用户名: 密码: 验证码:
直流大电流传感器屏蔽问题的分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直流大电流一般用在生产铝、铜、铅、锌、镁等有色冶金系统及生产烧碱的化工系统,这两个系统的企业是国家的支柱产业,也是重点的耗电大户。为了节能降耗,准确测量直流大电流是一个关键环节。长期以来,由于监视、计量、控制企业生产用电的大电流直流在线测量装置缺乏可靠的计量保证,仪器的指示值仅作为参考数值,这直接影响到这类国营大中型企业的节能降耗、经济效益。要改变这种状况,关键的是要集中现有几种测量原理的优点,克服其缺点,从原理上探索出一种新型的直流大电流传感理论与方法。基于这种新原理、新方法的装置要求测量准确性高、抗外磁场能力强、高稳定性、高可靠性。本课题的研究目标是建立一种磁势自平衡回馈补偿式直流大电流传感器。基于这种新原理和新方法的传感器,既具有直流闭环测量原理的优点,又具有直流开环测量原理的优点,测量准确性高,抗外磁场能力强,具有高稳定性和高可靠性的优点。为了对理论研究进行验证,制作了一台10000A/5A的模拟样机,对此模拟样机进行了实验研究。实验结果证明:被测直流中的大部分磁势可由平衡绕组来平衡,剩余磁势由检测回路进行检测并经过运算放大及驱动器后回馈到补偿线圈,就实现了对被测直流磁势和平衡电流磁势差的补偿。
     当直流大电流传感器用于工业现场时,不可避免地会受到电磁场的干扰,这些干扰会影响直流大电流传感器的正常工作。直流大电流传感器的设计中电磁屏蔽的设计是非常重要的。本文对直流大电流传感器的屏蔽问题做了以下三个方面的研究。
     首先讨论了直流大电流传感器的屏蔽技术。目前传统的直流大电流传感器均采用铜屏蔽和磁屏蔽的双层防磁结构,外层的铜屏蔽层同时具有对电场和高频磁场屏蔽的作用,内层的硅钢片对低频磁场的磁屏蔽效果很好。用两种材料做成双层屏蔽体可以得到高频磁场和低频磁场都满意的屏蔽特性。屏蔽技术可分为:电场屏蔽、磁场屏蔽和电磁场屏蔽。本章应用等效传输线法推导了屏蔽效能的计算公式。在设计磁屏蔽体时,采用了多通道防磁技术。
     其次,讨论了应用磁路法对直流大电流传感器磁屏蔽体的磁屏蔽效能进行计算。自从Moore提出了直流大电流传感器的磁屏蔽以来,磁屏蔽效能的计算问题一直是直流大电流传感器设计者所关心的问题。采用较为精确的方法来对磁屏蔽体的磁屏蔽效能作一个较为可靠的计算,具有相当大的现实意义。本文应用磁路法分别推导了外加径向磁场和外加轴向磁场时,磁屏蔽体的磁屏蔽效能的计算公式。为了验证磁路法计算的正确性,本文对直流大电流传感器的磁屏蔽效能进行了测试。因为磁导率μr在铁心上的各个部分并非常数,而是外加磁场强度的函数,为了便于计算结果与测试结果的比较,取外界磁场为20GS时,测试了磁导率的值。将测试所得的磁导率的值分别代入磁路法推导得到的公式。由测试结果和计算结果进行对比分可以得出结论:利用磁路法进行磁屏蔽效能计算,对直流大电流传感器的磁屏蔽效能估算具有一定的指导意义。
     最后,研究了多通道直流大电流比较仪的通道封闭问题。当多通道直流大电流比较仪的铁心是一个整体时,铁心有剩磁。在被测电流和干扰电流共同作用下,铁心磁化不均匀,当某些铁心分段的剩磁比较严重,该通道可能封闭。为了解决多通道直流大电流比较仪的通道封闭问题,本文设计的多通道直流大电流比较仪,每个通道铁心之间有一段空气隙,以消除铁心的剩磁。本文分析了多通道直流大电流比较仪的带气隙的环形铁心的磁特性。根据基尔霍夫定律可列出多通道直流大电流比较仪的状态方程,应用谐波平衡原理求解该非线性电路方程,从而得到多通道直流大电流比较仪的开环传输特性。由带气隙和不带气隙的直流大电流比较仪的开环特性计算曲线可以看出:当多通道直流大电流比较仪采用带气隙的环形铁心时,由于磁阻增加,在相同的输入安匝下,其输出直流电压要小一些。多通道直流大电流比较仪的磁路中开了气隙后,可减少铁心非线性的影响。但磁路中加入气隙后也有一些负面影响,会增加漏磁,有损安匝比的准确性。铁心的等效磁导率比完整铁心的磁导率减小,因而多通道直流大电流比较仪的灵敏度降低。最后应用劳斯判据,通过特征方程的根与各项系数的关系来判别系统的特征根是否全部具有负实部,从而分析了多通道直流大电流比较仪的稳定性。为了减小扰动信号对系统稳态误差的影响,提出了采用前馈补偿来抵消这种影响。
The heavy direct current is applied in the metallurgic plant and the chemical plant commonly. The metallurgic plant and the chemical plant are important industries in our country. They consume a great deal of electricity. It is important to measure the heavy direct current precisely for energy conversation. For a long time the indication value of instrument is regarded as referenced value only because the online metrical instrument applying in monitoring and metering is short of reliability. It will affect the energy conversation and economic returns of these industries directly. It is important to collect the virtue and overcome the shortcoming of measurement theory in existence in order to change the situation. Then we search for a new kind of direct current sensing theory. The instrument based on this new kind of direct current sensor theory has high stability and high dependability. This paper establishes a kind of dc sensor based on self-balance of magnetic potential and feed-back compensation. The direct current sensor is divided into two types of principle based on open loop and closed loop measurement theories. The sensor based on open loop theory has many advantages such as simple construction, small