用户名: 密码: 验证码:
混合有机电致发光材料的电输运及能量转移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机电致发光器件(organic light-emitting diodes,OLED)方面的研究在世界范围内迅速展开,已经成为平板显示、照明等领域中的研究热点。为了克服目前有机电致发光器件效率低、寿命短的问题,许多新型的有机电致发光材料和器件不断涌现出来。然而人们对这些器件发光的各种过程的基本理解仍然是远远不够的。本论文就是以混合层有机电致发光器件以及量子点-有机混合电致发光器件的应用为背景,研究了混合电致发光材料的电输运以及不同材料之间的能量转移特性。
     采用飞行时间法(time-of-flight,TOF)研究样品的载流子输运机制,搭建了TOF测试系统。首先利用单层发光材料为研究对象,优化了实验条件,并提出了如何选择取样电阻的方法。除此之外,利用多种电化学手段,对聚[2-甲氧基-5-(2′-乙烯基-己氧基)聚对苯乙烯撑] (MEH-PPV)的单层OLED的载流子注入和传输机制进行了分析。
     分别以电子传输材料8-羟基喹啉铝(Alq3)、共轭聚合物MEH-PPV、以及非共轭聚合物聚乙烯咔唑(PVK)为研究对象,首先,研究了混合材料之间的能量转移特性。根据F?rster理论计算出F?rster能量转移临界半径,并分别利用不同方法估算出混合体系中的能量转移效率。并通过光致以及电致发光性质,讨论了能量转移对混合层器件性能的影响。其次,采用TOF方法研究了混合薄膜的输运机制。数据分析表明通过改变空穴和电子传输材料的相对浓度,可以得到空穴和电子迁移率相等的混合材料。
     对有机小分子Alq3和三元合金量子点CdSeS的混合薄膜的能量以及电荷转移机制进行了研究。实验发现,在530 nm激发光下,量子点的平均荧光寿命明显短于纯CdSeS量子点,并且,随着Alq3含量的增加迅速变短。然而在400 nm的激发光下,量子点的荧光寿命随着量子点浓度的增加先增大后减小。最大寿命大约位于量子点浓度为53 wt%的位置处。通过研究证明了产生这种现象的原因是Alq3和CdSeS量子点之间同时存在着F?rster能量转移和光致电荷转移,并且形成相互竞争机制。这些结果预示了可以通过调节和控制能量和电荷转移相互作用改变混合薄膜的发光性能。而对于Alq3和CdTeS/ZnS量子点的研究结果表明由于ZnS壳层的存在限制了它们之间的电荷转移相互作用,因此只存在F?rster能量转移相互作用。
     研究了Alq3和CdSeS量子点掺杂体系的载流子输运的动力学特性。讨论了掺杂体系的电子迁移的性质,着重研究了掺杂浓度以及电场强度对体系迁移率的影响。实验发现CdSeS量子点的掺杂会引起Alq3样品位置无序的增加,使得样品的载流子迁移率的大小随外加电场强度的增加而减小,而且,这种无序程度会随量子点浓度的变化而改变。同时,Alq3和CdSeS量子点界面之间的电荷转移作用,也会改变样品的载流子迁移率。
Research in organic light-emitting diodes (OLED) has been rapidly spread worldwide in recent years. It has become particularly interesting in the fields of flat-panel displays and lighting. In order to overcome the shortcomings of low efficiency, short lifetime, many new kinds of OLED are constantly emerging. However, it’s still far from enough to research the luminescent process of these devices. In this dissertation, we investigate the electronic transport of the blend film and the energy transfer characteristic between different materials, based on the application of blend-layer and quantum dots-organic light-emitting diodes.
     In order to explore on the characteristic of carrier transport in organics light-emitting materials, we built the setup of time-of-flight (TOF) to measure the charge carrier mobility. We have optimized the requirements at first using monolayer material, and provided a method of selecting the sampling resistor. Besides, we have analyzed the carrier injection and transport properties of monolayer OLED of poly[2-methoxy 5-(2-ethylhexyloxy)-p-phenylene vinylene] MEH-PPV by various electrochemistry methods.
