用户名: 密码: 验证码:
透明ABS树脂的制备及其结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料在应用过程中,刚性和韧性是两个很重要的参数。因此,塑料改性的研究是高分子材料科学研究的重要课题。ABS树脂是世界上应用最广泛的工程塑料之一。透明ABS树脂除具有通用ABS树脂机械性能的同时,还具有良好的透明性。研究透明ABS树脂的制备方法具有重要的理论意义与实际价值。核壳结构改性剂可以作为透明ABS树脂的增韧剂,提高共混物的冲击强度和透光率。
     核壳结构改性剂主要特点是其粒子尺寸可控,并且在分散到基体树脂中保持不变。本论文采用乳液聚合的方法合成了具有核壳结构的改性剂丙烯腈-丁二烯-苯乙烯共聚物和甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物,将其用于透明ABS树脂的增韧,主要的研究内容和结论如下:
     1.采用乳液聚合技术制备出了聚丁二烯胶乳和丁苯胶乳,采用悬浮聚合技术制备出了MSAN和MS共混物,采用乳液接枝聚合技术合成了ABS和MBS接枝粉料,将核壳改性剂与基体树脂共混制备透明ABS树脂,使其具有优良的性能。
     2.采用乳液聚合技术合成了不同系列的SAN共聚物粉料和a-MSAN共聚物粉料。将其与聚甲基丙烯酸甲酯(PMMA)熔融共混制得了PMMA/SAN和PMMA/a-MSAN共混物,考察了共混体系的相容性。结果发现:当SAN中St/AN为50/50,65/35,95/5时,PMMA和SAN是一个不相容体系;当SAN中St/AN为75/25时,PMMA和SAN是一个相容体系。在用a-MSt部分替代St合成的a-MSAN共聚物与PMMA形成的PMMA/a-MSAN共混体系中,a-MSAN共聚物的AN结合量为15~25wt%时,PMMA和a-MSAN共聚物为相容体系。用a-MSt全部替代St合成不同AN结合量的a-MSAN共聚物与PMMA形成的PMMA/a-MSAN共混体系中,a-MSAN共聚物的AN结合量为15~25wt%时,PMMA和a-MSAN共聚物仍为相容体系。进一步考察了a-MSAN共聚物中a-MSt的含量对共混物相容性的影响。AN含量为25wt%的PMMA/α-MSAN共混物在整个共混组成范围内都是相容的。
     3.采用乳液聚合方法,制备不同特性的MBS核壳结构改性剂并用于PMMA/SAN的增韧,考察了MBS的特性对PMMA/SAN/MBS共混体系的影响,结果表明,存在一个最佳粒径范围使MBS更能有效地对PMMA/SAN进行增韧,而且,PMMA/SAN/MBS共混物具有很高的透光率和很低的雾度。存在一个最佳凝胶含量范围使MBS更能有效地对PMMA/SAN进行增韧,而且,PMMA/SAN/MBS共混物具有很高的透光率和很低的雾度。随着MBS核中苯乙烯结合量的增加,PMMA/SAN/MBS共混物的冲击强度和透光率先增大在减小,而雾度先减小在增大。当苯乙烯以接枝的方式结合时,有利于共混物的韧性;当苯乙烯以共聚方式结合时,有利于共混物的光学性能。PMMA/SAN/PB-g-SAN共混物比PMMA/SAN/SBR-g-SAN共混物冲击强度高,而光学性能优良。
     4.采用乳液聚合技术合成聚丙烯酸丁酯、丙烯酸丁酯-苯乙烯共聚物和丁二烯-苯乙烯-丙烯酸丁酯共聚物,采用乳液接枝技术制备MABS核壳改性剂,研究聚合过程中的动力学以及MABS核壳改性剂对PMMA的增韧。结果表明:聚合反应中,随着体系固含量变大,共聚物粒径增加,转化率不断变大。随着MABS核壳改性剂核里丙烯酸丁酯的增加,PMMA/MABS共混物的冲击强度逐渐减小。透光率先增大后减小,雾度先减小后增大。随着MABS核壳改性剂核粒径的增加,PMMA/MABS共混物的冲击强度先增大后减小,在粒径为269nm时出现最大值。透光率先增大后基本不变,雾度先减小后基本不变。通过TEM可以观察到MABS核壳改性剂在PMMA树脂中的分散,这与MABS/PMMA共混物的性能相一致。
The stiffness and toughness of polymer materials are two important factors for their practical applications. Hence, investigation on the modification of plastics is a focus of polymer material science. ABS resin is one of the important engineering plastic extensively used in the world. Transparent ABS resin has not only general ABS resin mechanical properties, but also good transparency. Investigation on the preparation method of transparent ABS resin has important academic and applied values. Core-shell modifiers can act as impact modifiers to toughen the transparent ABS resin and improve their notched impact strength and transmittance.
