用户名: 密码: 验证码:
炭黑的紫外线吸收剂接枝改性及其对聚对苯二甲酸乙二醇酯抗紫外性能及光稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)具有良好的耐候性与光学透明性。可以应用于包装、薄膜、工程塑料等领域。聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)作为共聚型PET的一个重要种类与均聚PET相比更不易结晶,因而具有更好的透明性,更适合于制备透明塑料制品。因此研究就PETG的结晶行为不仅在理论方面,对生产应用也是十分有意义的。并且PET对波长在280nm以上的紫外线与可见光几乎透明,因此为了提高PET薄膜的抗紫外能力,需要添加紫外线吸收剂。
     炭黑(CB)是一种重要的工业填料,最常用作橡胶的补强、涂料着色剂及导电填料。而对于炭黑作为光稳定剂的研究较少,因此本文主要研究了炭黑作为光稳定剂对聚合物透明性及光稳定性的作用。在聚合物的应用中,通过炭黑的改性来提高其分散性,使其粒径更小而不易发生团聚,从而使聚合物获得更好的性能。
     本实验中利用原位固相接枝的方法把有机紫外线吸收剂对炭黑进行接枝改性,制备得到了有机无机光稳定剂协同体系的接枝改性炭黑(m-CB),并将其应用到PET薄膜及板材中,考察了PET/m-CB复合材料的透明性、结晶行为及耐紫外老化性能。
     首先研究了普通均聚型PET与共聚型PETG的结晶性对PET薄膜的透明性的影响。结果表明,PET薄膜的结晶对薄膜雾度的影响非常大,结晶能力较弱的PETG更有利于制备透明的PET薄膜。同时,对不同类型的炭黑与苯并三唑类紫外线吸收剂(UV-P和UV327)对PET薄膜的透明性影响的研究发现,粒径小的色素炭黑Mogul-L对增强PET薄膜的紫外线吸收能力更有效,而且发现苯并三唑类紫外线吸收剂对保持PET薄膜的透明性与增强紫外线吸收能力有显著作用。对炭黑与有机紫外线吸收剂协同效应的研究发现,两者都能比较好地吻合朗伯比尔定律,并且两者的协同效应表现于两者吸光系数的相加。
     为了提高炭黑在PET基体中的分散性,以及增强炭黑与有机紫外线吸收剂的协同效应,使用UV-P和UV327对炭黑直接进行原位固相接枝改性。Haake流变仪与热失重(TGA)的研究结果发现,UV-P比UV327更易与炭黑进行原位接枝反应。通过红外光谱(FTIR)及能谱(EDS)对制备产物的分析表明,UV-P与炭黑的反应主要发生在UV-P的羟基和炭黑表面的含氧基团之间,UV327则因为分子结构较复杂,有一定的空间位阻效应使得其与炭黑的反应能力较弱。对制备得到的UV-PCB的粒径及分散性的研究发现,UV-PCB在PET基体中的分散性优于未改性的UV-P/CB体系,并且UV-PCB的分散粒径可以达到100 nm以下,即纳米材料所定义的范围。
     对PET/UV-PCB薄膜进行的透光率的研究发现,UV-PCB对紫外线的吸收能力远远高于炭黑与UV-P单独使用的情况,并且效果比普通共混体系的UV-P/CB效果更好。通过朗伯比尔定律的研究发现,UV-PCB的吸光系数要高于UV-P/CB,表明炭黑在经过改性之后具备了一定的纳米效应,其吸光系数不仅仅是两种光稳定剂吸光系数的普通相加而要更高。证明了UV-P接枝改性炭黑是一种有效的制备具有优异性能的紫外线吸收剂的方法。
     在研究了接枝改性体系的UV-PCB与普通共混体系的UV-P/CB对PETG的非等温结晶动力学的研究后发现,PETG在较高的降温速率下不易结晶,可以用Jeziorny方程与Ozawa方程对其非等温结晶动力学行为进行很好的描述。PETG的结晶生长属于异相成核的二维三维混合生长。而添加入炭黑之后,PETG的结晶速率加快,炭黑促进了PETG的异相成核的三维生长,并且在结晶后期有很明显的二次结晶行为。与普通体系的UV-P/CB相比,接枝改性体系的UV-PCB的成核能力更强,加快了PETG的结晶速率。对两者加入PETG之后的雾度的研究发现,PETG的雾度上升较纯PETG的变化并不显著,说明炭黑的加入使PETG的晶粒的减小在一定程度上也防止了其对光线的散射。
     对共聚型PET及添加不同光稳定剂之后进行了光降解动力学的研究发现,PET的弱链段受到的光降解的影响要远大于普通链段。UV-PCB对PET的保护主要表现在降低光降解常数与减少分子的弱连接数量,而且其效果要好于两者单独使用的情况。对PET的光降解产生的热学性能和力学性能的研究发现,PET的光降解对熔融温度、玻璃化温度及热变形温度的影响较小,而模量、冲击强度和拉升强度等力学性能有较明显的下降。添加了光稳定剂之后PET的力学性能的下降得到有效的抑制,尤其UV-PCB的表现更突出。证明了UV-PCB对紫外线的强烈吸收对PET的光稳定性有非常显著的提高。并且其对紫外线的吸收所产生的分子内部结构的互相转变长期有效,因此可以有效延长PET的使用寿命。
Poly(ethylene terephthalate) (PET) is a material with good weatherability and optical transparency can be applied in packaging, film and engineering plastics. Compared with PET, Poly(ethylene terephthalate) glycol (PETG) is a copolymer of PET performing less crystallization and better optical transparency to be applied in transparent plastic products. Thus the research of the crystallization behavior of PETG is meaningful for not only theory study but also practical production. PET is transparency for UV light which wavelength is over 280 nm. Therefore UV absorber has to be added into PET to improver its UV resistance.
     Carbon black (CB) is an important additive acted as reinforcing agent, colorant and conductive filler. But there are few studies about its UV stabilization property. In this paper, UV stabilization property of polymer/CB composite is investigated. CB is usually modified to improve its dispersibility in polymers. This helps to decrease the aggregate size of CB and improve certain properties of polymers.