volume, and lightweight. It doesn’t exist the oscillation and heavy driving power either. That based on closed loop theory has many advantages such as high accuracy, good linearity, and strong anti-interference and so on. A model machine is made in order to validate the correctness of theory. The experiment results have proved that the most of magnetic potential is balanced by the ac voltage source e. The system composed of the detecting and compensation coils and electronics module A is an automatic dc compensation system whose open loop gain is small. The zero ampere-turns compensation of the detecting core is realized by this circuit.
     When the heavy direct current sensor is applied in industry spot, it is inevitable to be disturbed by magnetic field. This disturbance will affect the heavy direct current sensor work naturally. It is very important to design the magnetic shielding body. Three ways of problem about magnetic shielding will studied in this paper.
     At first the magnetic shielding technology of heavy direct current sensor is discussed. The heavy direct current sensor applies magnetic shielding layer and copper shielding layer at the same time. The magnetic shielding effectiveness is the sum of every layer’s magnetic shielding effectiveness.
     The copper shielding layer can shield electric field and high-frequency magnetic field at the same time. The silicon-steel sheet layer can shield low-frequency magnetic field. When the magnetic shielding body is made of these two materials the satisfactory magnetic shielding effectiveness for low-frequency magnetic field and high-frequency magnetic field can be obtained. The magnetic shielding technology can be divided into electric shielding and magnetic shielding. The calculated formula of magnetic shielding effectiveness can be deduced by equivalent transmission line method. When the magnetic shielding body is designed the mutichannel technology is applied.
     Secondly the calculation of magnetic shielding effectiveness applied magnetic circuit method is discussed. Since Moore has put forward the magnetic shielding of dc sensor, the calculation of magnetic shielding effectiveness is concerned by the designer of dc sensor all the while. It is important to apply more precise method to calculate reliably. The calculation formula is deduced applying magnetic circuit method when adding radial magnetic field and axis magnetic field. In order to prove that the calculated result is truthfulness, the experiment is carry on to test the magnetic shielding effectiveness in this paper. The permeabilityμr isn’t constant in iron core. It is the intensity of magnetic field’s function. When intensity of magnetic field is 20GS, the permeability is tested. The tested permeability is substituted into formula deduce by magnetic circuit method. Compared the calculated result and the tested result we can see that the calculated result is close to factual situation. The conclusion can be obtained that magnetic circuit method can estimate the dc sensor’s magnetic shielding effectiveness.