     Firstly, we investigate the energy transfer process of the blend films of electron transport materials Alq3 and hole transport materials MEH-PPV or PVK. The F?rster radius and the energy transfer efficiency are calculated. Moreover, we investigate the effect of energy transfer on the performance of device by both the PL and EL spectroscopy. Secondly, TOF technique is used to investigate the transport property of blend film. The result exhibits that the blend materials with equivalent mobility of hole and electron can be obtained by adjusting the concentration of the component.
     In this thesis, we report studies of the energy and charge transfer of the CdSeS QDs (Quantum dots) and organic small molecule material Alq3. With excitation at 530 nm, the fluorescence lifetimes in the blend films show faster decay than pristine CdSeS QDs and decreases with the concentration of Alq3 increasing. However, with excitation at 400 nm, the fluorescence lifetime of CdSeS QDs in blend films are dependent on the concentration, increasing at first and then decreasing as the CdSeS QDs concentration. The maximum lifetime is located at about 53 wt% CdSeS QDs concentration. The reason is that F?rster energy transfer from the Alq3 to CdSeS QDs exists simultaneously with the charge transfer and both compete with each other. These results foreshow that the emission of CdSeS QDs in the blend films can be adjusted by controlling and balancing the energy and charge transfer processes between Alq3 and CdSeS QDs. However, there is only energy transfer process between Alq3 and CdTeS/ZnS QDs, due to the presence of ZnS shell.
     In order to explore on the dynamics characteristic of carrier transport in the blend films of Alq3 and QDs, we measure the carrier mobility and the dependence on electric filed and QDs concentration. These results show that the positional disorder in the blend films will be increased with the increase of QDs concentration. Moreover, the charge transfer mechanisms between Alq3 and QDs will lead to the change of the charge carrier mobility.
引文
1黄春辉,李富友,黄维.有机电致发光材料与器件导论.复旦大学出版社, 2005,1~4
    2黄春辉,李富友,黄有岩.光电功能材料超薄膜.北京大学出版社, 2001,238~298
    3何修军,蒋孟衡,肖子剑,涂小强.有机电致发光器件的研究进展.光学仪器. 2006,28(6):78~83
    4王宏智,王津生,陈君,姚素薇,张卫国.有机电致发光器件封装技术的研究进展.电镀与涂饰. 2007,26(3):45~48
    5 Y. F. Xu, Y. S. Tao, H. J. Zhang, X. Z. Chen, G. H. Cao, Z. A. Xu, H. Y. Li, S. N. Bao, P. He. Impedance Spectroscopy Study on Transport Properties of N, N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine. Physica B. 2005,362(1-4):35~40
    6 L. F. Santos, R. F. Bianchi, R. M. Faria. Electrical Properties of Polymeric Light-Emitting Diodes. Journal of Non-Crystalline Solids. 2004, 338-340:590~594
    7 Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, M. E. Thompson. Three-Color, Tunable, Organic Light-Emitting Devices. Science. 1997,276 (5321):2009~2011
    8 M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, Polarity-Dependent Multicolor Organic Electroluminescent Device. Jpn. J. Appl. Phys. Pt. 2. 1996,35(3B):L397~L400
    9 P.E. Burrows, V. Bulovic, et al. Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays, IEEE. Trans. Electron. Devices. 1997, 44(8):1188~1203