     CB was modified with a commercial UV absorber to prepare an organic and inorganic compound UV stabilizer through in-situ reaction in solid phase. Modified CB (m-CB) was added into PET films or plates and the crystallization behavior, transparency and UV resistance of PET/CB composites were discussed.
     Firstly, transparency influenced by the crystallization of homopolymerized PET (homo-PET) and PETG was investigated. It is proved that the haze of PET films is strongly influenced by the crystallizing ability. PETG whose crystallizating ability is lower performs better transparency than homo-PET. Different type of CB or benzotriazol UV absorbers (UV-P and UV327) was added into PET to improve its UV resistance. The results showed that pigment CB Mogul-L with small aggregate size is more efficient in enhancing UV resistance and bezotrazol UV absorbers can increase UV absorbance and keep high transparency of PET film. The research on the synergistic effect for the combination of organic UV absorber and in organic UV stabilizer CB showed that Beer-Lambert law is suitable to both organic UV absorber and CB in PET. The synergistic effect for bezotrazol UV absorber and CB behaves as the addition of their absorbence index.
     CB was modified with UV-P and UV327 to improves its dispersibility and the synergistic effect between them. Haake rheometer and thermogravimetric analysis (TGA) characterization showed the reaction between UV-P and CB was more obvious than between UV327 and CB. Fourier transform infrared (FTIR) and Energy Dispersive Spectrometry (EDS) characterizations showed that the chemical reaction happened between the oxygen-containing groups on the surface of UV-P and CB. But the strong steric hindrance of UV327 weakened the reaction between UV327 and CB. After the modification, the aggregate size of UV-PCB decreased to below 100 nm and the specific surface area increased.
     PET/UV-PCB composite films were prepared and exhibited higher UV absorbing ability than PET/CB, PET/UV-P systems and PET/UV-P/CB systems. The absorbance index of UV-PCB is larger than UV-P/CB indicated that UV-PCB obtained nano-effect.
     Both UV-PCB and UV-P/CB acted as good nuclear agent in PET. The non-isothermal kinetics of PETG/UV-P/CB and PETG/UV-PCB were investigated. The results showed that pure PETG can hardly crystallization under a relative high cooling rate and can be described by Jeziorny and Ozawa methods. The spherulite growth of PETG is between two dimension and three dimension through heterogeneous nucleation. After the addition of UV-P/CB or UV-PCB, the spherulite growth of PETG changed to three dimension and contained second step crystallization. The nucleating ability of UV-PCB is better than UV-P/CB because of the aggregate size decreasing and the surface area increasing of UV-PCB. The increase crystallizing ability of UV-PCB and UV-P/CB did not increase the haze of PETG very much.
