用户名: 密码: 验证码:
基于脉内特征的雷达辐射源信号分选技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达辐射源信号分选是将截获的交错脉冲信号进行分组的过程,使得同组中的脉冲信号来自于同一部雷达辐射源。它是雷达电子支援侦察(ESM)和电子情报侦察(ELINT)应用中的重要组成部分,直接影响着电子侦察设备性能的发挥并关系到战争的后续作战决策。目前传统的分选方法主要采用到达时间(TOA),载波频率(RF),脉冲宽度(PW),脉冲幅度(PA)以及到达方向(DOA)五个参数实现脉冲列的去交错。这在只有常规体制雷达且辐射源数量不多的情况下确可取得满意的效果。但随着现代电子对抗的日益激烈,电磁环境的信号密度日趋密集和复杂新体制雷达不断出现,从而造成了脉冲大量的丢失以及信号参数空间的严重交叠,破坏了分选所利用的信号规律性,导致了基于脉间五参数的分选算法已难以获得令人满意的分选效果。近年来,随着数字信号处理技术(DSP)和大规模集成电路(VLSI)的发展,数字中频接收机能够获取全部的雷达特征信息,利用脉内特征参数进行脉冲去交错处理是另外一种有望提高分选性能的方法。为此,本文针对截获的未知雷达脉冲信号,在传统分选性能急剧下降,甚至完全失效的情形下,从雷达辐射源信号的有意和无意调制特征提取与性能分析、雷达辐射源信号的分类数目估计和聚类分选算法三个方面对基于脉内特征的雷达辐射源信号分选相关理论问题展开讨论和研究,主要工作和研究成果如下:
     1.为研究复杂雷达辐射源信号脉内调制特性,提出符号化时间序列特征、频谱小波变换特征和差分自相关包络特征提取算法,以便提取和补充新的,适合于工程应用的有效分选特征向量(DFV)。
     雷达辐射源信号在频域分布紧凑,不同调制信号的频谱明显易分辨。针对这一特点,提出一种对雷达辐射源信号频谱进行符号化分析的脉内特征提取方法,该方法能够快速有效的提取定量信息。将符号化过程中反映信号自相关特征的采样时延和反映信号调制规律特性的符号熵作为脉内特征。通过对7种雷达信号的仿真实验和数据分析表明,所提取的特征具有良好的抗噪性和可聚类性。同时算法计算简单快捷,能够简化分类器设计。
     雷达辐射源信号在传播和处理过程中易受到噪声干扰,信噪比变化很大。本文在小波域滤波算法的基础上提出一种对雷达辐射源信号进行脉内特征提取方法,该方法能够从信号中有效的提取定量信息。将小波变换后低频逼近小波系数的能量分布熵与经过尺度相关去噪计算后反映信号边缘的高频细节小波系数能量分布熵构成雷达辐射源信号的二维特征向量。通过对10种雷达辐射源信号的特征提取和分类仿真实验分析表明:提取的样本特征在0dB下具有很好的抗噪性和可聚类性,证实了本文方法的有效性。
     在统计自相关函数的基础上提出一种对雷达辐射源信号进行脉内特征提取的方法。该方法首先利用一阶差分来突出信号的调制特征;然后将差分的结果通过自相关计算来抑制噪声的影响,提取不同时延下自相关函数的包络特征;最后,根据提出的基于距离的可分性判据对包络进行特征选择,得到最能表征信号调制特征的二维或三维特征向量。通过对6种典型辐射源信号的特征提取和分类仿真实验分析表明:提取的特征在低信噪比(-5~0)下仍具有较好的抗噪性和可聚类性。
     2.特定辐射源识别(SEI)技术研究立足于从截获的辐射源信号中提取细微且稳健的特征,这些特征是由特定辐射源个体所决定的指纹信息。雷达辐射源信号因无法避免的雷达发射机相位噪声影响而具有无意调制个体特征。文中采用围线积分双谱提取由振荡器相位噪声所造成的无意调制个体特征,并将围线积分双谱的均值、波形熵和双谱熵作为量化特征衡量不同雷达辐射源之间的个体差异。仿真实验表明,提取的量化特征在一定的信噪比环境下较好地体现辐射源之间的个体差异性,并且能够实现辐射源个体的分类识别。
     由于脉冲包络的形状变化信息能够提供不同源的个体特征并有助于信号的分选识别,文中提出一种基于主成分分析的辐射源个数估计算法。这种方法通过对接收到的脉冲信号包络进行主成分分析提取其相关矩阵的特征值,利用特征值构造的信息论准则估计雷达辐射源信号的个数。最后通过计算机仿真实验和对比已有的其它信息论准则验证了本文方法的可行性和有效性
     3.针对雷达辐射源信号特征分布形式复杂、类边界归并突出的问题,提出一种基于灰关联测度的聚类分选模型,并对其中涉及的各种相关理论问题展开详细而专门的讨论。
     在该模型中,提出了一种基于灰关联测度的分裂式层次聚类算法。该算法利用灰关联测度来衡量数据对象之间的相似程度,采用自顶向下基于密度扩展的分裂式层次化聚类策略,生成不同层次的数据集划分,然后根据提出的聚类有效性指标衡量不同聚类划分的质量;将有效性指标曲线极值点所对应的聚类划分用于估计最佳聚类数目。在实际数据和人工合成数据集上的实验表明,该算法能够获得较好的聚类结果,并且能够识别任意形状的簇。
     考虑辐射源数量、截获的脉冲数量、脉冲丢失率以及环境信噪比等多种因素,论文研究了基于灰关联测度的聚类分选模型在提取的脉内特征以及不同特征组合数据集上的分选性能。实验结果表明聚类分选算法对复杂体制雷达辐射源信号具有良好的分选效果,且对不同因素的影响表现较好的稳健性,为探索有效特征向量提供了参考依据。
Radar signal deinterleaving is to separate the pulse trains interleaved in time into individual emitter groups, where pulses in one group belong to the same emitter. It is basic and important function in the electronic intelligence system and electronic support measure systems and it directly determines performance of electronic reconnaissance equipement. The aim of signal deinterleaving is to provide corresponding pulse sequence to signal analysis, measurement and recognition. Nowadays conventional methods of signal deinterleaving use each pulse signal parameters, i.e., time of arrival (TOA), radio frequency (RF), pulse width (PW), pulse amplitude (PA) and direction of arrival (DOA). This technique works well when the signal is received in low noise, and the signal belongs to continuous wave radar emitter. However, as the countermeasure activities in modern electronic warfare are becoming more and more drastic, the density of electromagnetism signals environment arrives at the degree of mega and the application of new complex waveform modulations in modern radar, which has the ability to result in pulse loss, parameter overlapping heavily and destroy the regularities of signal sorting. Thus, the conventional inter-pulse techniques may not to be enough to distinguish them one from another in such environment. In recent years, with the development of modern digital signal processing technology and VLSI, the radar medium frequency receiver can obtain radar signals digital waveform. This seems to be enough to put them into practice using intra-pulse feature to achieve high-accuracy sorting radar emitters in high density and high interleaving environment. In this dissertation, we focus on the problems of deinterleaving based on unknown radar pulse signals and lucubrate from three facts when the classical pulse sorting methods are badly destroyed, i.e., the intentional and unintentional modulation feature extraction and performance analysis for radar signals, the cluster number estimation of radar emitter signals and the novel intrapulse-based sorting approach related to cluster algorithm. The main research results are described as follows:
     1. In order to research on intentional modulation characteristics of advanced radar emitter signals, the feature extraction algorithms based on symbolic time series analysis(STSA), wavelet transform in spectrum and autocorrelation function of first difference are proposed. These algorithms can provide new parameter vectors which are advantage to engineering application.
