. Steinberg,“Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique”, IEEE Trans. on AP, 1988, 36(2): 543-556.
    [20]王琦,“空间目标ISAR成像的研究”,博士学位论文,西安电子科技大学,2007,10。
    [21] Z. Bao, G. Y. Wang, M. D. Xing,“Time-Frequency Approaches to ISAR Imaging of Maneuvering Targets and Their Limitations”, IEEE Trans. on AES, 2001,37(3): 1091-1099.
    [22] L. Cohen,“Time-Frequency Analysis”, Englewood Cliffs, NJ: Prentice-Hall, Inc, 1995.
    [23] J. C. O’Neill, P. Flandrin, W. C. Karl,“Sparse Representations with Chirplets via Maximum Likelihood Estimati on”, IEEE Trans. on SP, 2001, 35(7): 593-602.
    [24] J. C. O’Neill, P. Flandrin,“Virtues and Vices of Quartic Time-Frequency Distributions”, IEEE Trans. on SP, 2000, 48(9): 2641-2650.
    [25]邢孟道,保铮,郑义明,“用整体最优准则ISAR成像的包络对齐”,电子学报,2001,29(12): 1807-1811。
    [26] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.
    [27]邢孟道,保铮,郑义明,冯大政,“适合于大型平稳和机动目标的成像算法”,信号处理,2001,17(1): 47-55。
    [1] T. Sparr,“Moving target motion estimation and focusing in SAR Images”, International Radar Conference, Yantai, China, IEEE, 9-12 May 2005, pp: 290-294.
    [2] C. Qu, Y. He, F. Su, Y. Huang,“SAR moving targets detection based on the chirp-fourier transform”, International Radar Conference, Yantai, China, IEEE, 9-12 May 2005, pp:802-805.
    [3] E. F. Stockbruger, D. N. Held,“Interferometric moving ground target imaging”, IEEE International Radar Conference, 1995, pp: 438-443.
    [4] K. Ouchi,“On the mutlilook images of moving targets by synthetic aperture radar”, IEEE Trans. on AP, 1985, 33(8): 823-827.
    [5] R. P. Perry, R. C. Dipietro, R. L. Fante,“SAR imaging of moving targets”, IEEE Trans. on AES, 1999, 35(1): 188-199.
    [6]陈仁元,张长耀,邓海涛,王燕宇,“直升机合成孔径雷达对海面动目标成像”,中国合成孔径雷达会议论文集,合肥,2003,12,1-4,pp: 264-267。
    [7] L. Tang, D. Li, W. Hong, F. Cao,“High resolution SAR imaging of moving ships”, IEEE Geoscience and Remote Sensing Symposium, IGARSS’05 Proceedings, IEEE International, Beijing, P. R. China, 25-29 July 2005, pp: 3329-3332.
    [8]李杰,向敬成,黄顺吉,“合成孔径雷达慢运动目标成像处理的研究”,电子科技大学学报,1995,24(2): 119-125。
    [9]张贤达,保铮,非平稳信号的分析与处理。北京:国防工业出版社,1998,2。
    [10] L. Cohen.“Time-frequency distributions-review”, Proceedings of the IEEE, 1978, 77(1): 86-91.
    [11]保铮,邢孟道,王彤,雷达成像技术。北京:电子工业出版社,2005。
    [12]盛蔚,毛士艺,“一种合成孔径雷达对地面运动目标成像和精确定位的算法”,电子与信息学报,2004,26(4): 96-104。
    [13] D. Zhu, Y. Li, Z. Zhu,“A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging”, IEEE Trans. on GRSL, 2007, 4(1): 18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700