    10 C. H. Chen, J. M. Shi, C. W. Tang. Recent Developments in Molecular Organic Electroluminescent Materials. Macromol. Symp. 1997,125:1~48
    11 S. Miyagychi, S. Ishizuka, T. Wakimoto. Organic LED Full ColourPassive-Matrix Display. Extended Abstracts 9th International Workshop on Inorganic and Organic EL. Bend, Oregon. 1998, (14-17):137~139
    12 S. Tamura, Y. Kijima, N. Asai, M. Ichimura, T. Ishibashi. RGB Material for Organic Light-Emitting Displays. SPIE, 1999,3797:120~128
    13 C. Adachi, T. Tsutsui, S. Saito. Organic Electroluminescent Device Having a Hole Conductor as An Emitting Layer. Appl. Phys. Lett. 1989,55(15): 1489~1491
    14 J. H. Burroughes, D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes. Light-Emitting Diodes Based on Conjugated Polymers. Nature. 1990,347(6293):539~541
    15 N. C. Greenham, S. C. Moratti, D. C. Bradley, R. H. Friend, A. B. Holmes. Efficient Light-Emitting Diodes Based on Polymers with High Electron Affinities. Nature. 1993, 365(6447):628~630
    16 M. T. Bemius, M. Inbasekaran, J. O'Brien, W. Wu. Progress with Light-Emitting Polymers. Adv. Mater. 2000,12(23):1737~1750
    17 K. C. Kao, W. Hwang, Eletrical Transport in Solids, Pergamon, Oxford, 1981
    18 A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, H. Bouchriha. Conduction and Transport in the ITO/AVB/AL Light Emitting Diode. Synthetic Metals. 2004, (145):129~134
    19 H. B?ssler. Charge Transport in Disordered Organic Photoconductors. Phys. Stat. Sol. (b). 1993,175(11):15~56
    20 M. Matsumura, T. Akai, M. Saito, T Kimura. Height of the Energy Barrier Existing Between Cathodes and Hydroxyquinoline-Aluminum Complex of Organic Electroluminescence Devices. J. Appl. Phys. 1996,79(1):264~268
    21 I. D. Parker, Carrier Tunneling and Device Characteristics in Polymer Light-Emitting Diodes. J. Appl. Phys. 1994,75(3):1656~1666
    22 P. E. Burrows, S. R. Forrest, Electroluminescence from Trap-Limited Current Transport in Vacuum Deposited Organic Light-Emitting Devices.Appl. Phys. Lett. 1994,64(17):2285~2287
    23 P. W. M. Blom, J. M. J. M. De, J. J. M. Vleggaar. Electron and hole transport in poly(p-phenylene vinylene)device. Appl. Phys. Lett. 1996,68(23): 3308~3310
    24 A. loannidis, E. Forsythe, Y. Gao, M. W. Wu, E. M. Conwell. Current-Voltage Characteristic of Organic Light Emitting Diodes. Appl. Phys. Lett. 1998,72(23):3038~3040
    25 http://www.hea.cn/news/108092.shtml
    26 http://tech.163.com/mobile/07/0522/10/3F3F43BD0011179O.html
    27 http://mobile.zol.com.cn/56/560799.html
    28 http://www.coema.org.cn/oenews/company/20080107/134711.html
    29魏振乾,杨庆鑫,孙桂娟,李峰,李敏,孙晓波,田文晶,李昕,牛海军.载流子迁移率测量的光电方法.光电子·激光. 2001,12(9):930~933
    30 C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of Doped Organic Thin Films. J. Appl. Phys. 1989,65(9):3610~3616
    31 C. Adachi, T. Tsutsui, S. Saito. Organic Electroluminescent Device Having a Hole Conductor as An Emitting Layer. Appl. Phys. Lett. 1989,55(15): 1489~1491
    32 Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling. Enhanced Brightness and Efficiency in Organic Electroluminescent Devices using SiO2 Buffer Layers. Appl. Phys.Lett. 1999,74(15):2227~2229
    33 T. Tsutsui, H. Tokuhisa, M. Era. Charge Carrier Mobilities in Molecular Materials for Electroluminescent Diodes. Proc. SPIE, 1998, 3 281: 2302239.