     Finally the problem of multichannel comparator’s closed channel is studied. When the iron core of dc sensor is integral, the iron core has remnant magnetic potential. When the measured current and disturbed current operate on iron core at the same time, the magnetization of iron core is uneven. It will lead to closed channel of multichannel comparator. A new kind of multichannel comparator is designed in this paper in order to solve the problem of closed channel of multichannel comparator. An air gap between two channels can counteract remnant magnetic field in iron core. Every channel based on double magnetic detector sensing theory is an absolute dc comparator. The magnetic characteristic of annular iron core which has air gap and the open-loop characteristic of multichannel comparator for heavy direct current have studied. At first the length of air gap and equivalent intensity of magnetic field are calculated. Then the math model of multichannel comparator for heavy direct current is established. In the end the open-loop characteristic curve of multichannel comparator for heavy direct current is described. When the iron core of dc sensor has gas gap, the reluctance is increase. Compared the open-loop characteristic calculated curve the conclusion can be obtained that the output direct voltage of the dc sensor which has gas gap is lower than the dc sensor which has integral iron core when input ampere-turn is same.When the multichannel comparator has gas gap, it can reduce the effect of iron core’s non-linear. But it brings negative effect also. It can increase leak flux. It will reduce the veracity of ampere-turns ratio. The equivalent permeability of iron core is decrease also. Thus the sensitivity of mutichannel heavy direct current comparator is reduced. The stability of multichannel comparator for direct current sensor is analyzed applying Routh criterion. Whether the roots of character equation are all negative real part is judged by the relation of character equation’s root and every coefficient. The interferential signal will affect system’s stable error. The feed forward compensation is put forward to counteract the effect
引文
[1]揭秉信.大电流测量[M].北京:机械工业出版社, 1987
    [2] I.Budousky, H.Sasaki, P.Coogan.AC-DC transfer comparator for the calibration of thermal voltage converters against Josephson alternating voltage standards[J].IEEE Transactions on Instrument and Measurement, 2003, 52(2): 538-541
    [3] Liao Ruijin, Sun Caixin, Gu Leguan.The development of the linear Rogowski Coil for measuring large impulse current[C] . Proceedings of 1998 International Symposium on Electrical Insulting Materials, Toyohashi, Japan, 1998: 743-746
    [4]张冈,周祖德,张志鹏等.磁光直流角度比较法的直流测量方法试验研究[J].电力系统自动化, 2003,27(5):41-43
    [5] T.Ishida, K.Matsuse, K.Sugita, et al.DC voltage control strategy for a five-level converter[J].IEEE Transactions on Power Electronics, 2000, 15(3): 508-515
    [6] A.Marek.A new principle for fast dc-sensitive potential–independent current comparators[J].IEEE Transactions on Magnetics, 1997, 13(5): 1149-1151
    [7] Villaverde A B, Egberto M, Pedroso C B.Linear displacement sensor based on the magneto-optical faraday effect[J].Sensor and Actuators, 1998, 139(3): 211-215
    [8]局办公室.强直流设备检验技术[R].国家技术监督局值班摘报, 1998,10
    [9]青铜峡铝厂.强直流设备在线检测试技术在青铜峡铝厂的应用[R]. 1995,11
    [10]中国有色金属工业总公司强直流电测试站.直属重点铝厂强功率交直流、电能及整流效率测试情况综合报告[R]. 1994,3
    [11] H.J.Ryan.The transformer for measuring large direct current[J].AM.Instrument on electric engineering, 1901, 20(1): 169-183
    [12] M . A . G . J . Fry . Precision direct-current transformers with active element[C]. Proceedings of International Conference on Magnetic Technology, 1972: 674-815
    [13] M.Groenboom and J.Lisser. Accurate measurement of d.c.and a.c.by transformer[J].IEEE Trans.on Electronics & Power, 1977, 6: 52-55
    [14] W.Kramer. Development of the dc instrument transformer for the precision measurement of highest direct current.IEEE Trans.on Commu.& Elec., 1964, 70(6) : 382-390
    [15] N.L.Kusters.The current comparator and it’s appliation to the absolute calibration of current transformers[J].AIEE, 1961, 80(3): 94-104
    [16] N.L.Kusters, Moore W.J.M, P.N.Miljanic.A current comparator for precision measurement of dc ratios[J].IEEE Trans.Communication and Electronics. 1964, 70(2): 22-27
    [17] N.L.Kusters , W.J.Moore.The application of the compensated current comparator to the calibration of current transformer at ratios less than unity[J].IEEE Trans.on Instru., 1969, 18(4): 261-265
    [18] M . P . MacMartin . An improved transductor for measuring large direct current[J].IEEE Trans.on P.A.S, 1976, 1(3) : 250-254
    [19] W.J.M.Moore, P.N.Miljanic.The current comparator[M].London, United Kingdom : Peter Peregrinus Ltd, 1988
    [20]揭秉信.磁调制器的理论分析与计算[J].仪器仪表学报, 1982, 3(1): 57-63
    [21]郭来祥.磁调制器的理论与计算[J].电测与仪表, 1978, 9: 13-21
    [22]斯佩克托尔C A.直流大电流测量[J].揭秉信,周予为译.北京:计量出版社,1983
    [23] MacMartin M.P., Kuster N.L.A self-balancing direct current comparator for 2000 amperes[J].IEEE Trans.on Magnetics, 1965, 1(4): 396-402.