     The advantage of Core-shell modifiers is that the particle size of core-shell modifiers has been set during their synthesis and kept constant when they are blended with matrix resins. In our study, the core-shell modifier, including acrylonitrile-butadiene-styrene and methyl methacrylate-butadiene-styrene copolymers were synthesized by seed emulsion polymerization methods, and these copolymers were used to tough transparent ABS resin. The main research work and conclusions are as follows:
     1. Polybutadiene (PB) and Styrene-Butadiene(SBR) latex rubbers were synthesized by emulsion polymerization. Methylmethacrylate-styrene(MS) resin,methylmethacrylate-styrene-acrylonitrile (MSAN) resin were prepared by suspension polymerization. Then a series of poly Acrylonitrile-Butadiene-Styrene (ABS) and poly Methyl-methacrylate-Butadiene-Styrene (MBS) were successfully synthesized by grafting Acrylonitrile-styrene copolymer (SAN) onto Polybutadiene latex rubber particles or by grafting styrene and methylmethacrylate monomer onto Styrene-Butadiene latex rubber particles with seeded emulsion polymerization techniques. Transparent Acrylonitrile-Butadiene-Styrene (ABS) resin with good properties was prepared by blending core-shell modifiers with matrix.
     2. Styrene-acrylonitrile copolymer (SAN) and a-methylstyrene-acrylonitrile copolymer (a-MSAN) with different components was synthesized by emulsion polymerization. Then, PMMA/SAN blend and PMMA/a-MSAN blend were prepared by blending SAN or a-MSAN with PMMA resin. The miscibility of PMMA/SAN blend and PMMA/a-MSAN blend was investigated. The result indicated PMMA and SAN was a immiscible system when St/AN was 50/50、65/35、95/5 in styrene-acrylonitrile copolymer (SAN).However, PMMA and SAN was a miscible system when St/AN was 75/25 in styrene-acrylonitrile copolymer (SAN). PMMA/a-MSAN blend, in which a-MSt partly substituted St, was a miscible system when the content of AN in a-MSAN was 15-25%. PMMA/a-MSAN blend, in which a-MSt substituted St, was also a miscible system when the content of AN in a-MSAN was 15-25%.The influence of the content of a-MSt in a-MSAN on the miscibility of PMMA/a-MSAN blend was investigated. PMMA and a-MSAN was a miscible system in entire composition when the content of AN in a-MSAN was 25%.
     3. MBS core-shell particles with different structure synthesized by seed emulsion polymerization were used as impact modifier of PMMA/SAN. Results showed that MBS effectively toughened PMMA/SAN in the range of the appropriate sizes. PMMA/SAN/MBS blend had the higher transmittance and the lower haze. MBS effectively toughened PMMA/SAN in the range of the appropriate gel content. PMMA/SAN/MBS blend had the higher transmittance and the lower haze. With the increase of St content arranged in the core of MBS, the impact strength and the transmittance of PMMA/SAN/MBS blend increased and then decreased, the haze of PMMA/SAN/MBS blend decreased and then increased. When St was grafted onto the PB rubber, the resistance of the blend was improved. When St was copolymerized with butadiene in MBS, the optical property of the blend was improved. Compare with PMMA/SAN/SBR-g-SAN blend, PMMA/SAN/PB-g-SAN blend had the higher impact strength and better optical property.