     Because the waveform of radar emitter signals have compact distribution and good shape in frequency domain, an approach for intra-pulse feature extraction of radar emitter signals based on STSA is proposed. It is efficient to obtain quantitative information from signals. Embedding time-delay and modified Shannon entropy are used as two-dimensional feature vector to sort the interleaving radar signals. The time-delay feature can determine the length of symbol series. The entropy feature can quantitatively reveal deterministic information and complexity of radar intra-pulse modulation signals. Experimental result and data analysis indicate that the features of seven typical radar emitter signals extracted by STSA have good characteristics of clustering and suppressing noise. Moreover, the algorithm is of advantage to engineering application and implementation because of its computational simpleness, efficiency and capability of simplifying sorter.
     In fact, radar emitter signals are always interfered with by plenty of noise in the process of transmission in the air and in the process of receiving and processing in scout. This paper presents an approach for intra-pulse feature extraction of radar emitter signals based on wavelet transform domain filtering. It is efficient to obtain quantitative information from signals. The energy entropy from approximation coefficients of wavelet transform and the other energy entropy from inner-scale correlations denoise of detail coefficients are used as two-dimensional feature vector. Experiment results demonstrate that the features of ten typical radar emitter signals extracted by wavelet transform have good performance of noise-resistance and clustering when SNR is OdB.
     An approach for intra-pulse feature extraction of radar emitter signals based on the first difference autocorrelation function is proposed. The envelop feature extraction of autocorrelation function involves the use of first difference operation of radar emitter signals, which can enhance the difference in modulation information and has good noise abatement. The criterion, defined as degree of separability, is used as two-dimensional and three-dimensional feature vectors selection. Experiment results demonstrate that the features of six typical radar emitter signals extracted by autocorrelation function have good performance of noise-resistance and clustering when SNR varies from-5dB to OdB.
     2. Specific emitter identification(SEI) technology extracts subtle and persistent features from received pulse signal to create a fingerprint unique to specific radar. Radar emitter signals have their individual feature due to inevitable transmitter phase noise. An approach based on surrounding-line integrated bispectrum is proposed to extract unintentional phase modulation features caused by oscillator. The quantitative features, i.e. bispectra entropy, mean and waveform entropy of surrounding-line integrated bispectrum, is further extracted from bispectrum to reveal the individual difference between emitters. Computer simulation results show that the quantitative features can classify emitters using individual difference under moderate SNR.
     Examining the unintentional shape variations in pulse envelope can provide insight into the transmitter type and may help to identify the signal. In this paper, the approach for estimating the number of emitters is proposed based on model selection of eigenvalues from principal component analysis(PCA) of pulse envelope vectors. A novel information theoretic criterion is formulated for determining the number of emitters. When compared with the other information theoretic criterions, computer simulations show that the effectiveness and feasibility of the proposed approach.
     3. Aiming at the issue of complicated characteristics distribution and undistinguishable boundary between clusters of radar signals, a deinterleaving models using clustering algorithm based on grey relational analysis is proposed. And the theoretical problems relative to these models are discussed in detail.
     A divisive hierarchical clustering algorithm based on grey relational measure is proposed. In the algorithm, grey relational analysis is used to measure the degree of similarity between data set. On the basis of generation of top-down density-based hierarchical partitions of data set and proposed clustering validity index, the extremum of the index curve is used to estimate the number of clusters. Computer simulation results on Benchmark data set and synthesis data set demonstrate that the proposed algorithm is feasible and has good clustering performance especially for arbitrary shaped clusters.
     In consideration of some factors, such as the number of radar emitters, the amount of intercepted pules, pulse loss rate and signal-noise-ratio etc, the performance of deinterleaving algorithm based on clustering are studied in deep. The experimental result on intra-pulse features vectors of radar signals and different combinations of features vectors show that the clustering algorithm based on grey relational measure has good performance in sorting radar emitter signals and has good stability under the above factors. Additionally, the experiment gives some useful conclusion and reference in chosing new effective deinterleaving feature vector.
引文
[1]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999.
    [2]张永顺,童宁宁,赵国庆.雷达电子战原理[M].北京:国防工业出版社,2006.
    [3]Schroer R. Electronic Warefare[J]. IEEE Trans Aerospace Electronic Systems Magazine,2003,18(7):49-54.
    [4]胡来招.雷达侦察接收机设计[M].北京:国防工业出版社,2000.
    [5]Richard G W. Electronic Intelligence:The Analysis of Radar Signals[M],2nd ed., Norwood, MA:Artech House Inc.,1993.