    [24]郝文忠,崔乃仁,王保利.新型直流大电流一次变换器[C].直流大电流测试技术及其仪器仪表学术讨论会,北京, 1987: 12-15
    [25]杜厚金,李静新.直流电流传感器:中国,1031427A[P], 1989-03-01
    [26] Lioyd D.V., Taylor C.W. A hall-effect measuring system for large direct and alternating current[J].Electronic Engineering, 1967, 39(473) : 452-457
    [27]张志鹏.光纤传感原理[M].北京:中国计量出版社, 1993
    [28] O.Petersons. A self-Balancing current comparator[J]. IEEE Trans.on Instrumentation and Measurement, 1966, 15(1-2) : 62-71
    [29] F.C.Willams, S.W.Noble.The fundamental limitations of the second- harmonic typetype magnetic modulator as applied to amplification of small dc signals [J]. JIEE, August, 1950, 97(2): 445-459
    [30] Eddy So, Shiyan Ren, and David A Bennett. High-current high-precision operable-core ac and ac/dc current transformers[J]. IEEE Trans. on Instrum.& Meas,1993, 42(2) : 571-576
    [31] Shiyan Ren, Huayun yang and Xiaowei Wang.The theoretical analysis of ppen-loop characteristic for double magnetic detector comparator[J] . IEEE Transactions on Instrumentation and Measurement, 2005, 54 (2) : 592-594
    [32]任士焱,张智杰,周小雄,周术.双重磁检测器直流大电流比较仪的稳定性研究[J].华中科技大学学报, 2001, 29(11) : 82-84
    [33] Ren Shiyan, Zhang Zhijie , Zhou Xiaoxiong. .Heavy dc sensing theory and double magnetic detector[J].Journal of Harbin Institute of Technology, 2002, 9(1): 102-106
    [34] Ren Shiyan.A 100, 000A high precision on-site measurement calibration device for heavy direct current[J].IEEE Trans.on Instru.& Meas., 1990, 39(1) : 19-22
    [35] Kang M, Enjeti PIV, Pitel IJ.Analysis and design of electronic transformers for electric power distribution system[J].IEEE Trans.on Power Electronics, 1999, 14(6) : 1133-1141
    [36] Paente H.R., Burgess M.L., Larsen E.V.et al.Energization of large shunt reactors near static VAR compensators and HVDC converters[J].IEEE trans.on Power Delivery, 1989, 4(1) : 629-636
    [37] S.A.Boggs, G.J.Fitz Patrick, Kuang Jinbo.Transient errors in a precision resistive divider[J].IEEE International Symposium on Electrical Insulation, 1996, 2(1): 482-485
    [38] R.R.D.Shah, R.J.Cliffe, P.Senior, et al.An ultrafast probe for high-voltage pulsed measurements[C].IEEE Conference on Pulsed Power Plasma Science, Toyohashi, Japan, 2001 : 276-279
    [39] Braudaway D.W..Behavior of resistors and shunts: with today’s high-precision measurement capability and a century of materials experience, what can go wrong?[J] . IEEE Trans.on Instr.& Meas., 1999, 48(5) : 889-893
    [40] Zinkernagel J.A current–to-voltage converter for 5A to 5V and 30Hz to 30KHz[J].IEEE Trans.on Instru.& Meas., 2000, 49(1) : 144-150
    [41] M.P.MachMartin, N.L.Kusters.A direct-current comparator ratio bridge for four-terminal resistance measurements[J].IEEE Trans.on Instrum .& Meas., 1969, 15(4): 212-220
    [42] N. L. Kusters, M. P. MachMartin. A self-balancing digital differential voltmeter based on the direct-current comparator[J]. IEEE Trans . on Instrum . & Meas., 1975, 24(4): 331-335
    [43] Eddy So. A microprocessor-controlled current-comparator-based dc voltage calibrator [J]. IEEE Trans.on Instrum.& Meas., 1987, 6(2): 291-295.