     4. Poly butyl acrylate, butyl acrylate-styrene copolymer and Butadiene-styrene-butyl acrylate copolymer were synthesized by emulsion polymerization. MABS core-shell modifier was prepared with emulsion grafting polymerization. The kinetics of polymerization and toughening PMMA by MABS core-shell modifier were investigated. Results indicated that copolymer particle size and converse rate increased as solid content increased in the polymerization. The impact strength of PMMA/MABS blend decreased, the transmittance of PMMA/MABS blend increased and then decreased and the haze of PMMA/MABS blend decreased and then increased with the increase of the content of butyl acrylate in core of MABS. The impact strength of PMMA/MABS blend decreased and then increased and got to the maximum value when the particle is 269nm, the transmittance of PMMA/MABS blend increased and then invaried and the haze of PMMA/MABS blend decreased and then invaried with the increase of the particle size of butyl acrylate in core of MABS. It is found that from TEM MABS modifier dispersed in PMMA, which is consistence with the property of PMMA/MABS blend.
引文
[1]潘祖仁,翁志学,黄志明,悬浮聚合[M],化学工业出版社,1997
    [2]潘祖仁,于在璋,自由基聚合[M],化学工业出版社,1983
    [3]Hinze,J.O., Turbjulence, McGrawHill, New York,1975
    [4]翁志学,合成橡胶工业[J],6,47,1985
    [5]詹晓力,浙江大学博士论文,1992
    [6]CoulaloglouC.A.,etal.Chem.Eng.Sci.,32,1289,1977
    [7]曹同玉,刘庆普,胡金生,聚合物乳液合成原理、性能及应用[M],化学工业出版社,1997
    [8]Weyenberg, D.R., Findlay, D.E., Cecapa, J. R. and Bey, A. E., J. Poly. Sci., Part C,27,27,1969
    [9]Garr, E. L. and Johnson, P. H.:Ind. Eng. Chem.,41,1588,1949
    [10]Roe, C. P., Ind. Eng. Chem.,60,20,1968
    [11]Harkins, W. D., J. Chem. Phys,13,381,1945
    [12]Harkins, W. D., J. Chem. Phys,14,47,1946
    [13]Harkins, W.D., J. Am. Chem. Soc.,69,1428,1947
    [14]Harkins, W. D., J. Polym. Sci.,5,217,1950
    [15]Roe, C.P., Ind. Eng. Chem.,60,20,1968
    [16]Rosen S L. "The physical limits of grafting in two-phase polymerization reaction" [J], J. Appl. Polym. Sci.,17,1805-1811,1973
    [17]Hayes R. A., Futaura S. "Kinetics and mechanism of the polymeration of styrene-acrylonitrile in the presense of polybutadiene" [J], J. Polym. Sci.,Polym. Chem. Ed,19,985-991,1981
    [18]应泽良,余丰年,共聚合原理[M],化学工业出版社,1984
    [19]Merz E. H.,Claver G.C, Bear M., J. Polym.Sci.,1956,22:325-334
    [20]Bucknall C. B, Smith R. R, Polymer,1965,6:437-442
    [21]何曼君,陈维孝,董西侠。高分子物理。上海:复旦大学出版社。1990。306-308
    [22]冯继云,塑料,21(2),7,1992
    [23]Wu H. J. Appl. Polym.Sci.,35,549,1988
    [24]Wu S.H. Polymer,26,1855,1985
    [25]Wu H., Alla. Margolina. Polymer,29:2170,1988
    [26]S. Krause, A recording sorption kinetics apparatus [J],J. Polym.Sci.,35,558 1959
    [27]S.Krause, A.L.Smith, and M.G.Duden, J.Chem.Phys,43,2144,1965
    [28]张增民等,现代塑料加工应用[J],9(1),7,1997
    [29]Gerrit Ten Brinke, Frank E. Karasz, William J. MacKnight Phase behavior in co-polymer blends:poly(2,6-dimethyl-1,4-phenylene oxide) and halogen-substit-uted styrene copolymers
    [30]C.C.Hsu and J.M.Prausnitz. Thermodynamics of Polymer Compatibility in Tema-ry Systems [J], Macromolecules 7,320,1974