     UV degradation kinetics of PET/CB composites were investigated. The results showed that the weak links in PET brake much more easily than normal links. The protection of UV-PCB for PET exhibited on the decreasing of the UV degradation rate constants and the fraction of weak links. The melt temperature, glass transition temperature and heat-deformation temperature were slightly influenced by UV radiation. But UV radiation caused the decreasing of storage modulus, impact strength and tensile strength for PET. PET with UV-PCB performs more stabilized than with CB or UV-P individually. UV-PCB in proved as an efficient UV stabilizer to improve the UV absorbing ability and stability of PET.
引文
[1]R.G. Bonner. Eastman Chemical Company. WO Patent 2005/035608 A2
    [2]B. Gantillon, R. Spitz, T.F. McKenna. The solid state postcondensation of PET 1. Macromolecular Materials and Engineering [J].2004,289(1):88-105
    [3]S.N. Vouyiouka, E.K. Karakatsani, C.D. Papaspyrides. Solid state polymerization. Progress in Polymer Science [J].2005,30(1):10-37
    [4]G.P. Karayannidis, D.E. Kokkalas, D.N. Bikiaris. Solid-state polycodensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles Ⅱ [J]. Journal of Applied Polymer Science.1995,56(3):405-410
    [5]D.E. Kokkalas, D.N. Bikiaris, G.P. Karayannidis. Effect of the Sb2O3 catalyst on the solid-state postpolycondensation of poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science.1995,55(5):787-791
    [6]G. Karayannidis, I. Sideridou, D. Zamboulis, et al. Solid-state of poly(ethylene terephthalate) films [J]. Macromolecular Materials and Engineering.1991,192(1): 155-168
    [7]T.Y. Kim, E.A. Lofgren, S.A. Jabarin. Solid-state polymerization of poly(ethylene terephthalate) I. Experimental study of the reaction kinetics and properties [J]. Journal of Applied Polymer Science.2003,89(1):197-212.
    [8]B. Duh. Effects of the carboxyl concentration on the solid-state polymerization of poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science.2002,83(6): 1288-1304
    [9]T. Ishidera, K. Miyajima, K. Sato. JP 2000204145,1998
    [10]B. Duh. Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate) [J]. Polymer.2002,43(11):3147-3154
    [11]E.B. Gowd, C. Ramesh. Effect of poly(ethylene glycol) on the solid-state polymerization of poly(ethylene terephthalate) [J]. Polymer International.2006,55(3):340-345
    [12]F.J. Madellin-Rodriguez, R. Lopez-Guillen, M.A. Waldo-Mendoza. Solid-state polymerization and bulk crystallization behavior of poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science.2000,75(1):78-86
    [13]Y. Ma, U.S. Agarwai, D.J. Sikkema, et al. Solid-state polymerization of PET:influence of nitrogen sweep and high vacuum [J]. Polymer.2003,44(15):4085-4096
    [14]Q. Tan, D.Z. Ma. Further study on the miscibility of poly(ethylene terephthalate)-polycarbonate blends [J]. Journal of Applied Polymer Science.1993,48(4): 747-749
    [15]J.S. Wu, Y.W. Mai, B. Cotterell. Fracture toughness and fracture mechanisms of PBT/PC/IM blend Part I Fracture properties [J]. Journal of Materials Science.1993, 28(12):3372-3384
    [16]Z.L. Liao, F.C. Chang. Mechanical properties of the rubber-toughened polymer blends of polycarbonate (PC) and poly(ethylene terephthalate) (PET) [J]. Journal of Applied Polymer Science.1994,52(8):1115-1127
    [17]S.S. Pesetskii, B. Jurkowski, V.N. Koval. Polycarbonate/polyalkylene terephthalate blends:Interphase interactions and impact strength [J]. Journal of Applied Polymer Science.