    34钟志有,蒋亚东,王涛,黎威志,季兴桥.有机层界面电荷聚集及其对OLED性能的影响.半导体光电. 2005,26:527~534
    35 H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu. Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices. Science. 1999;283:1900~1902
    36 V. Choong, S. Shi, J. Curless, C. Shieh, H. Lee, F. So, Organic Light-Emitting Diodes with a Bipolar Transport Layer. Appl. Phys. Lett. 1999,75(2):172~174
    37 A. B. Chwang, P. C. Kwong, J. J. Brown. Graded Mixed-Layer Organic Light-Emitting Devices. Appl. Phys. Lett. 2002,80(5):725~727
    38 H. Aziz, Z. D. Popovic, N.-X. Hu. Organic Light Emitting Devices with Enhanced Operational Stability at Elevated Temperatures. Appl. Phys. Lett. 2002;81(2):370~372
    39唐爱伟,滕枫,高银浩,梁春军,王永生. CdS纳米晶的制备条件对发光特性的影响.发光学报. 2005,26(5):622~626
    40 V. L. Colvin, M. C. Schlamp, A. P. Alivisatos. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature. 1994,370(6488):354~357
    41 N. D. Kumar, M. P. Joshi, C. S. Friend, P. N. Prasad, R. Burzynski. Organic-Inorganic Heterojunction Light Emitting Diodes Based on Poly(p-phenylene vinylene)/Cadmium Sulfide Thin Films. Appl. Phys. Lett. 1997,71(10):1388~1390
    42周建安,李冬梅,桑文斌. ZnS-CdS核壳纳米微晶的制备与光学特性.人工晶体学报. 2004,33(1):43~47
    43 B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B.1997,101(46):9463~9475
    44 X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997,119(30):7019~7029
    45 M. C. Schlamp, X. Peng, A. P. Alivisatos. J. Appl. Phys. 1997, 82(11):5837~5842
    46 S. Coe, W. K. Woo, M. Bawendi, V. Bulovi?. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature. 2002,420(6917):800~803
    47 J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. Ding, J. Luo, B. Chen, A. K.-Y. Jen, D. S. Ginger. Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Lett. 2006,6(3):463 ~467
    48 J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, White Emission from Polymer/Quantum dot Ternary Nanocomposites by Incomplete Energy Transfer. Nanotechnology 2004,15:1217~1220
    49 Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li. Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nature Photonics. 2007,1:717~722
    50 Y. Xuan, D. Pan, N. Zhao, X. Ji and D. Ma. White Electroluminescence from a Poly(N-vinylcarbazole) Layer Doped with CdSe/CdS Core-Shell Quantum Dots. Nanotechnology. 2006,17:4966~4969
    51 M. A. T. da Silva, I. F. L. Dias, J. L. Duarte, E. Laureto, I. Silvestre, L. A. Cury, P. S. S. Guimar?es. Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films. J. Chem. Phys. 2008,128(9):094902
    52 M. A. T. da Silva, I. F. L. Dias, J. L. Duarte, E. Laureto, I. Silvestre, L. A. Cury, P. S. S. Guimar?es. Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films. J. Chem. Phys. 2008,128(9):094902
    53占红明,饶海波,张化福.基于有机电致发光显示的透明导电膜ITO.液晶与显示. 2004,19(5):386~390
    54蒋玉蓉,薛唯,喻志农. ITO表面处理对有机电致发光器件光电特性的影响.北京理工大学学报. 2005,25(1):79~82
    55 J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R.Daik, W. J. Feast. Indium Tin Oxide Treatments for Single- and Double-layer Polymeric Light-Emitting Diodes: the Relation Between the Anode Physical, Chemical, and Morphological Properties and the Device Performance. J. Appl. Phys. 1998,84(12):6859~6870