    [44] M.P.MachMartin, N.L.Kusters.The application of the direct comparator to a seven-decade potentiometer . IEEE Trans. on Instrum. & Meas., 1968, 17(4): 263-268
    [45] N.L.Kusters, M.P.MachMartin.A direct-current comparator bridge for resistance thermometry[J].IEEE Trans.on Instrum.& Meas.1970, 19(4): 291-297
    [46] Shiyan Ren, Zhijie Zhang,Wenyi Hu.Analysis and calculation of systemic error of voltage difference method in the calibration for heavy dc sensors[C] . Conference on Precision Electromagnetic Measurements Digest, London, 1998, (6-10) : 568-569
    [47] N.L.Kusters, M.P.MachMartin. A direct-current-comparator ratio bridge for measuring shunts up to 20,000 amperes [J].IEEE Trans.on Instrum. & Meas, 1969, 18(4): 226-271
    [48] Eddy So.The application of the current-comparator technique in instrumentation and measurement equipment for the calibration of non-conventional instrument transformers with non-standard rated outputs[J].IEEE Trans. on Power Delivery, 1992, l7(1): 46-52
    [49] R.波尔.软磁材料[M].北京:冶金工业出版社,1985
    [50] Inagakik, SakamotoY, Endo T.Accuracy of measurements of the quantized hall resistivity by a direct current comparator type potentionmeter: calibration using a Josephson potentionmeter[J] . IEEE Trans.on Instru.& Meas., 1989, 38(2): 272-278
    [51] Dziuba R, Sulliran D . Cryogenic direct current comparators and their applications[J].IEEE Trans.on Magnetics, 1975,11(2): 716-719
    [52] Hao L., Macfarlane J.C., Peden D.A., et al. Design and performance of an HTS current comparator for charged-particle-beam measurements[J].IEEE Trans.on Applied Superconductivity, 2001, 11(1): 635-638
    [53] Zhu Mingjun, Xu ken .A calibrating device for large direct current instruments up to 320 kiloampere-turns.IEEE Trans.on Instru. & Meas., 1998,47(3):711-714
    [54] Kwiczala J.L., Milek M.A .Current transfer method and its application to calibrating a current comparator[J]. IEEE Trans. on Instru.& Meas., 1989,38(5):979-983
    [55]徐垦,揭秉信.用于测量直流大电流的双向铁心磁放大器[J].电测与仪表, 1996,18(12): 33-35
    [56]徐垦,揭秉信.具有误差调节的磁放大器直流大电流测量仪[J].电测与仪表, 1998, 35(1):6-7
    [57]揭秉信,陈宁安,徐垦.一种新型磁放大器式直流电流比较仪[J].华中科技大学学报, 2001, 29(3):1-3
    [58]王兰花,赵世平.霍尔变换器在直流大电流测量装置中的应用[J].电力学报,2001,16(4):295-297
    [59] L. Linas, Hall D.L. An introduction to multi-sensor data fusion[C].Proc. of IEEE International Symposium on Circuits and Systems,taly,1998:537-540
    [60]范林涛,陈海青.直流大电流测量的研究[J].华中科技大学学报,2000, 28(1): 67-69
    [61]任士焱,马爱清,杨华云等.磁势自平衡回馈补偿式直流传感理论研究[J].华中科技大学学报, 2003,31(11):33-35
    [62]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社, 1982
    [63]别索诺夫著.饱和电抗器[M].北京:科学出版社, 1955
    [64] T. Kohsaka, N. Takahashi, S. Nogawa, et al.Analysis of magnetic characteristics of three-phase reactor made of grain-oriented silicon steel[J]. IEEE Trans. on Magn., 2000, 36(4): 1894-1897
    [65] M. Kuwata, S. Nogawa, N. Takahashi, et al. Development of molded-core-type gapped iron-core reactor[J]. IEEE Trans. on Magn. , 2005, 41(10): 4066-4068
    [66] K. Zakrzewski, B. Tomczuk. Magnetic field analysis and leakage inductance calculation in current transformers by means of 3-D integral methods[J]. IEEE Trans. Magn., 1996, 32(1): 1637-1640
    [67] K. Harada, T. Nabeshima. Applications of magnetic amplifiers to high-frequency dc-to-dc converters[J]. IEEE Trans. Magn. , 1988, 76(4): 355-361
    [68] H. Darling. New magnetic amplifier improves EMF to current converter[J]. IEEE Trans. on Magn. , 1967, 3(3): 365-369
    [69]廖湘恩.磁放大器原理[M].北京:国防工业出版社.1980.