    [6]李合生,韩宇,蔡英武等.雷达信号分选关键技术研究综述[J].系统工程与电子技术,2005,27(12):2035-2040.
    [7]谭显裕.21世纪海空电子战特征及发展趋势[J].雷达与对抗,1994,2:25-29.
    [8]李祖新.雷达对抗面临严重挑战[J].舰船电子对抗,1999,1:5-8.
    [9]曾成金.脉冲雷达信号分选概述[J].电信技术研究,2002,(12):25-30.
    [10]殷兆伟,戴国宪.不断发展的电子战接收机[J].航天电子对抗,2002,(6):42-45.
    [11]杨建桥.提高雷达侦察设备的电磁环境适应能力[J].电子对抗技术,2002,17(5):8-13.
    [12]毕大平,董晖,姜秋喜.雷达对抗侦察宽带数字接收机[J].航天电子对抗,2004,(6):6-10.
    [13]Mardia H K. New Techniques for the Deinterleaving of Repetitive Sequences[J]. IEE Proceedings, Part F:Radar and Signal Processing,1989,136(4):149-154.
    [14]Milojevic D J and Popovic B M. Improved Algorithm for the Deinterleaving of Radar Pulses. IEE Proceedings, Part F:Radar and Signal Processing[C],1992,139(1): 98-104.
    [15]Wilkinson D R and Watson A. Use of Metric Techniques in ESM Data Processing[J]. IEE Proceedings, Part F:Radar and Signal Processing,1985,132(7):121-125.
    [16]赵长虹,赵国庆.一种基于随机动态线性模型的重频分选的改进算法[J].系统工程与电子技术.2003,25(9):1049-1051.
    [17]万建伟,宋小全,黄浦堪等.雷达信号综合分选方法研究[J].电子学报,1996,24(9):91-94.
    [18]Samuel L, Michael T, Stephen D et al. Comparison of Time of Arrival vs. Multiple Parameter based Radar Pulse Train Deinterleavers. Proc. of SPIE, Signal Processing, Sensor Fusion, and Target Recognition XV[C],2006, vol.6235,62351k1-10.
    [19]徐欣,周一宇,卢启中.雷达截获系统实时信号分选处理技术研究[J].系统工程与电子技术,2001,23(3):12-15.
    [20]Elbirt A J. Information Warfare:Are You at Risk. IEEE Technology and Society Magazine,2003,22(4):13-19.
    [21]Stein F, Garska J, Mcindoo P L. Network-centric Warfare:Impact on Army Operations. EUROCOMM:Information Systems for Enhanced Public Safety and Security,2000,288-295.
    [22]Waltz E.信息战原理与实践[M].吴汉平译.北京:电子工业出版社,2004.
    [23]张贤达著.现代信号处理[M],第2版.北京:清华大学出版社,2002.
    [24]Therrien C W. Application of Feature Extraction to Radar Signature Classification. Proceedings of the 2nd International Pattern Recognition Symposium[C],1974,125-132.
    [25]牛海,马颖.小波-神经网络在辐射源识别中的应用研究[J].系统工程与电子技术,2002,24(5):55-57.
    [26]刘刚.雷达指纹分析的基本理论探讨[J].电子对抗.2002,(6):1-6.
    [27]桑炜森,顾耀平.综合电子战新技术新方法[M].北京:国防工业出版社,1996.
    [28]徐欣.雷达截获系统实时脉冲列去交错技术研究[博士论文].长沙:国防科技大学,2001.
    [29]Kohonen T. Content Addressable Memories[M]. Springer-Verlag Berlin Heidelberg, 1980.
    [30]Hanna C A. The Associative Comparator:Adds New Capabilities to ESM Signal Processing[J]. Defence Electronics,1984.
    [31]Hanna C A, Cirucci J A, Prunty D R. VLSI Application to ESM Processing[R]. IBM Technical Directions, IBM Federal Systems Division, Owego,1987,13(1):32-36.
    [32]Stormon C D. The Coherent Processor, An Associative Processor Architecture and Application[R]. Coherent Research Inc,1991.
    [33]Altera Corporation. Implementing High-Speed Search Applications with APEX CAM[R]. Application Notes 119,1999, verl.01.
    [34]Mardia H K. Adaptive Multi-Dimensional Clustering for ESM. IEE Electronics Division Colloquium on Signal Processing for ESM System[C],1998, s/1~4.
    [35]Hassan H E. Joint Deinterleaving-Recognition of Radar Pulses. Proc. of the International Radar Conference 2003[C],3-5 Sept.,2003, pp.177-181.
    [36]Hassan H E., Chan F, Chan Y T. Joint Deinterleaving/recognition of Radar Pulses. Canadian Conference on Electrical and Computer Engineering[C],4-7 May 2003, Vol.3, pp.2009-2014.
    [37]Hassan H E. Deinterleaving of Radar Pulses in A Dense Emitter Environment[C]. Proceedings of the International Radar Conference 2003,3-5 Sept.2003, pp.389-393.
    [38]Hassan H E. A New Algorithm for Radar Emitter Recognition. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis[C],18-20
    Sept,2003,Vol.2, pp.1097-1101.
    [39]Chan Y T, Chan F, Hassan H E. Performance Evaluation of ESM Deinterlever Using TOA Analysis.14th International Conference on Microwaves, Radar and Wireless Communications(MIKON-2002) [C],20-22 May,2002, vol.2:pp.341-350.
    [40]王乃和.关于ESM中雷达信号分选识别问题的探讨[J].电子对抗,1991,25(3):44-51.
    [41]才军,高纪明,赵建明.FPGA和CPLD在雷达信号分选预处理器中的应用[J].系统工程与电子技术,2001,23(10):22-24.
    [42]徐欣,冯道旺,周一宇等.基于CAM的实时脉冲去交错方法研究[J].电路与系统学报,2001,6(3):94-98.
    [43]王石记,司锡才.雷达信号分选新算法研究[J].系统工程与电子技术,2003,25(9);1079-1083.