    56 C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn. Surface Modification of Indium Tin Oxide by Plasma Treatment: An Effective Method to Improve the Efficiency, Brightness, and Reliability of Organic Light Emitting Devices. Appl. Phys. Lett. 1997,70(11):1348~1350
    57 D. Ma, G. Wang, Y. Hu, Y. Zhang, L. Wang, X. Jing, F. Wang. C. S. Lee, S. T. Lee. A Dinuclear Aluminum 8-hydroxyquinoline Complex with High Electron Mobility for Organic Light-Emitting Diodes. Appl. Phys. Lett. 2003,82(8):1296~1298
    58 H. S. Kang, K. H. Kim, M. S. Kim, K. T. Park, K. M. Kim, T. H. Lee, J. Joo, K. Kim, D. W. Lee, J. I. Jin. Electrical and Optical Characteristics of Various PPV Derivatives (MEH-PPV, CzEH-PPV, OxdEH-PPV). Current Applied Physics. 2001,1:443~446
    59 M. B. Khalifa, D. Vaufrey, A. Bouazizi, J. Tardy, Hole Injection and Transport in ITO/PEDOT/PVK/Al Diodes. Mater. Sci. Eng., C. 2002, (21):277~282
    60钟志有,徐重阳,刘陈,尹盛,王长安.影响聚合物电致发光器件旋涂膜厚因素的研究.半导体光电. 2002,23(3):201~204
    61钟志有,刘陈,尹盛,徐重阳.有机L ED聚合物薄膜的制备工艺研究.华中科技大学学报(自然科学版). 2003,31(2):37~39
    62孔玮曼.应用于X射线FPD的非晶硒膜的制备方法研究.清华大学工学硕士学位论文. 2005,5
    63李文连.用于有机EL器件的电极材料.液晶与显示. 2000,15(2):108~113
    64赵俊卿,解士杰,韩圣浩,杨志伟,叶丽娜,杨田林.真空蒸镀双层有机电致发光器件及其稳定.半导体学报. 2001,22(2):198~202
    65 G. G. Malliaras, Y. Shen, D. H. Dunlap. Nondispersive Electron Transport inDaik, W. J. Feast. Indium Tin Oxide Treatments for Single- and Double-layer Polymeric Light-Emitting Diodes: the Relation Between the Anode Physical, Chemical, and Morphological Properties and the Device Performance. J. Appl. Phys. 1998,84(12):6859~6870
    56 C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn. Surface Modification of Indium Tin Oxide by Plasma Treatment: An Effective Method to Improve the Efficiency, Brightness, and Reliability of Organic Light Emitting Devices. Appl. Phys. Lett. 1997,70(11):1348~1350
    57 D. Ma, G. Wang, Y. Hu, Y. Zhang, L. Wang, X. Jing, F. Wang. C. S. Lee, S. T. Lee. A Dinuclear Aluminum 8-hydroxyquinoline Complex with High Electron Mobility for Organic Light-Emitting Diodes. Appl. Phys. Lett. 2003,82(8):1296~1298
    58 H. S. Kang, K. H. Kim, M. S. Kim, K. T. Park, K. M. Kim, T. H. Lee, J. Joo, K. Kim, D. W. Lee, J. I. Jin. Electrical and Optical Characteristics of Various PPV Derivatives (MEH-PPV, CzEH-PPV, OxdEH-PPV). Current Applied Physics. 2001,1:443~446
    59 M. B. Khalifa, D. Vaufrey, A. Bouazizi, J. Tardy, Hole Injection and Transport in ITO/PEDOT/PVK/Al Diodes. Mater. Sci. Eng., C. 2002, (21):277~282
    60钟志有,徐重阳,刘陈,尹盛,王长安.影响聚合物电致发光器件旋涂膜厚因素的研究.半导体光电. 2002,23(3):201~204
    61钟志有,刘陈,尹盛,徐重阳.有机L ED聚合物薄膜的制备工艺研究.华中科技大学学报(自然科学版). 2003,31(2):37~39
    62孔玮曼.应用于X射线FPD的非晶硒膜的制备方法研究.清华大学工学硕士学位论文. 2005,5
    63李文连.用于有机EL器件的电极材料.液晶与显示. 2000,15(2):108~113
    64赵俊卿,解士杰,韩圣浩,杨志伟,叶丽娜,杨田林.真空蒸镀双层有机电致发光器件及其稳定.半导体学报. 2001,22(2):198~202
    65 G. G. Malliaras, Y. Shen, D. H. Dunlap. Nondispersive Electron Transport in
    78 A. Rouis, R. Mlika, J. Davenas, H. B. Ouada, I. Bonnamour, N. Jaffrezic. Impedance Spectroscopic Investigations of ITO Modified by New Azo-calix[4]arene Immobilised into Electroconducting Polymer(MEHPPV). J. Electroanal. Chem. 2007, (601)29~38