    [18]H. Inata, S. Matsumura. Chain extenders for polyesters. I. Addition-type chain extenders reactive with carboxyl end groups of polyesters [J]. Journal of Applied Polymer Science. 1985,30(8):3325-3337
    [19]S. Japon, L. Boogh, Y. Leterrier, et al. Reactive processing of poly(ethylene teterphthalate) modified with multifunctional epoxy-based additives [J]. Polymer.2000, 41(15):5809-5818
    [20]M. Villalobos, A. Awojulu, T. Greeley, et al. Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics [J]. Energy.2006,31(15):3327-3234
    [21]A.A. Haralabakopoulos, D. Tsiouvas, C.M. Paleos. Chain extension of poly(ethylene terephthalate) by reactive blending using diepoxides [J]. Journal of Applied Polymer Science.1999,71(13):2121-2127
    [22]T. Shima, T. Urasaki, I. Oka. Improved Process for polycondensation of high-molecular-weight poly(ethylene terephthalate) in the presence of acid derivatives. Advances in Chemistry [J].1973,128(14):183-207
    [23]D.N. Bikiaris, G.P. Karayannidis. Thermomechanical analysis of chain-extended PET and PBT [J]. Journal of Applied Polymer Science.1996,60(1):55-61
    [24]S.S. Pesetskii, B. Jurkowski, O.V. Filimonov, et al. PET/PC blends:effect of chain extender and impact strength modifier on their structure and properties [J]. Journal of Applied Polymer Science.2011,119(1):225-234
    [25]J.M. Dekoninck, R. Legras, J.P. Mercier. Nucleation of poly(ethylene terephthalate) by sodium compounds:a unique mechanism [J]. Polymer.1989,30(5):910-913
    [26]P. Frisk, J. Laurent. Nanocomposite polymer container. US Pat US5876812 1999
    [27]A. Usuki, I. Mixutami, Y. Fukushima, et al. Composite material containing a layered silicate [J]. US Pat US4889885 1989
    [28]Y.C. Ke, C.F. Long, Z.N. Qi. Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites [J]. Journal of Applied Polymer Science.1999, 71(7):1139-1146
    [29]张国耀,易国祯,吴立衡等.聚对苯二甲酸乙二醇酯/蒙脱土纳米复合材料的制备和性能[J].高分子学报.1999,(3):45-50
    [30]徐锦龙,李伯耿,李乃祥等.有机蒙脱土纳米复合材料等温结晶动力学过程研究[J].高分子材料科学于工程.2002,18(6):149-152
    [31]王亚明,石军,曾伟丽等.PET/粘土纳米复合材料加工条件下结晶行为的研究[J].工程塑料应用.2003,31(9):50-52
    [32]李宏涛,宗晓秋,宁志刚等.纳米粒子对PET结晶过程的效应[J].吉林工学院学报.2002,20:1-3
    [33]M.L. Di Lorenzo, M.E. Errico, M. Avella. Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites [J]. Journal of Materials Science.2002,37(11):2351-2358
    [34]K. Dai, X.B. Xu, Z.M. Li. Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution [J]. Polymer.2007,48(3):849-859
    [35]董炎明.高分子分析手册[M].北京:中国石化出版社.2004.
    [36]魏文良,于兰平,薛峰.用于光伏电池背板的抗老化PET薄膜研制[J].聚酯工业2010.23(5):17-20
    [37]P. Blais, M. Day, D.M. Wiles. Photochemial degradation of poly(ethylene terephathalate). Ⅳ. Surface changes [J]. Journal of Applied Polymer Science.1973,17(6):1895-1907
    [38]Y. Nakayama, K. Takahashi, T. Sasamoto. ESCA analysis of photodegraded poly(ethylene terephthalate) film utilizing gas chemical modification [J]. Surface and Interface Analysis.1996,24(10):711-717
    [39]D.N. Bikiaris, G.P. Karayannidis. Effect of carboxylic end groups on thermooxidative stability of PET and PBT [J]. Polymer Degradation and Stability.1999,63(2):213-218
    [40]G.J.M Fechinea, M.S. Rabellob, R.M. Souto-Maiora. The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate) [J]. Polymer Degradation and Stability.2002,75(1):153-159
    [41]M. Day, D. M. Wiles. Photochemical degradation of poly(ethylene terephthalate). Ⅲ. Determination of decomposition products and reaction mechanism [J]. Journal of Applied Polymer Science.1972,16(1):203-215
    [42]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社.2003.
    [43]李廷盛,尹其光.超声化学[M].北京:科学出版社.1995
    [44]李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社.2000
    [45]A.R. Horrocks, J. Mwila. M. Miraftab, et al. The influence of carbon balck on properties of oriented polypropylene 2. Thermal and photo degradation [J]. Polymer Degradation and Stability.1999,65(1):25-36
    [46]M. Liu, A.R. Horrocks. Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions [J]. Polymer Degradation and Stability.2002,75(3): 485-499.