    [70]龚绍文.磁路和带铁心电路[M].北京:高等教育出版社.1984.
    [71]王晓蔚,任士焱.磁势自平衡回馈补偿式直流传感器的灵敏度分析[J].仪器仪表学报增刊, 2004
    [72]吴波,任士焱.磁势自平衡回馈补偿式直流传感器的检测回路分析[J].仪器仪表学报增刊, 2005
    [73] G.E.林恩.自饱和磁放大器[M].上海:上海科学技术出版社, 1964
    [74]河北保定市电器控制设备厂.直流互感器及其应用经验汇编[M].保定:河北保定市电器控制设备厂, 1974
    [75]童诗白,华成英主编.模拟电子技术基础[M].北京:高等教育出版社, 1980
    [76]康华光主编.电子技术基础(模拟部分)[M].北京:高等教育出版社, 1999
    [77]郑时伊主编.电气工程师手册[M].北京:机械工业出版社, 1987
    [78]秦世才,王朝英.集成运算放大器应用原理[M].天津:天津科学技术出版社, 1983
    [79]尤德斐.数字化测量技术[M].北京:机械工业出版社, 1980
    [80]谢自美主编.电子线路设计?实验?测试[M].武汉:华中科技大学出版社, 2000
    [81]褚江,任士焱.磁势自平衡回馈补偿式直流传感器难点研究[J].电测与仪表, 2006,43(490):4-7
    [82]湖北省电磁兼容学会.电磁兼容性原理及应用[M].北京:国防工业出版社,1996
    [83]王定华,赵家升.电磁兼容原理与设计[M].成都:电子科技大学出版社, 1995
    [84]袁禄明.电磁测量[M].北京:机械工业出版社, 1980
    [85]吕仁清,蒋全兴.电磁兼容性结构设计[M].南京:东南大学出版社, 1990
    [86]蔡仁钢.电磁兼容原理、设计和预测技术[M].北京:北京航空航天大学出版社, 1997
    [87]陶时澍.电子测量中的工频干扰及屏蔽[M].北京:中国计量出版社, 1991
    [88]刘鹏程,邱扬.电磁兼容原理及技术[M].北京:高等教育出版社, 1993
    [89]中国人民解放军总装备部军事训练教材编辑工作委员会.电磁兼容技术[M].北京:国防工业出版社, 2005
    [90] Sasaki.H., Shiraishi.T., Kawanishi.A..Magnetic selding and minimization of shielding material[J].IEEE Trans. on Magn.,1994, 30(4): 2523-2526
    [91] Ohyama.T., Minemoto.T., Itoh. M., Hoshino. K. Improvement of mgnetic shielding effects: the superposition of a double-magnetic cylinder over a high-Tc superconducting cylinder[J] . IEEE Trans.on Magn.,1993,29(6): 3583-3585
    [92] Di. X., Moses. A.J., Anderson. P.. Measured and computed effect of holes on low-frequency magnetic shielding performance of electrical steel sheet[J] . IEEE Trans. on Magn. ,2006, 42(10): 3527-3529
    [93] Waki. H., Igarashi. H., Honma. T.. Analysis of magnetic shielding effect of layered shields based on homogenization[J]. IEEE Trans. Magn.,2006, 42(4): 847-850
    [94] Miller.D.A., Bridges.J.E. . Geometrical effects on shielding effectiveness at low frequencies[J]. IEEE Transaction on Electromagnetic Compatibility, 1966, 31(8): 174 -186
    [95] Carl Greifinger, Phyllis S.Grefinger, Lynn W.Hart. Shielding of ELF magnetic dipole fields by ferromagnetic cylindrical shells[J]. IEEE Trans. on Electromagnetic Compatibility, 1981, 23(1): 2-12.