    [31]L.Zeman and D.Patterson. Effect of the Solvent on Polymer Incompatibility in Solution[J], Macromolecules 5,513,1972
    [32]A.Robard,D.Patterson and G.Delmas. The "AX Effect" and Polystyrene-Poly-(v-inyl methyl ether) Compatibility in Solution [J] Macromolecules 10,706,1977
    [33]W. H. Stockmayer, L. D. J. Moore, M. Fixman, and B. N. Epstein, Copolymers in dilute solution. I. Preliminary results for styrene-methyl methacrylate [J], J. Polym. Sci.,16,517,1955
    [34]O.Olabisi, L.M.R.obeson, and M.T.Shaw, Polymer-Polymer Miscibility[M], Academic Press. New York,1979
    [35]W.J.MacKnight, F.E.Karasz, and J.R.Fried, Solid State Transition Behavior of Blends, in Polymer Blends[M]. New York,1978
    [36]F.E.Karasz, Glass Transitions and Compatibility; Phase Behavior in Copolymer Containing Blends, in polymer Blends and Mixtures[M], Boston,1985
    [37]L.A.Utracm. Polymer Alloys and Blend:Thermodynamics and Rheology[M], Hanser Publishers, New York,1990
    [38]L.M.Robeson, Recent Advances in Polymer Blend Technology in Contemporary Ropics.in Polymer Science[M], Vol 6. New York.1989
    [39]D. R. Paul, C. B. Bucknall, Polymer Blends Volumn 2:Performance[M], New York, John Wiley & Sons,2000
    [40]官建国,袁润章,光学透明材料的现状和研究进展:光学透明高分子材料,武汉工业大学学报[J].20[2]:11-13,1998
    [41]Standard Test Method for Transparency of Plastic Sheeting, ASTM Standard D 1746,1970
    [42]H. C. Van de Hulst, Light Scattering by Small Particles, Wiley, New York,1957.
    [43]M. Kerker, Scattering of Light and Other Electromagnetic Radiation[M], Academic, New York,1969
    [44]C. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Partickes[M], John Wiley & Sons, New York,1983
    [45]Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics, ASTM Standard D1003,1961
    [46]J. Brandrup, E. H. ImmerGut, Polymer Handbook Second edition
    [1]CN1446246A 透明的橡胶改性苯乙烯类组合物
    [2]CN1345895A 透明苯乙烯系树脂组成物
    [3]CN1336389A 透明性聚苯乙烯系树脂
    [4]CN1172120A 高透明抗冲击聚苯乙烯树脂及其制备方法
    [5]CN1337419A 透明橡胶变性苯乙烯系树脂组成物
    [6]CN1466601A 丙烯腈-丁二烯-苯乙烯(ABS)热塑性透明树脂
    [7]CN1124743A 透明的橡胶改性苯乙烯树脂及其生产方法
    [8]CN1256279A 一种透明型高抗冲改性剂的合成方法
    [9]CN1578795A 具有良好耐化学性和透明度的丙烯腈-丁二烯-苯乙烯共聚物透明树脂及其制备方法
    [10]CN1335335A 橡胶增强的苯乙烯透明树脂组合物及其制备方法
    [11]CN1552762A 橡胶增强的苯乙烯透明树脂组合物及其制备方法
    [12]CN1564833A 透明橡胶改性共聚树脂及其树脂组合物
    [13]CN1594422A 透明橡胶改质苯乙烯系树脂
    [14]CN1597767A 透明橡胶改质聚苯乙烯系树脂
    [15]CN1479757A 透明的橡胶改性苯乙烯共聚体
    [16]US5891962 Transparent, rubber-modified styrene resin and production process thereof
    [17]US6515072 Transparent rubber-modified styrene resin composition
    [18]Ou YH(1991) Hand Book of Plastic, Weapons Industry Press, Beijing,217.
    [19]I.M.Ward, Mechanical Properties of Solid Polymers, John Wiley & Sons, New York,1983.
    [20]J.G. Williams, Fracture Mechanics of Polymers, Ellis-Horwood, Chichester, England,1984.
    [21]A.J. Kinloch, R.J. Young, Fracture Behaviour of Polymers, Elsevier Applied Science, London,1985.
    [22]W. Browstow, R.P. Corneliusen, Failure of Plastics, Hanser Verlag, Berlin,1987.