    [47]O. Breuer, R. Tchoudakov, M. Narkis, et al. Segregated structures in carbon black-containing immiscible polymer blends:HIPS/LLDPE systems [J]. Journal of Applied Polymer Science.1997,64(6):1097-1106
    [48]R. Tchoudakov, O. Breuer, M. Narkis, et al. Conductive polymer blends with low carbon black loading:Polypropylene/polyamide [J].1996,36(10):1336-1346
    [49]Z. Chen, J.C.M. Brokken-Zijp, M.A.J. Michels. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials:Fractal particle networks and low percolation thresholds [J]. Journal of Polymer Science Part B:Polymer Physics.2006, 44(1):33-47
    [50]L. Karasek, B. Meissner, S. Asai, et al. Percolation concept:Polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers [J]. Polymer Journal.1996,28(2):121-126
    [51]K. Levon, A. Margolina, A.Z. Patashinsky. Multiple percolation in conducting polymer blends [J]. Macromolecules.1993,26(15):4061-4063
    [52]J.W. Hu, M.W. Li, M.Q. Zhang, et al. Preparation of binary conductive polymer composites with very low percolation threshold by latex blending [J]. Macromolecular iRapid Communications.2003,24(15):889-893
    [53]X.Y. Tai, G.Z. Wu, Y. Tominage, et al. An approach to one-dimensional conductive polymer composites [J]. Polymer Physics.2005,43(2):184-189
    [54]S.H. Foulger. Reduced percolation thresholds of immiscible conductive blends [J]. Journal of Polymer Science, Part B:Polymer Physics.1999,37(15):1899-1910
    [55]M. Narkis, G. Lidor, A. Vaxman, et al. New injection moldable electrostatic dissipative (ESD) composites based on very low carbon black loadings [J]. Journal of Electrostatics. 1999,47(4):201-214
    [56]M. Sumita, K. Sakata, S. Asai, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black [J]. Polymer Bulletin.1991,25(2):265-271
    [57]F. Gubbels, R. Jerome, Ph. Teyssie, et al. Selective localization of carbon black in immiscible polymer blends:A useful tool to design electrical conductive composites [J]. Macromolecules.1994,27(7):1972-1974
    [58]F. Gubbels, S. Blacher, E. Vanlathem, et al. Design of electrical conductive composites: key role of the morphology on the electrical properties of carbon black filled polymer blends [J]. Macromolecules.1995,28(5):1559-1566
    [59]T. Prasse, L. Fladin, K. Schulte et al. In situ ovservation of electric field induced agglomeration of carbon black in epoxy resin [J]. Applied Physics Letters.1998,22(7): 2903-2905
    [60]R. Schueler, J. Petermann, K. Schulte, et al. Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin [J]. Journal of Applied Polymer Science.1997,63(13):1741-1746
    [61]L. Bossolelti, R. Ricceri, G. Giabrielli. The adsorption of polystyrene sulfonate and ethoxylated non-ionic surfactants at carbon black-water interface [J]. Journal of Dispersion Science and Technology.1995,16(3,4):205-220
    [62]Y. Lin, T.W. Smith, P. Alexandridis. Adsorption of a polymeric siloxane surfactant on carbon black particles dispersed in mixtures of water with polar organic solvents [J]. Journal of Colloid and Interface Science.2002,255(1):1-9
    [63]K. Kamegawa, K. Nishikubo, M. Kodama, et al. Oxidative degradation of carbon blacks with nitric acid:Ⅱ. Formation of water-soluble polynuclear aromatic compounds [J]. Carbon.2002,40(9):1447-1455
    [64]N. Tsubokawa. Functionalization of carbon black by surface grafting of polymers [J]. Progress in Polymer Science.1992,17(3):417-470
    [65]K. Ohkita. N. Tsubokawa. E. Saitoh. The competitive reactions of initiator fragments and growing polymer chains against the surface of carbon black [J]. Carbon.1978,16(1): 41-45
    [66]N. Tsubokawa, M. Hosoya. J. Kurumada. Grafting reaction of surface carboxyl groups on carbon black with polymers having terminal hydroxyl or amino groups using N,N'-dicyclohexylcarbodiimide as a condensing agent [J]. Reactive and Functional Polymers.1995,27(1):75-81