    79郭源,李永军,夏熙,张校刚,何茂霞.外在因素对TiO2膜电极/溶液界面CEP行为的影响.物理化学学报. 2001,17(4):372~376
    80 H. Antoniadis, B. R. Hsieh, M. Abkow Itz, et al. Charge Transfer from Poly(p-phenylene vinylene) into Molecularly Doped Polymer. Appl. Phys. Lett. 1993,62:3167~3169
    81 B. K. Crone, P. S. Davids, I. H. Cambell and D. L. Smith. Device Model Investigation of Bilayer Organic Light Emitting Diodes. J. Appl. Phys. 2000, 87(4):1974~1982
    82 H. Scher. Anomalous Transit-Time Dispersion in Amorphous Solids. Phys. Rev. B. 1975,12(6):2455~2477
    83 M. Kitamura, T. Imada, S. Kako, et al. Time-of-flight Measurement of Lateral Carrier Mobility in Organic Thin Films, Jpn. J. Appl. Phys. 2004, 43:2326~2329
    84宋心琦,周福添,刘剑波.光化学:原理.技术.应用.高等教育出版社, 2001:125~134
    85曹瑾.光化学概论.北京:高等教育出版社, 1985:47~48
    86 V. V. N. Ravi Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, S. Wategaonkar. On the Assignment of the Absorption Bands in the Optical Spectrum of Alq3. Synth. Met. 2002,126(2-3):199~205
    87 B. Valeur, Molecular Fluorescence: Principles and Applications. Weinhaim, Germany:Wiley-Vch, 2001.
    88 U. Lemmer, A. Ochse, M. Deussen, R. F. Mahrt, E. O. Gobel, H. Bassler, P. H. Bolivar, G. Wegmann, H. Kurz. Energy Transfer in Molecularly Doped Conjugated Polymers. Synth. Met. 1996,78(3):289~293
    89 H. Mattoussi, H. Murata, C. D. Merritt, Y. Lizumi, J. Kido, Z. H. Kafafi.Photoluminescence Quantum Yield of Pure and Molecularly Doped Organic Solid Films. J. Appl. Phys. 1999,86(5):2642~2650
    90 M. A. Wolak, J. S. Melinger, P. A. Lane, L. C. Palilis, C. A. Landis, J. Delcamp, J. E. Anthony, Z. H. Kafafi. Photophysical Properties of Dioxolane-Substituted Pentacene Derivatives Dispersed in Tris(quinolin-8-olato)aluminum(Ⅲ). J. Phys. Chem. B. 2006,110(1): 7928~7937
    91 T. Haskins, A. Chowdhury, R. H. Young, J. R. Lenhard, A. P. Marchetti, L. J. Rothberg. Charge-Induced Luminescence Quenching in Organic Light-Emitting Diodes. Chem. Mater. 2004,16(23):4675~4680
    92 L. C. Palilis, J. S. Melinger, M. A. Wolak, Z. H. Kafafi. Excitation Energy Transfer in Tris(8-hydroxyquinolinato)aluminum Doped with a Pentacene Derivative. J. Phys. Chem. B. 2005,109(12):5456~5463
    93 A. R. Clapp, I. L. Medintz, H. Mattoussi. F?rster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores. ChemPhysChem. 2006,7(1):47~57
    94 R. H. Lee, H. H. Lai. Enhancing Electroluminescence Performance of MEH-PPV Based Polymer Light Emitting Device via Blending with Organosoluble Polyhedral Oligomeric Silsesquioxanes. Eur. Polym. J. 2007,43(3):715~724
    95 V. Biju, R, Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, M. Ishikawa. Photoinduced Photoluminescence Variations of CdSe Quantum Dots in Polymer Solutions. J. Phys. Chem. C. 2007,111: 7924~7932
    96 A. Dogariu, R. Gupta, A. J. Heeger, H. Wang, H. Murata, Z. H. Kafafi. Time-Resolved F?rster Energy Transfer in Molecular and Polymeric Guest-Host Systems. SPIE Proc. 2000,3797:38~46
    97 S. Speiser, 96, 1953 (1996). Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric MolecularSystems: Solution and Supersonic Jet Studies. Chem. Rev. 1996,96(6): 1953~1976
    98 D. L. Dexter. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953,21(5):836~850