    [23]J.H. Haudin, in Plastic Deformation of Amorphous and Semicrystalline Materials, B. Escaig, C.G'Sell(eds.), Publ. Les Editions de Physique, Les Ulis, France, 1982.
    [24]H.H. Kausch, J.G. Williams, "Fracture and Fatigue," in Encyclopedia of Polymer Science and Technology,2nd Ed., Vol.7, John Wiley & Sons, New York,1985, p. 328.
    [25]D.W. Hadley, I.M. Ward, "Mechanical Properties," in Encyclopedia of Polymer Science and Technology,2nd Ed., Vol.2, John Wiley & Sons, New York,1985, p.379.
    1. Aoki,Y.J.;Tannka,T. Macromolecules 1999,32,8560.
    2. Eguiburu,J.L.;Iruin,J.J.;Fernandez-Berridi,M.J.;San Roman,J. Polymer 1998,39, 6891.
    3. Wen,G.Y.;Sun,Z.Y.;Shi,T.F.;Yang,J.;Jiang,W.;An,L.J.;Li,B.Y. Macromolecules 2001, 34,6291.
    4. Zuo,M.;Peng,M.;Zheng,Q. Polymer 2005,46,11085.
    5. Pathak,J.A.;Colby,R.H.;Kamath,S.Y;Kumar,S.K.;Stadler,R. Macromolecules 1998,31,8988.
    6. You,J.C.;Shi,T.F.;Liao,Y.G.;Li,X.L.;Su,Z.H.An,L.J. Polymer 2008,49,4456.
    7. Yang,H.;Han,C.D.;Kim,J.K. Polymer 1994,35,1503.
    8. Higashida,N.;Kressler,J.Inoue,T. Polymer 1995,36,2761.
    9. Kim,E.;Kramer,E.J.;Wu,W.C.;Garrett,P.D. Polymer 1994,35,5706.
    10. Zheng,Q.;Du,M.;Yang,B.B.;Wu,G Polymer 2001,42,5743.
    11. Wen,G.Y.;Li,X.;Liao,Y.G.;An,L.J. Polymer 2003,44,4035.
    12. Du,M.;Gong,J.H.;Zheng,Q. Polymer 2004,45,6725.
    13. Bernstein,R.E.;Cruz,C.A.;Paul,D.R.;Barlow,J.W. Macromolecules 1977,10,681.
    14. Kambour,R.P.;Bendler,J.T.;Bopp,R.C. Macromolecules 1983,16,753.
    15. Fower,M.E.;Barlow,J.W.;Paul,D.R. Polymer 1987,28,2145.
    16. Suess,M.;Kressler,J.;Kammer,H.W. Polymer 1987,28,957.
    17. Naito,K.;Johnson,GE.;Allara,D.L.;Kei,T.K. Macromolecules 1978,11,1260.
    18. Schafer,R.;Zimmermann,J.;Kressler,J.;Mulhaupt,R. Polymer 1997,38,3745.
    19. Magonov,S.N.;Elings,V.;Papkov,V.S. Polymer 1997,38.297.
    20. Mcbrierty,V.J.;Douglass,D.C.;Kwei,T.K. Macromolecules 1978,11,1265.
    21. Feng,H.;Ye,C.;Feng,Z. Polym.J.1996,28,661.
    22. Hashimoto,T.;Kumaki,J.;Kawai,H. Macromolecules 1983,16,641.
    23. Edel,V. Macromolecules 1995,28,6219.
    24. Kyu,T.;Saldanha,J.M. Macromolecules 1988,21,1021.
    25. Peng,M.;Zheng,Q. Chinese J Polym Sci 2000,18,565.
    26. Song,M.;Hammiche,A.;Pollock,H.M.;Hourston,D.J.;Reading,M. Polymer 1995, 36,3313.
    27. Hsu,W.P. J.Appl.Polym.Sci.1999,74,2894.
    28. Lerma,M.S.;Iwamoto,K.;Seno,M. J.Appl.Polym.Sci.1987,33,625.
    29. Park,H.C.;Meertens,R.M.;Mulde,M.H.V. J.Membr.Sci.1994,90,265.
    30. Nguyen,T.Q.;Essamri,A.;Clement,R. Makromol.Chem.1987,188,1973.
    [1]J.T.Lutz, Jr. And D.L.Dunkelberger(eds), Impact Modifiers for PVC. The History and Practice, John Wiley & Sons, Inc., New York,1992
    [2]J.Hoffman,"Impact Modifiers are Solid," in Chemical Marketing Reporter, Schnell Publishing Company, Inc., June 12,1995, p.SR11.