    [44]徐海源,周一宇.基于FPGA的雷达信号实时预分选方法[J].电子对抗技术,2004,1:14-17.
    [45]胡和生.适应百万脉冲/秒的ESM系统信号处理技术[J].舰船电子对抗,2004,7(3):6-8.
    [46]Roe J. A Review of Applications of Artificial Intelligence Techniques to Navel ESM Signal Processing. Proc. of IEE Colloquium on the Applications of artificial intelligence techniques to Signal Processing[C],1989,5/1-5/5.
    [47]Roe A L. Artificial Neural Networks for ESM Emitter Identification-An Initial Study. Proceedings of IEE Colloquium on Neural Networks for Systems:Principles and Applications[C],1991,4/1-4/3.
    [48]Roe J, Pudner A. The Real-time Implementation of Emitter Identification for ESM. Proceed i ngs of IEE Colloquium on Si gnal Process ing in Electronic Warfare[C],1994,7/1-7/6.
    [49]Simon H著,叶世伟,史忠植译.神经网络原理[M],第2版.北京:机械工业出版社,2004.
    [50]靳蕃.神经计算智能基础原理方法[M].成都:西南交通大学出版社,2000.
    [51]Anderson J A, Gately M T, Penz P A, et al. Radar Signal Categorization Using A Neural Network[J]. Proc. of the IEEE,1990,78(10):1646-1657.
    [52]Eric G., Yvon S., Pierre L. et al. A Comparison of Self-Organizing Neural Networks for Fast Clustering of Radar Pulses[J]. ELSEVIER, Signal Processing,1998,64: 249-269.
    [53]Eric G., Yvon S., Pierre L. et al. A Comparison of Self-Organizing Neural Networks for Fast Clustering of Radar Pulses[J]. ELSEVIER, Signal Processing,1998,64: 249-269.
    [54]Eric G, Mark A R, Stephen G. Classification of Incomplete Data Using the Fuzzy ARTMAP Neural Network. Proc. Int. Joint Conference on Neural Networks[C],2000, vol.IV, pp.35-40.
    [55]Cantin M A, Blaquiere Y, Savaria Y et al. Implementation of the Fuzzy ART Neural Network for Fast Clustering Radar Pulses. International Symposium on Circuits and Systems[C],1998:Ⅱ458-461.
    [56]Cantin M A, Blaquiere Y, Savaria Y et al. Analysis of Quantization Effects in a Digital Hardware Implementation of a Fuzzy ART Neural Network Algorithm. IEEE International Symposium on Circuits and Systems[C], ISCAS2000, May 28-31,2000, Geneva, Switzerland, Ⅲ141-144.
    [57]Shieh C S, Lin C T. A Vector Neural Network for Emitter Identification[J]. IEEE Trans. on Antennas and Propagation,2002,50(8):1120-1127.
    [58]梁百川.神经元网络用于辐射源分选、识别[J].航天电子对抗,1994,34-40.
    [59]万建伟,宋小全,皇甫堪等.神经网络在雷达信号分选中的应用[J].系统工程与电子技术,1996,7:29-35.
    [60]林志远,刘刚,戴国宪.Kohonen神经网络在雷达多目标分选中的应用[J].空军工程大学学报(自然科学版),2003,4(5):56-59.
    [61]郭杰,陈军文.一种处理未知雷达信号的聚类分选方法[J].系统工程与电子技术,2006,28(6):853-856.
    [62]范晔,宫新保,臧小刚.基于新型RBF网络的雷达信号分选识别方法[J].信息与控制,2004,33(6):674-677.
    [63]程柏林,朱元清,马晓岩.一种用于雷达信号分选的改进型神经网络[J].空军雷达学院学报,2005,19(2):18-20.
    [64]潘继飞,毕大平,姜秋喜.雷达“指纹”参数选取[J].现代防御技术,2007,35(1):71-75.
    [65]上官晋太,杨绍全,王大林等.高密度信号重频分选的若干问题研究[J].山西师范大学学报(自然科学版),2001,15(2):23-27.
    [66]Mark M W. Processing Throughout Estimation for Radar Intercept[J]. IEEE Trans. Aerospace and Electronic Systems,1998,34(1):84-92.
    [67]赵长虹,赵国庆.一种新的重频分选检测门限选择算法[J].现代雷达,2003,8:30-33.
    [68]祝正威.用直方图方法分析复杂雷达信号[J].电子对抗技术,1992,6:6-14.
    [69]赵长虹,赵国庆,刘东霞.对参差脉冲重复间隔脉冲列的重频分选[J].西安电子科技大学学报(自然科学版),2003,30(3):381-385.
    [70]陶荣辉,陈惠连.一种雷达脉冲的去交错和识别新算法[J].信息与电子工程,2005,3(1):18-21.
    [71]李圣衍.一种实用的雷达信号分选电路及软件实现[J].电子工程师,2005,31(1):
    [72]Nelson D J. Special Purpose Correlation Functions for Improved Signal Detection and Parameter Estimation. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing[C],1993:73-76.
    [73]Kenichi N, Masaaki K. Improved Algorithm for Estimating Pulse Repetition Intervals[J]. IEEE Trans. Aerospace and Electronic Systems,2000,36(2):407-421.
    [74]陈国海.基于脉冲序列间隔变换的重复周期分选方法[J].雷达与对抗,2006,1:52-54.
    [75]周斌.基于PRI的脉冲序列去交错方法[J].电子对抗技术,2002,17(6):24-27.
    [76]王兴颖,杨绍全.基于脉冲重复间隔变换的脉冲重复间隔估计[J].西安电子科技大学学报(自然科学版),2002,29(3):355-359.
    [77]杨文华,高梅国.基于PRI的雷达脉冲序列分选方法[J].现代雷达,2005,27(3):50-53.
    [78]Perkins J; Coat I. Pulse Train Deinterleaving via the Hough Transform. IEEE International Conference on Acoustics, Speech, and Signal Processing[C],19-22 April 1994, Vol.Ⅲ, pp.197-200.
    [79]Oris R J, Moore J B, Mahony R E. Interleaved Pulse Train Spectrum Estimation[J]. IEEE Trans. Signal Processing,1999,47(6):1646-1653.
