用户名: 密码: 验证码:
非对易时空上引力模型的构建和黑洞热力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爱因斯坦的引力理论–广义相对论–在大尺度结构上取得了很大的成功,成功的预言了一系列重要的物理现象。广义相对论认为引力即是时空几何的思想,极大地改变了我们关于时空本质的认识。但是,广义相对论和量子场论之间存在不可调合的矛盾。将广义相对论纳入量子场论框架内的努力遭遇了量子引力不可重整化的失败。寻求一个自洽的量子引力理论,从而实现四种相互作用的统一是绝大多数物理学家的梦想,也是一个极具挑战性的问题。目前,存在多种量子引力的方案,其中包括最流行也是最有希望的弦论,以及圈量子引力理论。非对易作为其中一个尝试,认为时空在极小尺度上将呈现出非对易性。这种思想是对相空间非对易的自然推广。由于时空的非对易性,点和坐标的概念变得模糊,建立在光滑流形上的广义相对论不再适用。在非对易时空上建立或研究引力理论具有很重要的物理意义,它将能在一定程度上将量子效应和引力融合在一起,从而反映出极小尺度或高能标下引力的行为,为迈向最终的量子引力理论提供某些启示。
     本博士论文涉及非对易时空上的引力及黑洞热力学问题,我们的工作的主要内容如下:
     爱因斯坦的引力理论可以表示成SL(2,C)规范理论形式。我们利用协变坐标技术,将这种表述形式推广到具有辛结构的非对易时空上,在星乘框架下构建出规范不变的作用量。然后,利用Seiberg-Witten映射,在非对易参数的一阶水平上,将非对易的物理自由度映射到对应的对易物理自由度上,从而给出作用量的一阶修正形式。结果显示非对易对SL(2,C)引力作用量的一阶修正在一般情况下并不为零。这一结果是对已有文献结果的推广。其后,我们将上述分析和讨论推广到引力的其它表述形式上,在具有辛结构的非对易时空上构建了U(2,2)引力模型。结果同样表明作用量的一阶修正不为零。我们将在第四章详细阐述这部分内容。这部分内容基于我们以下的工作:Y.-G. Miao and S.-J. Zhang, SL(2,C) gravity on noncommutative space with Pois-son structure, Phys. Rev. D82(2010)084017[arXiv:1004.2118[hep-th]].Y.-G. Miao, Z. Xue and S.-J. Zhang, U(2,2) gravity on noncommuta-tive space with symplectic structure, Phys. Rev. D83(2011)024023[arXiv:1006.4074[hep-th]].
     基于坐标相干态方法,已有的文献表明时空非对易导致“点质量”弥散在一个有限范围内。“点质量”的分布不再由狄拉克delta函数描述,而是由高斯函数描述。若同时假设爱因斯坦引力场方程不受影响,可以得到一系列包含非对易效应的黑洞解,通称为“非对易诱导黑洞”。我们利用Parikh-Wilczek隧穿方法对非对易诱导施瓦希(Schwarzschild)黑洞的热力学进行了分析。与已有文献不同的是,我们将Parikh-Wilczek方法推广到有质量粒子隧穿情形。结果表明,隧穿概率被隧穿粒子的质量压低,而有效的辐射温度受到非对易的修正。隧穿概率等于熵变的指数这一众所周知的结论在有质量情形下并不成立。同时,我们讨论了辐射粒子间的关联。结果表明辐射粒子之间存在关联,从而辐射可能包含信息。另外,我们利用Banerjee等人提出的改进的哈密顿-雅可比(Hamilton-Jacobi)方法讨论了非对易诱导克尔(Kerr)黑洞的热力学性质。与已有文献不同的是,我们将WKB方案计算到次一阶,从而包含隧穿粒子的角动量效应。结果表明辐射温度受到非对易修正,隧穿粒子的角动量对辐射温度没有影响。同时,我们分析了熵谱,结果表明熵的量子化既不受时空非对易的影响,也不受波函数量子修正的影响。我们将在第五章详细阐述这部分内容。这部分内容基于我们以下的工作:Y.-G. Miao, Z. Xue and S.-J. Zhang, Massive charged particle’s tunnel-ing from spherical charged black hole, Europhys. Lett.96(2011)10008[arXiv:1012.0390[hep-th]]; Tunneling of massive particles from noncommuta-tive inspired Schwarzschild black hole, Gen. Rel. Gra.44(2012)555[arXiv:1012.2426[hep-th]]; Quantum tunneling and spectroscopy of noncom-mutative inspired Kerr black hole, Int. J. Mod. Phys. D21(2012)1250018[arXiv:1102.0074[hep-th]].