    [3]G. Burgisi, M. Paternoster, N. Peduto, A. Saraceno, Toughness enhancement of polyamide 6 modified with different types of rubber:the influence of internal rubber cavitation. J. Appl.Polym.Sci.1997,66,777-787
    [4]D.S.Li, H.B. Xia, J.Peng, M.L. Zhai, G.S. Wei, J.Q.Li, J.L. Qiao Radiation preparation of nano-powdered styrene-butadiene rubber (SBR) and its toughening effect for polystyrene and high-impact polystyrene Radiation Physics and Chemistry 2007,76,1732-1735
    [5]Z.H.Liu, X.D. Zhang, X.G. Zhu, R.K.Y. Li, Z.N. Qi, F.S.Wang, C.L.Choy Effect of morphology on the brittle ductile transition of polymer blends:4 Influence of the rubber particle spatial distribution in poly(vinyl chloride)/nitrile rubber blends Polymer 1998,39,5035-5045
    [6]Z.H.Liu, X.D. Zhang, X.G. Zhu, Z.N. Qi, F.S.Wang, R.K.Y. Li, C.L.Choy Effect of morphology on the brittle ductile transition of polymer blends:6 Influence of rubber particle spatial distribution on the toughening and stiffening efficiency of poly(vinyl chloride)/nitrile rubber blends Polymer 1998,39,5047-5052
    [7]Z.H.Liu, X.D.Zhang, X.G. Zhu, Z.N. Qi, F.S.Wang, R.K.Y. Li, C.L.Choy Effect of morphology on the brittle ductile transition of polymer blends:3 The influence of rubber particle spatial distribution on the fracture behaviour of poly(vinyl chloride)/nitrile rubber blends Polymer 1998,39,5027-5033
    [8]L.BECU-LONGUET, A.BONNET, C.PICHOT, H.SAUTEREAU, A.MAAZOUZ Epoxy Networks Toughened by Core-Shell Particle:Influenc of the Particle Structure and Size on the Rheological and Mechanical Properties Journal of Applied Polymer Science 1999,72,849-858
    [9]SL Sun, ZY Tan, MY Zhang, HD Yang and HX Zhang Influence of the degree of grafting on the morphology and mechanical properties of blends of poly(butylenes terephthalate) and glycidyl methacrylate grafted poly(ethylene-co-propylene) (EPR) Polymer International 2006,55,834-842
    [10]S.L. Sun, X.Y. Xu, H.D. Yang, H.X. Zhang Toughening of poly(butylenes terephthalate) with epoxy-functionalized acrylonitrile-butadiene-styrene Polymer 2005,46,7632-7643
    [11]Q.B. Si, C. Zhou, H.D. Yang, H.X. Zhang Toughening of polyvinylchloride by core-shell rubber particles:Influence of the internal structure of core-shell particles European Polymer Journal 2007,43,3060-3067
    [12]BOI HUYEN NGUYEN-THUC, ABDERRAHIM MAAZOUZ Morphology and Rheology Relationships of Epoxy/Core-Shell Particle Blends POLYMER ENGINEERING AND SCIENCE 2002,42,120-133
    [13]A.O. ARANOV, T.I. MEDINTSEVA, L.A. ZHORINA, A.N. ZELENETSKH, E.V. PRUT Dispersivity of Rubbers in Thermoplastic Polymers Journal of Applied Polymer Science 1999,73,1563-1567
    [14]D. Tomova, H.J. Radusch Morphology and Properties of Ternary Polyamide 6/Polyamide 66/Elastomer Blends Polym. Adv. Technol.2003,14,19-26
    [15]Tian-Ying Guo, Guang-Liang Tang, Guang-Jie Hao, Shu-Fang Wang, Moud-Dao Song, Bang-Hua Zhang Influence of Core-Shell Structured Particles on the Impact Resistance of Poly(vinyl chloride) Polym. Adv. Technol.2003,14,232-238