    [80]Oris R J, Moore J B, Mahony R E. Interleaved Pulse Train Spectrum Estimation, International Symp. Signal Processing and its Applications[C], ISSPA, Gold Coast, Australia,1996,125-128.
    [81]Ray P S. A Novel Pulse TOA Analysis Technique for Radar Identification[J]. IEEE Trans Aerospace and Electronic Systems,1998,34(3):716-721.
    [82]Moore J B, Vikram K. Deinterleaving Pulse Trains Using Discrete-Time Stochastic Dynamic-Linear Models[J]. IEEE Trans. Signal Processing,1994,42(11): 3092-3103.
    [83]Conroy T and Moore J B. The Limits of Extended Kalman Filtering for Pulse Train Deinterleaving[J]. IEEE Trans. Signal Processing,1998,46(12):3326-3332.
    [84]Conroy T and Moore J B. On the Estimation of Interleaved Pulse Train Phases[J]. IEEE Trans. Signal Processing,2000,48(12):3420-3425.
    [85]Shahhoseini H S, Naseiu A, Naderi M. A New Matrix Method for Pulse Train Identification. IEEE ELECON 2002[C], May 7-9,2002, Cairo, EGYPT.
    [86]胡来招.信号平面变换显示技术要求[R].电子部29所内部资料,1991.
    [87]胡来招.平面变换用于复杂环境的信号处理[R].电子工业部29研究所科技成果汇编,1995.
    [88]赵仁健,龙德浩,熊平等.密集信号分选的平面变换技术[J].电子学报,1998,26(1):77-82.
    [89]赵仁健,熊平,陈元亨等.信号平面变换中伪特征曲线的产生原理及解决途径[J]. 电子学报,1997,25(4):28-32.
    [90]孟建,胡来招.用于信号处理的重复周期变换[J].电子对抗技术,1998,13(1):1-7.
    [91]Meng J, Hu L Z. A New Transform Method for Pulse Train Parameter Estimation. Proceedings of ICSP'98[C],1998, pp.1562-1565.
    [92]樊甫华,张万军,谭营.基于累积变换的周期性对称调制模式的快速自动搜索算法[J].电子学报,2005,33(7):1266-1270.
    [93]杨文华,高梅国.基于平面变换技术的脉冲信号分选[J].北京理工大学学报,2005,25(2):151-154.
    [94]Danielsen P L, Agg D A, Burke N R. The Application of Pattern Recognition Techniques to ESM Data Processing. IEE Colloquium on Signal Processing for ESM Systems[C],26 Apr 1988, pp.6/1-6/4.
    [95]Perdriau B. Modulation domain offers a new view of radar performance. MSN,1990, April,27-43.
    [96]Agg D A. The Development of An ESM Data Processing Scheme Based on Pattern Recognition Techniques. Proc. of IEE Colloquium on Electronic Warfare Systems[C], 1991,5/1-5/4.
    [97]阎向东,张庆荣,林象平.脉压信号的脉内调制特征提取[J].电子对抗,1991,(4):23-31.
    [98]魏东升,巫胜洪,唐斌.雷达信号脉内细微特征的研究[J].船舰科学技术,1994,(3):23-30.
    [99]Delpart N. Asymptotic Wavelet and Gabor Analysis:Extraction of Instantaneous Frequencies[J]. IEEE Trans. Information Theory,1992,38(3):644-664.
    [100]Roome S J. Classification of radar signals in modulation domain. Electronics Letters,1992,28(8):704-705.
    [101]Gustavo L R, Jesus G, Alvora S O. Digital Channelized Receiver Based on Time-Frequency Analysis for Signal Interception[J]. IEEE Trans. Aerospace and Electronic Systems,2005,41(3):879-898.
    [102]Moraitakis I, Fargues M P. Feature Extraction of Intra-Pulse Modulated Signals Using Time-Frequency Analysis. Proceedings of 21st Century Military Communications Conference[C],2000, pp.737-741.
    [103]穆世强.雷达信号细微特性分析[J].电子对抗,1992,(1):1-11.
    [104]何自强.雷达信号脉内特征提取技术评述[J].电子对抗,1992,(4):1-7.
    [105]李玉才,杨绍全.脉冲多普勒雷达识别中的信号调制信息提取[J].航天电子对抗,2004,4(3):17-20.
    [106]巫胜洪.雷达脉内特征提取方法的研究[J].舰船电子对抗.2002,25(1):25-28.
    [107]刘东霞.脉内调制信号的分析与自动识别[硕士论文].西安:西安电子科技大学,
    2002.
    [108]邹顺.雷达信号分选与细微特征分析[硕士论文].西安:西北工业大学,2006.
    [109]黄知涛,周一宇,姜文利.基于相对无模糊相位重构的自动脉内调制特性分析[J].通信学报,2003,24(4):153-160.
    [110]魏跃敏,黄知涛,王丰华等.基于单脉冲相关积累的PSK信号相位编码调制规律分析[J].信号处理,2006,22(2):281-284.
    [111]毕大平,董晖,姜秋喜.基于瞬时频率的脉内调制识别技术[J].电子对抗技术,2005,20(2):6-9.
    [112]魏东升,徐东晖,林象平.雷达信号脉内细微特征的时频分析[J].电子对抗.1993,(4):7-13.
    [113]赵拥军,黄洁.雷达信号细微特征时频分析法[J].现代雷达.2003,25(12):26-28.
    [114]曲长文,乔治国.雷达信号脉内特征的小波分析[J].上海航天,1996,(5):15-19.
    [115]梁百川.利用小波变换识别脉内调制信号[J].电子对抗.1998,(3):1-12.
    [116]Liu W K, Zhu D J, Zhang C H. The Extraction of Modulation Character istics of Radar Signal Using Wavelet Transform. Proceedings of the 4th International Conference on Signal Processing[C],1998,288-291.
    [117]郁春来,何明浩,裴立志.基于改进小波脊线法的LFM信号脉内特征提取[J].航天电子对抗,2004,(4):38-42.