     在已有的大量文献中,采用坐标相干态方法处理非对易的同时采用了非标准的量子化过程。这种非标准的量子化过程推演出一个重要结论:点质量分布不是由狄拉克delta函数描述,而是由高斯函数描述。在非对易闵氏平面上,我们沿着标准的量子化过程重新考察了坐标相干态方法,推演出截然不同的结论:点质量仍然由狄拉克delta函数描述。此结论表明若采用坐标相干态方法处理非对易,则点粒子的概念仍然成立。为了探讨两种不同的量子化过程带来的后果,我们分别采用它们分析了安鲁(Unruh)效应和霍金(Hawking)辐射。结果表明:在非标准量子化过程下,安鲁温度和安鲁谱不受非对易影响,霍金温度受非对易修正而霍金辐射谱不受影响;在标准量子化过程下,安鲁温度和霍金温度都不受影响,但是两种谱都修正了一个有效灰度因子,此灰度因子源自时空非对易。我们将在第六章详细阐述这部分内容。这部分内容基于我们以下的工作:Y.-G. Miao and S.-J. Zhang, The coordinate coherent states approach revisited,arXiv:1105.4025[hep-th].
Einstein’s gravity theory, general relativity, has achieved great success in predict-ing and explaining physical phenomenons at large scale. In general relativity, the grav-ity is considered to be the geometry of spacetime, and this idea has greatly refreshedour cognition of spacetime. However, there exist irreconcilable contradictions betweengeneral relativity and quantum field theory. Any attempts on bringing the general rela-tivity into the frame of quantum field theory all fail in the renormalizability of quantumgravity. It is the dream of most physicists to look for a consistent theory of quan-tum gravity so that the four fundamental interactions can be unified, and also it is agreat challenge. At present, there exist some ansatzes of quantum gravity includingthe most promising one, string theory, and loop quantum gravity. Noncommutativityof spacetime is one of the various attempts whose essential idea is that the spacetimewill appear noncommutativity at very small scale. It is a natural generalization of theidea of noncommutativity of phase space in quantum mechanics. Because of the non-commutavity of spacetime, the concepts of point and coordinate become ambiguity,and general relativity basing on smooth manifolds is not valid any more. It is greatimportant to establish a corresponding gravity theory on noncommutative spacetimesand investigate its properties. This gravity theory could in some sense combine theeffects of gravity and quantum theory, and then reflects the behavior of gravity at verysmall scale (or at high energy), and so highlights the road to the final theory of quantumgravity.
     This thesis deals with the problems of gravity and thermodynamics of black holeson noncommutative spacetimes. The main contents of our work are organized as fol-lows.
     Einstein’s gravity theory can be reformulated as a gauge theory with gauge groupSL(2, C). With the help of the technique of covariant coordinates, we extend thisformulation to noncommutative spacetimes with symplectic structure and builda gauge invariant action in the frame of star-product. Using the Seiberg-Wittenmap, the physical degrees of freedom are expressed in terms of their commutativecounterparts up to the first order in noncommutative parameter and then the firstorder correction to the commutative action is obtained. The result shows that ingeneral the first order correction does not vanish. This is the extension of the ex-isted results in literatures. We then extend the above analysis to the construction of an U (2,2) gravity model on the same class of noncommutative spacetimes.The result also shows that the first order correction does not vanish. This part ofcontents is based on our following workY.-G. Miao and S.-J. Zhang, SL(2,C) gravity on noncommutative space with Pois-son structure, Phys. Rev. D82(2010)084017[arXiv:1004.2118[hep-th]].Y.-G. Miao, Z. Xue and S.-J. Zhang, U(2,2) gravity on noncommutative space withsymplectic structure, Phys. Rev. D83(2011)024023[arXiv:1006.4074[hep-th]].and will be given in detail in chapter4;
     Based on the coordinate coherent states approach, the results in the existed lit-eratures show that a”point mass” should be smeared in a finite size of rangeand should be described by a gaussian function rather than the usual Dirac deltafunction. Assuming that the Einstein equation is untack, a series of solutions ofnoncommutative inspired black holes can be obtained. We first apply the Parikh-Wilczek’s tunneling method to analyze the thermodynamics of the noncomm-tative inspired Schwarzschild black hole. Different from the existed literatures,we extend the Parikh-Wilczek method to the tunneling of massive particles. Theresults show that the tunneling rate is suppressed by the mass of the tunneling par-ticles and the effective radiation temperature is modified by noncommutativity.The well-known result that the tunneling rate equals the exponent of the differ-ence of entropy does not hold in the massive case. Moreover, we also discuss thecorrelations