    [67]Q.Y. Li, G.Z. Wu, Y.L. C.F. Wu, et al. Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation [J]. Carbon.2007,45(12):2411-2416
    [68]J.F. Huang, F. Shen, C.F. Wu, et al. Chemical modification of carbon black by a simple non-liquid-phase approach [J]. Journal of Colloid and Interface Science.2008,328(1): 92-97
    [69]A.L. Andrady, S.H. Hamid, X. Hu, et al. Effects of increased solar ultraviolet radiation on materials [J]. Journal of Photochemistry and Photobiology B:Biology.1998,46(1-3): 96-103
    [70]J.F. Rabek. Polymer photodegradation [M]. London:Chapman and Hall.1995
    [71]G. Scott. Mechanisms of polymer degradation and stabilization [M]. London:Elsevier Applied Science.1990
    [72]J. Wypych, G. Wypych. Weathering handbook [M]. Toronto:Chemtec Publishing.1990
    [73]Y.A. Shlyapnikov, S.G. Kiryushkin, A.P. Mar'in, et al. Antioxidative stabilization of polymers [M]. London:Taylor and Francis.1996
    [74]N.S. Allen, J.F. Rabek. New trends in the photochemistry of polymers [M]. London: Elsevier Applied Science Publishers.1985
    [75]L.S. Burn. Lifetime prediction of uPVC pipes-experimental and theoretical comparisons [J]. Plastics, Rubber and Composites Processing and Applications.1994,21(2):99-108
    [76]A.L. Andrady. Wavelength sensitivity in polymer photo degradation [J]. Advances in Polymer Science.1997,128:47-94
    [77]Harold Schonhorn, J.P. Luongo. Effect of fillers on the photooxidative stabilization of polyethylene [J]. Macromolecules.1969,2(4):364-366
    [78]J.M. Pena, N.S. Allen, M. Edge, et al. Triplet quenching and antioxidant effect of several carbon black grades in the photodegradation of LDPE doped with benzophenone as a photosensitiser [J]. Polymer Degradation and Stability.2000,70(3):437-454
    [79]B. Mahltig. H. Bottcher. K. Rauch, et al. Optimized UV protecting coating by combination of organic and inorganic UV absorbers [J]. Thin Solid Films.2005,485(1-2): 108-114
    [80]B.H. Lee, H.J. Kim. Influence of isocyanate type of acrylated urethane oligomer and of additives on weathering of UV-cured films [J]. Polymer Degradation and Stability.2006. 91(5):1025-1035
    [81]C.Schaller, D. Rogez, A. Braig. Hindered amine light stabilizers in pigmented coatings [J]. Journal of Coatings Technology and Research.2009.8(1):81-88
    [82]Q. F. Shi, J. Y. Gao, S. A. Xu, et al. Synergism Effect Between Modified Carbon Black and Organic Ultraviolet Absorber in Polymer Matrix for Ultraviolet Protection. Journal of Applied Polymer Science [J].2010,116(5):2566-2572
    [83]陈晓勇.塑料薄膜雾度及其控制的研究进展[J].化学推进剂与高分子材料.2010,8(2):27-32
    [84]J.L. White, M. Cakmak. Orientation, crystallization, and haze development in tubular film extrusion [J]. Advances in Polymer Technology.1988,8(1):27-61
    [85]A. Tse, R. Laakso, E. Baer, et al. Translucent blends of chlorinated polyethylene with poly(vinyl chloride) [J].1991,42(5):1205-1211
    [86]陈晓勇.聚烯烃消光膜消光机理研究.成都:四川大学硕士论文.2006
    [87]G. Khanarian. Rubber toughened and optically transparent blends of cyclic olefin copolymers [J]. Polymer Engineering and Science.2000,40(12):2590-2601
    [88]Y. Maruhashi, S. Lida. Transparency of polymer blends [J]. Polymer Engineering and Science.2001,41(1):1987-1995
    [89]D.R. Paul, C.B. Bucknall著/殷敬华,韩艳春,安立佳等译.聚合物共混物:组成与性能.北京:科学出版社.2002
    [90]S.C. Chu, G.E. Cretekos, J.A. Larter, et al. US.6534153.2003
    [91]U. Murschall, A. Speith, G. Schloegl. US.5364704.1994
    [92]U. Murschall, A. Speith, G. Schloegl. US.5560885.1996
    [93]J.W. Rhee, T.K. Lee, S.H. Cho. US.20040048084A1.2004
    [94]A. Larena, G. Printo. The effect of surface roughness and crystallinity on the light scattering of polyethylene tubular blown films [J]. Polymer Engineering and Science. 1993,33(12):742-747