    [118]那云虓,司锡才,蒯冲.二相编码信号调制分析与识别[J].系统工程与电子技术,2004,26(3):298-230.
    [119]韩国成,吴顺君.雷达信号脉内调制特征的时频分析[J].航天电子对抗,2004,(3):34-37.
    [120]Jin W D, Zhang G X, Hu L Z. Radar Emitter Signal Recognition using WPT and SVM[J]. Journal of Southwest Jiaotong University,2006,1:15-22.
    [121]Zhang G X, Jin W D, Hu L Z. Application of Wavelet Packet Transform to Signal Recognition. Proc. of ICIMA[C],2004, pp.542-547.
    [122]Zhang G X, Jin W D, Hu L Z. Radar Emitter Signal Recognition Based on Resemblance Coefficient Features, Lecture Notes in Artificial Intelligence[C],2004, vol.3066, pp.665-670.
    [123]Zhang G X, Hu L Z, Jin W D. Resemblance Coefficient and A Quantum Genetic Algorithm for Feature Selection. Lecture Notes in Artificial Intelligence[C]. 2004,vol.3245,pp.155-168
    [124]Zhang G X, Jin W D, Hu L Z. Radar Emitter Signal Recognition Based on Complexity Feature[J]. J. of Southwest Jiaotong Univ.,2004,12(2):116-122.
    [125]张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报,2004,23(6):477-480.
    [126]张葛祥,胡来招,金炜东.基于熵特征的雷达辐射源信号识别[J].电波科学学报,
    2005,20(4):440-445.
    [127]张葛祥.雷达辐射源信号智能识别方法研究[博士论文].成都:西南交通大学,2005.
    [128]Pu Yunwei, Jin Weidong, Zhu Ming, and Hu Laizhao. Classification of Radar Emitter Signal Based on Cascade Feature Extraction and Hierarchical Decision Technique. The 8th International Conf. on Signal Processing[C], Nov.16-20,2006, Guilin, China, Vol.4, pp.2800-2804.
    [129]普运伟,金炜东,胡来招.基于二次特征提取的辐射源信号分类方法[J].西南交通大学学报,2007,3(42):373-379.
    [130]普运伟,胡来招.雷达辐射源信号调制特征提取与自动分类.2006年中电29所学术年会[C],pp.229-234.
    [131]Pu Yunwei, Zhu Ming, Jin Weidong, and Hu Laizhao. An Efficient Similarity-based Validity Index for Kernel Clustering Algorithm. The Third International Symposium on Neural Networks[C] 2006, Chengdu, China, May 29-31,2006, LNCS 3971, pp.1044-1049.
    [132]普运伟,朱明,金炜东,胡来招.核聚类算法最佳聚类数的自适应确定[J].计算机工程,2007,33(4):11-13.
    [133]普运伟.复杂体制雷达辐射源信号分选模型与算法研究[博士论文].成都:西南交通大学,2007.
    [134]Zhu Ming, Pu Yunwei, Jin Weidong, Hu Laizhao. Radar Emitter Signal Recognition based on Atomic Decomposition [C]. Proceeding of the 2008 IEEE Word Congress on Computational Intelligence, June 1-5 2008 HongKong China, Vol.1:634-637.
    [135]朱明,金炜东,胡来招.基于原子分解的辐射源信号二次特征提取[J].西南交通大学学报,2007,Vol.42(6):659-664.
    [136]Kenneth I. Talbot Paul R. Duley Martin H. Hyatt. Specific Emitter Identification and Verification, http://www.google.com,2003.
    [137]Langley L E. Specific Emitter Identification (SEI) and Classical Parameter Fusion Technology[C]. Proceedings of the WESCON,1993,377-381.
    [138]Kawalec A, Owczarek R. Specific Emitter Identification Using Intrapulse Data. European Radar Conference[C] 2004, Amsterdam, pp.249-252.
    [139]Kawalec A, Owczarek R. Radar Emitter Recognition Using Intrapulse Data. Proceedings of 15th International Conference on Microwaves, Radar and Wireless Communications[C],2004,2:435-438.
    [140]Carroll T L. A Nonlinear Dynamics Method for Signal Identification [J]. Chaos 17, 2007,023109:1-7.
    [141]刘爱霞,赵国庆.雷达信号包络特征的检测与分析[J].电子对抗技术,2003,17(3):12-16.
    [142]张国柱.雷达辐射源识别技术研究[博士论文].长沙:国防科技大学,2005.
    [143]张国柱,黄可生,姜文利,周一宇.基于信号包络的辐射源细微特征提取方法[J].系统工程与电子技术,2006,28(6):795-797.
    [144]王且波,罗来源.基于信号脉冲前沿波形的辐射源识别[J].无线电通信技术,2005,31(6):54-57.
    [145]柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别[J].信号处理,2005,21(5):460-464.
    [146]董晖,姜秋喜.基于多脉冲的雷达个体识别技术[J].电子对抗,2006,(6):12-18.
    [147]Sergios T and Konstantinos K著,李晶皎,朱志良,王爱侠等译.模式识别[M],第2版.北京:电子工业出版社,2004.
    [148]Chandra V, Bajpai R C. ESM Data Processing Parametric Deinterleaving Approach. Technology Enabling Tomorrow:Computers, Communications and Automation towards the 21st Century[C].1992 IEEE Region 10 International Conference(TENCON'92),11-13 Nov.1992, vol.1, pp.26-30.
    [149]Eric G, Yvon S, Pierre L. A Pattern Reordering Approach Based on Ambiguity Detection for Online Category Learning[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2003,25(4):524-528.
    [150]Liu J, Lee J P Y, Li L J et al. Online Clustering Algorithms for Radar Emitter Classification[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2005,27(8): 1185-1196.
    [151]张万军,樊甫华,谭营.聚类方法在雷达信号分选中的应用[J].雷达科学与技术,2004,2(4):219-223.
    [152]樊甫华.一种复杂密集信号的预分选方法[J].航天电子对抗,2004,(5):24-27.
    [153]许丹,姜文利,周一宇.辐射源脉冲分选的二次聚类方法[J].航天电子对抗,2004,3:26-29.