    [16]A. Torres, I. Lopez-de-Ullibarri, M.J. Abad, L. Barral, J. Cano, S. Garcia-Garabal, F.J. Diez, J. Lopez, C. Ramirez Study of the Effect of Poly(acrylonitrile-co-butadiene-co-styrene) on the Mechanical Properties of an Epoxy System Journal of Applied Polymer Science 2004,92,461-467
    [17]Michael Schneider, Tha Pith, Marand Lambla Impact Modification of Thermoplastics by Methyl Methacrylate and Styrene-grafted Natural Rubber Latexes Polym. Adv. Technol.1994,6,326-334
    [18]Ligang Yin, Jinghua Yin, Dean Shi, Shifang Luan Effects of SEBS-g-BTAI on the morphology, structure and mechanical properties of PA6/SEBS blends European Polymer Journal 2009,45,1554-1560
    [19]Hongtao Liu, Danying Zuo, Heng Liu, Linzhou Li, Jianlin Li, Weilin Xu Enhanced impact strength and deviated thermal decomposition of PP and PS toughened with graft-modified rubbers e-Polymers 2010,134
    [20]M. Schneider, T. Pith, M. Lambla, Toughening of polystyrene by natural rubber-based composite particles, Part II influence of the internal structure of PMMA and PS-grafted core-shell particles, J.Mater.Sci.,1997,32,6343-6356
    [21]V. Nelliappan, M. S. El-aasser, A. Klein, E. S. Daniels, J. E. Roberts, R. A. Pearson, Effect of the core/shell latex particle interphase on the mechanical behavior of rubber-toughened poly (methyl methacrylate), J.Appl.Polym.Sci.1997,65,581-593
    [22]X. F. Xu, R. Wang, Z. Y. Tan, H. D. Yang, M. Y. Zhang, H. X. Zhang, Effects of polybutadiene-g-SAN impact modifiers on the morphology and mechanical behaviors of ABS blends, Eur. Polym.J.2005,41,1919-1926
    [23]D. S. Kim, K. Cho, J. K. Kim, C. E. Park, Effects of particles size and rubber content on fracture toughness in rubber-modified epoxies, Polym. Eng. Sci.,1996,36, 755-768
    [24]J. Z. Liang, R. K. Y. Li, Rubber toughening in polypropylene:a review, J. Appl.Polym.Sci.,2000,77,409-417
    [25]R. S. Yamakawa, C. A. Correa, E. H. Jr, Inflence of acrylonitrile-butadiene-styrene (ABS) morphology and poly (styrene-co-acrylonitrile) (SAN) content on fracture behavior of ABS/SAN blends, J.Appl.Polym. Sci.,2004,92,2606-2611
    [26]R.J. Gaymans, R.J.M. Borggreve, A.J. Oostenbrink, Makromol. Chem., Macromol. Symp.,38,125(1990).
    [27]A.J. Oshinski, H. Keskkula, D.R. Paul, Polymer,33,268(1992).
    [28]A.J. Oshinski, H. Keskkula, D.R. Paul, Polymer,37,4919,(1996).
    [29]A. van der Wal, A.J.J. Verheul, R.J. Gaymans, "PP-EPDM Blend 4,' Polymer,40,6057(1999).
    [30]R.J.M. Borggreve, R.J. Gaymans, J. Schuijer, J.F. Ingen Housz, Polymer,28,1489(1987).
    [31]D. Dompas, G. Groeninckx, Polymer,354743,(1994).
    [32]S. Wu, Polym. Eng. Sci.,30,753(1990).
    [33]C. Wrotecki, P. Heim, P.Gaillard, Polym. Eng. Sci,31,213(1991).
    [34]A. Takaki, H. Yasui, I. Narisawa, Polym. Eng. Sci.,37,105(1997).
    [35]孟宪谭,朱卫东,张丽红丁苯胶乳凝胶含量的影响因素橡胶工业2003,50,348-350
    [1]P.A. Lovell, D. Pierre, "Rubber-toughened Plastic," in Emulsion Polymerization and Emulsion Polymers, P.A. Lovell, M.S. EI-Aaser(eds.), John Wiley & Sons, Ltd., Chichester, England,1997,Ch.19.