    [95]P.F. Smith, I. Chun, G. liu, et al. Studies of optical haze and surface morphology of blown polyethylene films using atomic force microscopy [J]. Polymer Engineering and Science.1996,36(16):2129-2134
    [96]E.M. Mout. Optics-principle sources of haze and gloss [J]. TAPPI Press.1986,33: 194-202
    [97]S.Y. Hobbs, C.F. Pratt. The development of suface texture in blown polypropylene film. Polymer Engineering and Science [J].1982,22(10):496-600
    [98]M.S. Pucci, R.N. Shroff. Correlation of blown film optical properties with resin properties [J]. Polymer Engineering and Science.1986,26(8):596-575
    [99]A. Opdahl, G.A. Somorjai. Stretched polymer surfaces:Atomic force microscopy measurement of the surface deformation and surface elastic properties of stretched polyethylene [J]. Journal of Polymer Science Part B:Polymer Physics.2001,39(19): 2263-2274
    [100]S. Fatahi, A. Ajji, P.G. Lafleur. Correlation between structural parameters and property of PE blown films [J]. Journal of Plastic Film and Sheeting.2005,21(4):281-235
    [101]H. Ashizawa, J. Spruiell, J.L. White. An investigation of optical clarity and crystalline orientation in polyethylene tubular film [J]. Polymer Engineering and Science.1984, 24(13):1035-1042
    [102]M. Fujiyama, Y. Kawamura, T. Wakino. Study on rough-surface biaxially oriented polypropylene film.VII.Roughening by blending low melting point polymers [J]. Journal of Applied Polymer Science.1988,36(5):1061-1066
    [103]R.N. Shida, L.V. Cancio. Correlation of low density polyethylene rheological measurements with optical and processing properties [J]. Polymer Engineering and Science.1977,17(11):769-774
    [104]M. Rokudai. Influence of shearing history on the rheological properties and processability of branched polymers I [J]. Journal of Applied Polymer Science.1979, 23(2):463-471
    [105]D.L. Cooke, T. Tikuisis. Addition of branched molecules and high molecular weight molecules to improve optical properties of LLDPE film [C]. SPE ANTEC Conf Proc, Society of Plastics Engineers'ANTEC'89. New York, USA:[s.n.],1989
    [106]A. Voet. The absorption spectrum of carbon black dispersions [J]. Rubber Age.1958,82: 657-663
    [107]M. Bele, A. Kodre, I. Aron, et al. Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution [J]. Carbon.1998,36(7-8):1207-1212
    [108]H.Y. Xu, B.Y. Li, C.F. Wu. Polymer grafting onto carbon black by solid state method [J]. Polymer Journal.2006,38:807-813
    [109]李仙会,吴驰飞.纳米炭黑的表征及其制备条件的优化[J].纳米科技.2005,2(5):46-49
    [110]M. Avrami. Kinetic of phase change. Ⅱ Transformation-time Relations for Random Distribution of Nuclei [J]. Journal of Chemical Physics.1940,8(2):212-217
    [111]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社.1990,71
    [112]张邦华,朱常英,郭天瑛.近代高分子科学[M].北京:化学工业出版社.2006,357
    [113]A. Jeziorny. Parameters Characterizing the Kinetics of the Non-isothermal Crystallization of Poly(ethylene terephthalate) Determined by D.S.C. [J]. Polymer.1978, 19(10):1142-1144
    [114]T. Ozawa. Kinetics of Non-isothermal Crystallization [J]. Polymer.1971,12(3):150-158
    [115]T. Liu, Z. Mo, S. Wang, and H. Zhang. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(aryl ether ether ketone ketone) [J]. Polymer Engineering and Science. 1997,37(3):568-575
    [116]P. Khanna. Memory Effects in Polymers. IV. Processing History vs. Crystallization Rate Effect of Polymer Structure [J]. Polymer Engineering and Science.1988,28(24): 1612-1615
    [117]R Zhang, H. Zheng, X. Lou, and D. Ma. Crystallization Characteristics of Polypropylene and Low Ethylene Content Polypropylene Copolymer with and without Nucleating Agents [J]. Journal of Applied Polymer Science.1994,51(1):51-56
    [118]李力庆,周卫华,汤心颐.固相缩聚PET等温结晶动力学[J].高等学校化学学报.1992,13(6):867-869
    [119]朱平平,马德柱.PET和添加型PET结晶动力学研究[J].高分子材料科学与工程.1989,5(6):36-42
    [120]李思滔,李德芬.解偏振光法测定PET的结晶和溶融[J].高分子材料科学与工程.1989,5(6):43-48
    [121]阮文红,沈经炜,李白千.纤维素芳族酯热致液晶对PET结晶成核作用的研究[J].高 等学校化学学报.1998,19(3),469-471