    [154]祝正威.雷达信号的聚类分选方法[J].电子对抗,2005,6:6-10.
    [155]叶菲,罗景清.一种基于BFSN聚类的多参数综合分选方法[J].雷达与对抗,2005,2:43—45.
    [156]国强,李峥,李和平.支持向量聚类方法在雷达信号分选中的应用.2005年29所年会[C],2005,pp.237-241.
    [157]姜园,张朝阳,仇佩亮,戚玉鹏.对聚类算法普遍存在问题的解决办法[J].电路与系统学报,2004,9(3):92-99.
    [158]Kurths J, Voss A, Saparin P, et al. Quantitative Analysis of Heart Rrate Variability[J]. Chaos,1995,5(1):88-94.
    [159]Schwarz U, Benz A O, Kurths J, et al. Analysis of Solar Spike Events by Means of Symbolic Dynamics Methods[J]. Astronomy and Astrophysics,1993,27(7):215-224.
    [160]Tang X Z, Tracy E R, Boozer A D, et al. Symbol Sequence Statistics in Noisy Chaotic Signal Reconstruction[J]. Physical Review E,1995,51(5):3871-3889.
    [161]Tang X Z, Tracy E R, Brown R. Symbol Statistics and Spatio-temporal Systems[J]. Physical Review D,1997,10(2):253-261.
    [162]Daw C S, Finney C E A, Kennel M B. Symbolic Approach for Measuring Temporal 'Irreversibility'[J]. Physical Review E,2000,62(2):1912-1921.
    [163]Daw C S, Finney C E A, Tracy E R. A review of symbolic analysis experimental data [J]. Review of Scientific Instruments,2003,74(2):915-930.
    [164]Daw C S, Finney C E A, Nguyen K and Halow J S. Symbolic Statistics:A New Tool for Understanding Multiphase Flow Phenomena[J]. ASME International Congress & Exposition, Anaheim California USA, November,1998:15-20.
    [165]张雨,胡茑庆.基于符号树信息熵的机械振动瞬态信号特征提取[J].国防科技大学学报,2003,25(4):79-81.
    [166]金宁德,苗龄予,李伟波.气液两相流差压测量波动信号的符号序列统计分析[J].化工学报,2007,58(2):327-334.
    [167]Moon F C. Chaotic and Fractal Dynamics[M]. New York:John Wiley and Sons, 1992.
    [168]Abarbanel H D I. Analysis of Observed Chaotic Data[M]. Springer-Verlag:ISBN 0-387-94523-7,1996.
    [169]金宁德,李伟波.非线性时间序列的符号化分析方法研究[J].动力学与控制学报,2004,2(3):54-59.
    [170]崔锦泰著,程振兴译.小波分析导论[M].陕西:西安交通大学出版社,1997.
    [171]钱世锷.时频变换与小波变换导论(英文版)[M].北京:国防工业出版社,2005.
    [172]Mallat Y, Coomans D, Kautsky J, De Vel O. Classification Using Adaptive Wavelets for Feature Extraction[J]. IEEE Trans. Pattern Anal. Machine Intell.,1997,19(8): 1058-1066.
    [173]Pittner S, Kamarthi S V. Feature Extraction from Wavelet Coefficients for Pattern Recognition Tasks[J]. IEEE Trans. Pattern Anal. Machine Intell.,1999,21(1):83-88.
    [174]S. Mallat, W. L. Hwang. Singularity Detection and Processing with Wavelets[J]. IEEE Trans. Inform. Theory,1992,32:617-643.
    [175]徐晨,赵瑞珍,甘小冰.小波分析:应用算法[M].北京:科学出版社,2004.
    [176]Xu Y, Weaver B, Healy D, el al. Wavelet Transform Domain Filters:a Spatially Selective Noise Filtration Technique[J]. IEEE Trans on Image Processing,1994,3(6): 747-758
    [177]肖健华.智能模式识别方法[M].广州:华南理工大学出版社,2005.
    [178]Skolink M I. Radar Handbook [M]. New York:McGraw-Hill Book Company,2003.
    [179]Robins W.P.著,秦士、姜尊富译.相位噪声[M].北京:人民邮电出版社,1988.
    [180]黄晓,张沛源,熊毅.多普勒天气雷达发射机相位噪声测量[J].现代雷达,2005,27(7):62-66.
    [181]黎滨.脉冲雷达发射机噪声的影响及测量[J].舰船电子对抗.2002,25(3):19-21.
    [182]段世忠,周荫清.雷达本振相位噪声的数字仿真技术[J].遥测遥控.2000,21(4):26-30.
    [183]刘毅,张彩明,冯峰等.基于高阶累积量的参数化双谱分析的肺音特征提取[J].山东大学学报,2005,35(2):77-85.
    [184]韩钢,张文红,李建东等.基于高阶累积量和支撑矢量机的调制识别研究[J].2003,25(8):1008-1011.
    [185]Bingnan Peia, Zheng Bao, Mengdao Xing. Logarithm Bispectrum-based Approach to Radar Range Profile for Automatic Target Recognition[J]. Pattern Recognition.2002, 35:2643-2651.
    [186]Hajimiri A, Lee T H. A General Theory of Phase Noise in Electrical Oscillators [J]. IEEE Journal of Solid-State Circuits, February,1998,33(2):179-194.
    [187]Breault T L. The Effects of Crystal Oscillator Phase Noise on Radar System.2004, http://www. fei-zyfer. com.
    [188]马君国,肖怀铁,李保国,朱江.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005,27(8):1490-1493.
    [189]蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2006,28(2):75-79.
    [190]刘峥,张守宏.跳频脉冲ISAR成像运动补偿的最小波形熵方法[J].西安电子科技大学学报,2000,27(6):691-695.
    [191]Taub and Shilling, Principles of Communication Systems[M]. New York: McGraw-Hill,1971.
    [192]Granger E, Savaria Y, Lavoie P, Cantin M A. Comparison of Self-organizing Neural Networks for Fast Clustering of Radar Ppulses[J]. Signal Processing,1998,64(3): 249-269.