between tunneling particles. The result shows that there exist corre-lations which imply that the radiation may contain informations. We then analyzethe thermodynamics of the noncommutative inspired Kerr black hole using thereformulated Hamilton-Jacobi method proposed by Banerjee et al. We calculatethe WKB ansatz to the first order in order to include the effect of the angular mo-mentum of tunneling particles. The results show that the radiation temperatureis modified by noncommutativity but not by the angular momentum of tunnelingparticles. Moreover, We analyze the spectra of entropy and show that the entropyquantum is affected neither by noncommutativity or by the quantum correctionof wave function. This part of contents is based on our following workY.-G. Miao, Z. Xue and S.-J. Zhang, Massive charged particle’s tunnel-ing from spherical charged black hole, Europhys. Lett.96(2011)10008 [arXiv:1012.0390[hep-th]]; Tunneling of massive particles from noncommu-tative inspired Schwarzschild black hole, Gen. Rel. Gra.44(2012)555[arXiv:1012.2426[hep-th]]; Quantum tunneling and spectroscopy of noncom-mutative inspired Kerr black hole, Int. J. Mod. Phys. D21(2012)1250018[arXiv:1102.0074[hep-th]].and will be given in detail in chapter5;
     In the existing literatures, the coordinate coherent states approach is associatedwith a non-standard quantization procedure. The essential outcome of this non-standard quantization procedure is that a”point mass” now should be describedby a gaussian function rather than the usual Dirac delta function. We revisit thecoordinate coherent states approach with the standard quantization procedure onnoncommutative Minkowski plane and deduce a significantly different result: a”point mass” is still described by the Dirac delta function. This implies that theconcept of point particle is still valid if we deal the noncommutativity with thecoordinate coherent states approach associating with the standard quantizationprocedure. To investigate the physical consequences on the quantization proce-dures, we apply the two quantization procedures in discussing the Unruh effectand Hawking radiation. The results are: Under the non-standard quantizationprocedure, Unruh temperature and Unruh spectrum are not modified by noncom-mutativity, but the Hawking temperature is modified while the Hawking radiationspectrum is untack; while under the standard quantization procedure, Unruh tem-perature and Hawking temperature are untack but the both spectra are modifiedby an effective greybody factor. This grebody factor originates from noncommu-tativity. This part of contents is based on our following workY.-G. Miao and S.-J. Zhang, The coordinate coherent states approach revisited,arXiv:1105.4025[hep-th].and will be given in detail in chapter6.
引文
[1] H.S. Snyder, Quantized space-time, Phys. Rev.71(1947)38.
    [2] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP9909(1999)032[arXiv:hep-th/9908142].
    [3] S. Doplicher, K. Fredenhagen and J.E. Roberts, Spacetime quantization induced by classicalgravity, Phys. Lett. B331(1994)39.
    [4] A. Connes, Noncommutative geometry, Academic Press,1994.
    [5] J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur.Phys. J. C16(2000)161[arXiv: hep-th/0001203].
    [6] B. Jurcˇo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformationsfor non-abelian guage groups on noncommutative spaces, Eur. Phys. J. C17(2000)521[arXiv:hep-th/0006246].
    [7] B. Jurcˇo, L. Mo¨ller, S. Schraml, P. Schupp and J. Wess, Construction of non-abelian gaugetheories on noncommutative spaces, Eur. Phys. J. C21(2001)383[arXiv: hep-th/0104153].
    [8] B. Jurcˇo, P. Schupp and J. Wess, NonAbelian noncommutative gauge theory via noncommuta-tive extra dimensions, Nucl. Phys. B604(2001)148[arXiv:hep-th/0102129].
    [9] X. Calmet, B. Jurcˇo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on noncom-mutative space-time, Eur. Phys. J. C23(2002)363[arXiv: hep-ph/0111115].
    [10] M. Dimitijevic, L. Jonke, L. Moller, E. Tsouchnika and J. Wess, Deformed field theory onkappa space-time, Eur. Phys. J. C31(2003)129[arXiv: hep-th/0307149].
    [11] M. Chaichian, P. Presnajder, M.M. Sheikh-Jabbari and A. Tureanu, Noncommutative standardmodel: Model building, Eur. Phys. J. C29(2003)413[arXiv:hep-th/0107055].
    [12] M. Chaichian, P. Presnajdner and A. Tureanu, New concepte of relativistic invariance in NCspacetime: twisted Poincare symmetry and its implications, Phys. Rev. Lett.94(2005)151602
    [arXiv: hep-th/0409096].