    99 M. A. Baldo, S. R. Forrest. Transient Analysis of Organic Electrophosphorescence: I. Transient Analysis of Triplet Energy Transfer. Phys. Rev. B. 2000,62(16):10958~10966
    100 A.K. Bansal, A. Penzkofer, W. Holzer, T. Tsuboi. Photodynamics of Oled Triplet Emitters Ir(ppy)3 and PtOER. Ukraine Phys. J. 2007,52(4):353~358
    101 R. C. Powell. Thermal and Sample-Size Effects on the Fluorescence Lifetime and Energy Transfer in Tetracene-Doped Anthracene. Phys. Rev. B, 1970,2(6):2090~2097
    102 S. Westenhoff, C. Daniel, R. H. Friend, C. Silva, V. Sundstr?m, A. Yartsev. Exciton Migration in a Polythiphene: Probing the Spatial and Energy Domain by Line-Dipole F?rster-Type Energy Transfer. J. Chem. Phys. 2005, 122(9):094903
    103 M. A. Wolak, J. S. Melinger, P. A. Lane, L. C. Palilis, C. A. Landis, J. E. Anthony, Z. H. Kafafi. Dynamics of Energy Transfer of a Dioxolane- Substituted Pentacene Dispersed in 4,4-Bis[N-1-naphthyl-N-phenylamino] biphenyl. J. Phys. Chem. B. 2006,110(22):10606~10611
    104 Y. H. Kim, D. Kim, S. C. Jeoung, J. Han, M. Jang, H. Shim. Ultrafast Energy-Transfer Dynamics between Block Copolymer and -Conjugated Polymer Chains in Blended Polymeric Systems. Chem. Mater. 2001,13(8):2666~2674
    105 T. Virgili, D. G. Lidzey, D. D. C. Bradley. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes. Adv. Mater. 2000,12(1):58~62
    106 W. E. Spear. Drift Mobility Techniques for the Study of Electrical Transport Properties in Insulating Solids. J. Non-Cryst. Solids. 1969, 1(3):197~214
    107 P. G. Le Comber, W. E. Spear. Electronic Transport in Amorphous Silicon Films. Phys. Rev. Lett. 1970,25(8):509~511
    108 E. O. Schulz-DuBois. Energy Transport Velocity of Electromagnetic Propagation in Dispersive Media. Proceedings of the IEEE. 1969, 57(10):1748~1757
    109 G. Pfister, C. H. Griffiths. Temperature Dependence of Transient Hole Hopping Transport in Disordered Organic Solids: Carbazole Polymers. Phys. Rev. Lett. 1978,40(10):659~665
    110 S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui. High Electron Mobility in Bathophenanthroline. Appl. Phys. Lett. 2000,76(12):197~199
    111 J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic. Semiconductors. Phys. Rev. 1938,54:647~648
    112 K. Morgan, R. Pethig. Evidence supporting Poole–Frenkel Controlled Dark Conduction in Tetracene Doped Anthracene Single Crystals. Nature. 1969,223:496~497
    113 A. Ruediger, O. F. Schirmer, A. K. Kadashchuk, Y. A. Skryshevskii. Pyroelectric luminescence via internal Poole-Frenkel effect. Europhys. Lett. 2002,57(4):592~596
    114 J. L. Hartke. The Three-Dimensional Poole-Frenkel Effect. J. Appl. Phys. 1968,39(10):4871~4873
    115 H. B?ssler. Localized States and Electronic Transport in Single Component Organic Solids with Diagonal Disorder. Phys. Stat. Sol. (b). 1981,107:9~53
    116 P. M. Borsenberger. Hole Transport in Tri-p-tolylamine-doped Polymers. J. Appl. Phys. 1990,68(10):5188~5194
    117 E. H. Magin, P. M. Borsenberger. Electron transport in N,N’-bis(2-phenethyl)-perylene-3,4:9,10-bis(dicarboximide). J. Appl. Phys. 1993,73(2):787~791