    [193]Kamgar-Parsi B, Sciortino J C. Automatic Data Sorting Using Neural Network Techniques[R]. Naval Research Lab. Report, A744403, Washington DC, Feb.1996.
    [194]Zhou Y, Lee J A. Minimum Description Length Emitter Number Detection Approach for Intra-pulse Analysis. Proceedings of the 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing(PACRIM'99)[C], Victoria:IEEE Press,1999:548-551.
    [195]Jolliffe I T. Principal Component Analysis[M]. New York:Springer,1986.
    [196]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006.
    [197]Linhart H, Zucchini W. Model Selection[M]. Probability and Mathematical Statistics, New York:Wiley,1986.
    [198]Tipping M E, Bishop C M, Probabilistic Principle Component Analysis[J]. Journal of the Royal statistical Society,1999,61(3):611-622.
    [199]Minka T. Automatic Choice of Dimensionality for PCA[R]. Technical Report 514, Cambridge:Massachusetts Institute of Technology,2000.
    [200]Akaike H. A New Look at the Statistical Model Identification[J]. IEEE Transactions on Automatic Control,1974,19(6):716-723.
    [201]Rissanen J. modeling by the shortest description[J]. Automatica,1978,14(5): 465-471.
    [202]Schwartz G. Estimating the dimension of a model[J]. Annals of Statistics,1978,6(2): 461-464.
    [203]Han J W, Kamber M. Data Mining:Concepts and Techniques [M]. San Francisco: Morgan Kaufmann Publishers,2000.
    [204]Gorji K S, Amani T M, Rahmati M. New Method for Obtaining Proper Initial Clusters to Perform FCM Algorithm for Colour Image Clustering [J]. Journal of the Textile Institute,2009.100(3):237-244.
    [205]Elkamel A, Gzara M, Jamoussi S, Ben-Abdallah H. Artificial Ants for Clustering with Adaptive Aggregation Conditions:Application to Image Clustering. Proc. Asia Int. Conf. Model. Simul., AMS [C]. Bandung, Bali, Indonesia,2009.61-66.
    [206]Xu R, Wunsch II D C. Survey of Clustering Algorithm[J]. IEEE Trans. on NN,2005, 16(3):645-678.
    [207]Jain, A K, Murty M N, Flynn P J. Data Clustering:A Review[J]. ACM Computing Surveys,1999,31(3):264-323.
    [208]Yu J. General C-means Clustering Model[J]. IEEE Trans. Pattern Analysis and Machine Intelligence.2005,27(8):1197-1211.
    [209]Baraldi V, Bolnda P A. Survey of Fuzzy Clustering Algorithms for Pattern Precognition-Part I and Part II[J]. IEEE Trans. System, Man and Cybernetics, Part B, 1999,29(6):778-801.
    [210]Sambasivam S, Theodosopoulos N. Advanced Data Clustering Methods of Mining Web Documents. Issues in Informing Science and Information Technology, 2006(3):563-579.
    [211]Chang K C, Yeh M F. Grey Relational Analysis Based Approach for Data Clustering[J]. IEE Proc.-Vis.Image Signal Process,2005,152(2):165-172.
    [212]Yeh MF, Chiang SS. GreyART Network for Data Clustering[J]. Neurocomputing, 2005,67:313-320.
    [213]Sun H, Wang S, Jiang Q. FCM-Based model selection algorithms for determining the number of cluster[J]. Pattern Recognition,2004,37(10):2027-2037.
    [214]Bezdek, J C, Pal N R. Some New Index of Cluster Validity[J]. IEEE Trans. on Systems, Man and Cybernetics.1998,28(3):301-315.
    [215]Xie X L, Beni G. A Validity Measure for Fuzzy Clustering[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,1991,13(8):841-847.
    [216]Fukuyama Y, Sugeno M. A New Method of Choosing the Number of Clusters for the Fuzzy C-Means Method. Proc. of the fifth Fuzzy Systems Symposium[C],1989, pp.247-250.
    [217]Kwon S H. Cluster Validity Index for Fuzzy Clustering[J]. Electronics Letters,1998, 34(22):2176-2177.
    [218]陈黎飞,姜青山,王声瑞.基于层次划分的最佳聚类数确定方法[J].软件学报,2008,19(1):62-72.
    [219]余健,程乾生.模糊聚类方法中的最佳聚类数的搜索范围[J].中国科学(E辑),2002,32(2):274-280.
    [220]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
    [221]Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proc.2nd Int Conf on Knowledge Discovery and Data Mining[C], Menlo Park:AAAI Press,1996,226-231.
    [222]Deng J L. Introduction to Grey System Theory[J]. J.Grey System,1989,1(1):1-24.
    [223]Grabmeier J, Rudolph A. Techniques of clustering algorithms in data mining[J]. Data Mining and Knowledge Discovery,2002,6(4):303-360.
    [224]Alessandro Verri. A Novel Kernel Method for Clustering[J]. IEEE Trans. Pattern analysis and Machine Intelligence,2005,27(5):801-805.
    [225]Jain A K, Murty M N, Flynn P J. Data Clustering:A review[J]. ACM Computing Surveys,1999,31(3):264-323.
    [226]Guha S, Rastogi R, Shim K. Rock:A Robust Clustering Algorithm for Categorical Attributes[J]. Information Systems,2000,25(5):345-366.
    [227]Sun H, Wang S, Jiang Q. FCM-based Model Selection Algorithm for Determining the Number of Cluster[J]. Pattern Recognition,2004,37(10):2027-2037.
    [228]Marques JP.吴逸飞,译.模式识别——原理、方法及应用[M].北京:清华大学出版社,2002.51-74.
    [229]Fred ALN, Leitao JMN. Partitional vs Hierarchical Clustering Using a Minimum Grammar Complexity Approach. In Proc. of the SSPR & SPR 2000. LNCS[C/OL] 1876,2000.193-202. [2008-10-29], http://www.sigmod.org/dblp/db/conf/sspr/sspr2000.html.
    [230]Wu Kuo-Lung, Yang Miin-Shen, Hsieh June-Nan. Robust Cluster Validity Indexes[J]. Pattern Recognition,2009,42(11):2541-2550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700