    [13] P. Aschieri, M. Dimitrijevic, F. Meyer, S. Schraml and J. Wess, Twisted gauge theories, Lett.Math. Phys.78(2006)61[arXiv: hep-th/0603024].
    [14] G. Fiore and J. Wess, On full twisted Poincare’ symmetry and QFT on Moyal-Weyl spaces,Phys. Rev. D75(2007)105022[arXiv:hep-th/0701078].
    [15] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics,JHEP02(2000)020[arxiv:hep-th/9912072].
    [16] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73(2001)977[arXiv: hep-th/0106048].
    [17] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378(2003)207
    [arXiv: hep-th/0109162].
    [18] R.J. Szabo, Symmetries and renormalization of noncommutative field theory, AIP Conf. Proc.917(2007)146[arXiv:hep-th/0701224].
    [19] R.J. Szabo, Quantum gravity, field theory and signatures of noncommutative spacetime, Gen.Rel. Grav.42(2010)1[arXiv:0906.2913[hep-th]].
    [20] R. Banerjee, B. Chakraborty, S. Ghosh, P. Mukherjee and S. Samanta, Topics in noncommu-tative geometry inspired physics, Found. Phys.39(2009)1297[arXiv:0909.1000[hep-th]].
    [21] A.H. Chamseddine, Deforming Einstein’s gravity, Phys. Lett. B504(2001)33[arXiv:hep-th/0009153].
    [22] A.H. Chamseddine, An invariant action for noncommutative gravity in four-dimensions, J.Math. Phys.44(2003)2534[arXiv:hep-th/0202137].
    [23] M.A. Cardella and D. Zanon, Noncommutative deformation of four-dimensional Einsteingravity, Class. Quant. Grav.20(2003) L95[arXiv:hep-th/0212071].
    [24] A.H. Chamseddine, SL(2,C) gravity with complex vierbein and its noncommutative extension,Phys. Rev. D69(2004)024015[arXiv:hep-th/0309166].
    [25] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, A gravity theoryon noncommutative spaces, Class. Quant. Grav.22(2005)3511[arXiv:hep-th/0504183].
    [26] X. Calmet and A. Kobakhidze, Noncommutative general relativity, Phys. Rev. D72(2005)045010[arXiv:hep-th/0506157].
    [27] P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Noncommutative geometry and gravity,Class. Quant. Grav.23(2006)1883[arXiv:hep-th/0510059].
    [28] R. Banerjee, P. Mukherjee and S. Samanta, Lie algebraic noncommutative gravity, Phys. Rev.D75(2007)125020[arXiv:hep-th/0703128].
    [29] S. Marculescu and F. Ruiz Ruiz, Seiberg-Witten maps for SO(1,3) gauge invariance and de-formations of gravity, Phys. Rev. D79(2009)025004[arXiv:0808.2066[hep-th]].
    [30] P. Aschieri and L. Castellani, Noncommutative D=4gravity coupled to fermions, JHEP06(2009)086[arXiv:0902.3817[hep-th]].
    [31] Y.-G. Miao and S.-J. Zhang, SL(2, C) gravity on noncommutative space with Poisson struc-ture, Phys. Rev. D82(2010)084017[arXiv:1004.2118[hep-th]].
    [32] Y.-G. Miao, Z. Xue and S.-J. Zhang, U (2,2) gravity on noncommutative space with symplecticstructure, Phys. Rev. D83(2011)024023[arXiv:1006.4074[hep-th]].
    [33] R.J. Szabo, Symmetry, gravity and noncommutativity, Class. Quant. Grav.23(2006) R199
    [arXiv:hep-th/0606233].
    [34] F. Muller-Hoissen, Noncommutative geometries and gravity, AIP Conf. Proc.977(2008)12
    [arXiv:0710.4418[gr-qc]].
    [35] D.V. Vassilevich, Towards noncommutative gravity, arXiv:0902.0767[hep-th].
    [36] P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J.Mod. Phys. A24(2009)1229[arXiv:0807.1939[hep-th]].
    [37] R.J. Szabo, Magnetic backgrouds and noncommutative field theory, Int. J. Mod. Phys. A19(2004)1837[arXiv: physics/0401142].
    [38] H. Weyl, The theory of groups and quantum mechanics (Dover, New York,1931).
    [39] H.J. Groenewold, On the principles of elementary quantum mechanics, Physica12(1946)405.
    [40] J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc.45(1949)99.
    [41] M. Chaichian, P. Presnajder, M.M. Sheikh-Jabbari and A. Tureanu, Noncommutative gaugefield theories: A no-go theorem, Phys. Lett. B526(2002)132[arXiv: hep-th/0107037].