    [2]F. Vazquez, M. Schneider, T. Pith, M. Lambla, Polym. Int.,41,1(1996).
    [3]F.H. Owens, U.S.Patent 3 808,180(1974).
    [4]F.H. Owens, U.S.Patent 3 843,753(1974).
    [5]N. Shah, J. Mater. Sci.,23,3623(1988).
    [6]C. He, A.M. Donald, M.F. Butler, Macromolecules,31,158(1998).
    [7]P.A. Lovell, M.N. Sherratt, R.J. Young, "Mechanical Properties and Deformation Micromechanics of Rubber-Toughened Acrylic Polymers," in Toughened Plastics Ⅱ: Novel Approaches in Science and Engineering, C.K. Riew, A.J. Kinloch(eds.), ACS Advances in Chemistry Series, American Chemical Society, Washingtong, DC,1996,Ch.15.
    [8]P.A. Lovell, J. McDonald, D.E.J. Saunders, R.J. Young, Polymer,34,61(1993).
    [9]侯炜,朱岩,李琰,核壳结构聚丙烯酸酯乳液的合成及其热稳定性,合成化学,2011,01.
    [10]张利娜,张立彬,朱晓丽,孔祥正,核壳结构聚合物乳胶粒的制备与表征,济南大学学报(自然科学版),2011,02.
    [11]汪慧,胡剑青,王峰,涂伟萍,碱溶性核/壳型丙烯酸酯胶粘剂乳液的合成研究,中国胶粘剂,2010,09.
    [12]冯小平,姜云刚,李胜华,何伟,毛胜华,单组分丙烯酸酯乳液复膜胶的研制,化学与黏合,2010,05.
    [13]陆秋宇,刘亚康,聚苯乙烯/聚丙烯酸酯核壳粒子形态的研究,涂料工业,2010,09.
    [14]甄颖朋,李坚,孙治丹,俞强,端羟基聚丙烯酸丁酯的合成与表征,高分子材料科学与工程,2010,06.
    [15]赵欣,隋智慧,宋旭梅,张景彬,强西怀,核-壳结构阳离子丙烯酸树脂乳液的合成及性能,中国皮革,2010,07.
    [16]沈晓亮,周建华,马建中,聚丙烯酸-b-聚丙烯酸丁酯的RAFT水溶液聚合及其性能,精细化工,2010,03.
    [17]陆波,陈立军,核壳结构丙烯酸酯共聚物乳液的合成研究,沈阳化工学院学报,2010,01.
    [18]蒋学,王银豪,王霁昱,田秀枝,黄丹,王树根,丙烯酸丁酯原位悬浮聚合法制备 表面改性纳米TiO2,涂料工业,2010,02.
    [19]赵烈,张发爱,葛建芳,鲁红,间歇式乳液聚合法制备超支化聚丙烯酸丁酯,涂料工业,2010,01.
    [20]曹志峰,苗青,金勇,核壳型聚丙烯酸酯乳液的合成及改性研究进展,中国皮革,2009,11.
    [21]安静,李雪艳,朱学旺,苯乙烯/丙烯酸丁酯微乳液聚合竞聚率及共聚物链段分布的研究,胶体与聚合物,2007,01.
    [22]刘亚平,吴佑实,朱红松,聚苯乙烯和聚丙烯酸丁酯无皂核壳乳液聚合反应的研究,山东化工,2003,06.
    [23]曹有名,于德梅,孙军,丙烯酸丁酯/苯乙烯共聚乳胶的合成及性能,合成树脂及塑料,2000,06.
    [24]董辉,李盛彪,王绍宗,倪冶林,程丽,段煌,龙光斗,丙烯酸丁酯/苯乙烯/功能单体多元共聚乳液的合成,胶体与聚合物,2010,02.
    [25]张玉婷,肖长发,甲基丙烯酸丁酯-苯乙烯共聚物研究,合成树脂及塑料,2009,02.
    [26]卢娟,单国荣,黄志明,翁志学,苯乙烯/丙烯酸丁酯交联体系乳液聚合动力学研究,化学反应工程与工艺,2006,02.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700