    118 J. L. Maldonado, G. Ramos-Ortíz, M.A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, I. Moggio. Effect of Doping with C 60 onPhotocurrent and Hole Mobility in Polymer Composites Measured by Using the Time-of-Flight Technique. Opt. Mater. 2007,29(7):821~826
    119 A. J. Mozer, N. S. Sariciftci. Negative Electric Field Dependence of Charge Carrier Drift Mobility in Conjugated, Semiconducting Polymers. Chem. Phys. Lett. 2004,389:438~442
    120 A. Kokil, I. Shiyanovskaya, K. D. Singer, C. Weder. Charge Carrier Transport in Poly(2,5-dialkoxy-p-phenylene ethynylene)s. Synth. Met. 2003,138(3):513~517
    121 A. L.álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, S. Fernández deávila. Polymeric Multilayers for Integration into Photonic Devices. Thin Solid Films. 2003,433(1-2): 277~280
    122 T. Haskins, A. Chowdhury, R. H. Young, J. R. Lenhard, A. P. Marchetti, L. J. Rothberg. Charge-Induced Luminescence Quenching in Organic Light-Emitting Diodes. Chem. Mater. 2004,16(23):4675~4680
    123 J. Gu, J. Shen, L. Sun, C. Yan. Resonance Energy Transfer in Steady-State and Time-Decay Fluoro-Immunoassays for Lanthanide Nanoparticles Based on Biotin and Avidin Affinity. J. Phys. Chem. C. 2008,112(17); 6589~6593
    124 L. C. Palilis, J. S. Melinger, M. A. Wolak, Z. H. Kafafi. Excitation Energy Transfer in Tris(8-hydroxyquinolinato)aluminum Doped with a Pentacene Derivative. J. Phys. Chem. B. 2005,109(12):5456~5463
    125李若华,赵星华.有机电致发光技术及应用前景.广西师院学报(自然科学版). 2001,18(1):43~46
    126李宏建,彭景翠,许雪梅,夏辉.共轭聚合物薄膜中光生载流子的产生及输运机制.物理化学学报. 2001,17(4):329~332
    127余红英.半导体CdS1 - xSex纳米材料的制备、表征及吸收光谱研究.安徽师范大学学报(自然科学版). 2007,30(2):151~154
    128石鹏.族半导体纳米晶在光电器件方面的应用研究进展.材料导报. 2007,21: 23~26
    129 Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovi?, A. V. Nurmikko. Highly Efficient Resonant Coupling of Optical Excitations in Hybrid Organic/Inorganic Semiconductor Nanostructures. Nature Nanotechnology. 2007,2:555~559
    130宁佳,王德平,黄文,姚爱华,郁美娟. CdSe量子点的制备及荧光性能改善.功能材料. 2007,9(38):1531~1536
    131 S. Jun, E. Jang, J. Park, J. Kim. Photopatterned Semiconductor Nanocrystals and Their Electroluminescence from Hybrid Light-Emitting Devices. Langmuir. 2006,22(6):2407~2410
    132 Y. Lin, T. Zeng, W. Lai, C. Chen, Y. Lin, Y. Chang, W. Su. Efficient Photoinduced Charge Transfer in TiO2 Nanorod/Conjugated Polymer Hybrid Materials. Nanotechnology. 2006,17(23):5781~5785
    133 Joёl Bleuse, Sophie Carayon, Peter Reiss. Optical Properties of Core/Multishell CdSe/Zn(S,Se) nanocrystals. Physica E. 2004,21:331~335
    134钱惠锋.水溶性荧光量子点的合成及修饰.上海交通大学硕士论文. 2007:9~10
    135 G. T. Einevoll. Confinement of Excitons in Quantum Dots. Phys. Rev. B. 1992,45(7):3410~3417
    136 Z. Chen, D. Ma. Effects of Doped Dye on the Charge Carrier Injection, Transport, and Electroluminescent Performance in Polymeric Light-Emitting Diodes. J. Appl. Phys. 2007,102(2):024510-1~024510-6
    137 P. M. Borsenberger. Hole Transport in Mixtures of 1,1-bis(di-4- tolylaminophenyl) Cyclohexane and Bisphenol-A-Polycarbonate. J. Appl. Phys. 1990,68(11):5682~5686
    138李蕾,饶雪松,孙鑫,傅柔励,褚君浩,张志林.电场中高分子的发光和激子的解离.物理学报. 1998,47(9):1536~1541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700