    [96] S. V. K. Shastry, K. N. Shamanna, V. R. Katti.. Shielding of electromagnetic fields of current sources by hemispherical enclosures[J]. IEEE Trans. on Electromagnetic Compatibility. 1985, 27(4):184-190
    [97] F.A.M.Rizk. Low-frequency shielding effectiveness of a double cylinder enclosure[J]. IEEE Trans. on Electromagnetic Compatibility, 1977, 19(2):192-196.
    [98] Jack E., Bridges. An update on the circuit approach to calculate shieldingeffectiveness[J]. IEEE Trans. on Electromagnetic Compatibility, 1988, 30 (3): 211-221.
    [99] E.E.Kriezis, C.S.Antonopoulos. Low-frequency electromagnetic shielding in a system of two coaxial cylindrical shells[J]. IEEE Trans. on Electromagnetic Compatibility, 1984, 26(4): 193-201.
    [100] D.A.Miller , J.E.Bridges. Geometrical effects on shielding effectiveness at low frequencies[J]. IEEE Trans. on Electromagnetic Compatibility, 1966, 8(1): 174-185.
    [101]张有纲,黄永杰,罗迪民.磁性材料[M].成都:成都电讯工程学院出版社, 1988
    [102] R.波尔编(西德).软磁材料[M].唐与谌,黄桂煌译.北京:冶金工业出版社,1985
    [103] Shiyan Ren, Hengchun Ding, Mingming Li ,Shengneng She. Magnetic shielding effectiveness for comparators[J]. IEEE Trans. on Instrum. Meas. , 1995, 44(2): 422-424
    [104]任士焱,张智杰,周术.电流比较仪磁屏蔽效能的计算[J].计量学报,2003,24(4):321-324.
    [105]丁恒春.工业用交直流电流比较仪的研究[D].武汉:华中科技大学图书馆, 1992
    [106]李继凡.精密电气测量[M].北京:计量出版社,1984
    [107] Shiyan Ren. Hengchun Ding. A 300000-A high precision dc comparator for on-line calibration and measurement[J]. IEEE Transaction on Instrumentation and Measurement.1991,40(2):281~283
    [108]任士焱.100KA多通道开口磁调制式直流大电流比较仪[J].华中理工大学学报,1988,16(6):69-74
    [109] So E, Ren S, Bennett D A. High-current high-precision openable-core ac and ac/ac current transformers[J]. IEEE Trans. on Instrum. Meas., 1993, 42(2):571-576
    [110]任士焱.高精度开口式直流大电流比较仪[J].华中工学院学报, 1984, 12(1): 107~112
    [111]洪和平,DB-3A型电流比较仪系统的分析与综合.电测与仪表, No.12, 1981:3-9
    [112]任士焱,开口比较仪在直流大电流现场校验中的应用.电测与仪表, No.6, 1984:19~21
    [113] Ai Xin, Bao Hai, Song Jiahua, et al. The hall current transformer modeling andsimulation[C]. Proceedings of the 1998 IEEE POWERCON Conference, Orlando,USA,1998:1015-1020.
    [114]陈乔夫,李湘生.互感器电抗器的理论与计算[M].武汉:华中理工大学出版社,1992
    [115]王锡凡,王秀丽.分频输电系统的可行性研究[J].电力系统自动化, 1995,19(4):5-13
    [116] K.Bessho, et al. Some experiments on the behavior of a new magnetic frequency tripler with bridge-connected reactor circuit[J]. IEEE Transactions on Magnetics.1976,12(6):826-829
    [117] T.Sudani,k.Bessho. An analytical investigation on efficiency of a magnetic frequency tripler with series-connected reactors[J]. IEEE Transactions on Magnetics. 1987,23(4):574-578.
    [118] Wang Xifan,Cao Chengjun,Zhou Zhichao. Experiment on frequency transmission system[J]. IEEE Transactions on Power Systems.2006,21(1):372-377
    [119]胡寿松.自动控制原理[M].第3版.北京:国防工业出版社, 1994
    [120]绪方胜彦.现代控制工程[M].北京:科学出版社, 1976
    [121]李文秀.自动控制原理[M].哈尔滨:哈尔滨工程大学出版社, 2002
    [122]黄家英.自动控制原理[M].北京:高等教育出版社, 2003
    [123]薛定宇.控制系统的计算机辅助设计: MATLAB语言及应用[M].北京:清华大学出版社, 1996, 178~188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700