    [122]王铁军,戴庆平,扬昌正.苯乙烯—丙烯酸钠共聚物改性PET结晶行为的研究[J].高等学校化学学报.1989,10(5):511-514
    [123]X.H. Li, W.H. Guo, C.F. Wu, et al. Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/grafted carbon black composite [J]. Polymer Bulletin.2007, 59(5):685-697
    [124]A. N. Kolmogorov. Statistical theory of crystallization of metals [J]. Izv. Akad. Nauk. USSR. Ser. Math.1937, 1(2):355-359
    [125]M. Avrami. Kinetics of phase change Ⅰ:General theory [J]. J. Phys. Chem.1939, 7(12):1103-1112
    [126]Avrami M. Kinetics of phase change Ⅲ Granulation, phase change, and microstructure [J]. J. Phys. Chem.1941,9(2):177-184
    [127]UR. Evans. The laws of expending circles and spheres in relation to the lateral growth of surface films and the grain-size of metals [J].Trans. Faraday. Soc.1945,41(7):365-374
    [128]Y. Wang, C. Shen, H. Li, Q. Li, J. Chen. Nonisothermal Melt Crystallization Kinetics of Poly(Ethylene Terephthalate)/Clay Nanocomposites [J]. J. Appl. Polym. Sci.2004,91(1): 308-314
    [129]L. C. Lopez, G. L. Wilkens. Non-isothermal Crystallization Kinetics of Poly(p-phenylene sulphide) [J]. Polymer.1989,30(5):882-887
    [130]R. Zhang, H. Zheng, X. Lou, D. Ms. Crystallization Characteristics of Polypropylene and Low Ethylene Content Polypropylene Copolymer with and without Nucleating Agents [J]. J. Appl. Polym. Sci.1994,51(1):51-56
    [131]C. Jin, P.A. Christensen, T.A. Egerton, et al. Effect of anisotropy on photo-mechanical oxidation of polyethylene [J]. Polymer.2003,44(19):5969-5981
    [132]K. Hussain, H.H. Redhwi. Development of polypropylene-based ultraviolet-stabilized formulations for harsh environments [J]. Journal of Materials Engineering and Performance.2002,11(3):317-321
    [133]A.L. Andrady, H.S. Hamid, A. Torikai. Effects of climate change and UV-B on materials [J]. Photochemical and Photobiological Sciences.2003,2(1):68-72
    [134]G.J.M. Fechine, M.S. Rabello, R.M. Souto-Maior. The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate) [J]. Polymer Degradation and Stability.2002,75(1):153-159
    [135]W.Wang, A. Taniguchi, M. Fukuhara, et al. Two-step photodegradation process of poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science.1999,74(2): 306-310
    [136]G. Di Pasquale, A. Pollicino, A. Recca, et al. Leucopur EGM influence on the surface photooxidation of poly(ethylene terephthalate) and poly(vinyl chloride) [J]. Polymer. 1996,37(4):703-705
    [137]G.J.M. Fechine, R.M. Souto-Maior, M.S. Rabello. Structural changes during photodegradation of poly(ethylene terephthalate) [J]. Journal of Materials Science.2002, 37(23):4979-4984
    [138]P. Blais, M. Day, D.M. Wiles. Photochemical degradation of poly(ethylene terephthalate). Ⅳ. Surface changes [J]. Journal of Applied Polymer Science.1973,17(6): 1895-1907
    [139]W. Wang, A. Taniguchi, M. Fukuhara, et al. Surface nature of UV deterioration in properties of solid poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science. 1998,67(4):705-714
    [140]M. Day, D.M. Wiles. Photochemical degradation of poly(ethylene terephthalate). Ⅲ. Determination of decomposition products and reaction mechanism [J].1972,16(1): 203-215
    [141]G.J.M. Fechine, M.S. Rabello, R.M. Souto Major, et al. Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers [J]. Polymer.2004,45(7):2303-2308
    [142]J.B. Lawrence, N.A. Weir. Photodecomposition of polystyrene on long-wave ultraviolet irradiation:A possible mechanism of initiation of photooxidation [J].1973,11(1): 105-118
    [143]H. Vink. Degradation of some polymers in aqueous solutions [J]. Die Makromolekulare Chemie.1963,67(1):105-123
    [144]J.R. MacCallum. The occurrence of weak links in vinyl polymers undergoing thermal degradation [J]. Die Makromolekulare Chemie.1965,83(1):129-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700