    [42] J. Wess, Differential calculus and gauge transformations on a deformed space, Gen. Rel. Grav.39(2007)1121[arXiv:hep-th/0607251].
    [43] J. Wess, Deformed Gauge Theories, J. Phys. Conf. Ser.53(2006)752[arXiv:hep-th/0608135].
    [44] M. Chaichian and A. Tureanu, Twist symmetry and gauge invariance, Phys. Lett. B637(2006)199[arXiv:hep-th/0604025].
    [45] E. Harikumar and V.O. Rivelles, Noncommutative gravity, Class. Quant. Grav.23(2006)7551
    [arXiv:hep-th/0607115].
    [46] M. Chaichian, A. Tureanu and G. Zet, Corrections to Schwarzschild solution in noncommuta-tive gauge theory of gravity, Phys. Lett. B660(2008)573[arXiv:0710.2075[hep-th]].
    [47] P. Mukherjee and A. Saha, Deformed Reissner-Nordstro¨m solutions in noncommutative grav-ity, Phys. Rev. D77(2008)064014[arXiv:0710.5847[hep-th]].
    [48] M. Chaichian, M.R. Setare, A. Tureanu and G. Zet, On black holes and cosmological constantin noncommutative gauge theory of gravity, JHEP04(2008)064[arXiv:0711.4546[hep-th]].
    [49] A. Kobakhidze, Noncommutative corrections to classical black holes, Phys. Rev. D79(2009)047701[arXiv:0712.0642[gr-qc]].
    [50] P. Schupp and S. Solodukhin, Exact black hole solutions in noncommutative gravity,arXiv:0906.2724[hep-th].
    [51] T. Ohl and A. Schenkel, Cosmological and black hole spacetimes in twisted noncommutativegravity, JHEP10(2009)052[arXiv:0906.2730[hep-th]].
    [52] P. Aschieri and L. Castellani, Noncommutative gravity solutions, J. Geom. Phys.60(2010)375[arXiv:0906.2774[hep-th]].
    [53] R.M. Wald, Black hole entropy in the Noether charge, Phys. Rev. D48(1993)3427[arXiv:gr-qc/9307038].
    [54] T. Jacobson, G. Kang and R.C. Meyers, On black hole entropy, Phys. Rev. D49(1994)6587
    [arXiv:gr-qc/9312023].
    [55] V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for dynamicalblack hole entropy, Phys. Rev. D50(1994)846[arXiv:gr-qc/9403028].
    [56] T. Jacobson, G. Kang and R.C. Meyers, Black hole entropy in higher curvature gravity,arXiv:gr-qc/9502009.
    [57] A. Smailagic and E. Spallucci, Feynman path integral on the noncommutative plane, J. Phys.A36(2003) L467[arXiv:hep-th/0307217].
    [58] A. Smailagic and E. Spallucci, UV divergence-free QFT on noncommutative plane, J. Phys. A36(2003) L517[arXiv:hep-th/0308193].
    [59] A. Smailagic and E. Spallucci, Lorentz invariance, unitarity and UV-finiteness of QFT onnoncommutative spacetime, J. Phys. A37(2004)1(Erratum-ibid. A37(2004)7169)[arXiv:hep-th/0406174].
    [60] P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired Schwarzschildblack hole, Phys. Lett. B632(2006)547[arXiv:gr-qc/0510112].
    [61] T.G. Rizzo, Noncommutative inspired black holes in extra dimensions, JHEP09(2006)021
    [arXiv:hep-ph/0606051].
    [62] S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspiredcharged black holes, Phys. Lett. B645(2007)261[arXiv:gr-qc/0612035].
    [63] E. Spallucci, A. Smailagic and P. Nicolini, Non-commutative geometry inspired higher-dimensional charged black holes, Phys. Lett. B670(2009)449[arXiv:0801.3519[hep-th]].
    [64] A. Smailagic and E. Spallucci,“Kerrr” black hole: the lord of the string, Phys. Lett. B688(2010)82[arXiv:1003.3918[hep-th]].
    [65] L. Modesto and P. Nicolini, Charged rotating noncommutative black holes, Phys. Rev. D82(2010)104035[arXiv:1005.5605[gr-qc]].
    [66] R.B. Mann and P. Nicolini, Cosmological production of noncommutative black holes, Phys.Rev.D84(2011)064014[arXiv:1102.5096[gr-qc]].
    [67] J.R. Mureika and P. Nicolini, Aspects of noncommutative (1+1)-dimensional black holes,Phys. Rev. D84(2011)044020[arXiv:1104.4120[gr-qc]].
    [68] P. Nicolini, G. Torrieri, The Hawking-Page crossover in noncommutative anti-deSitter space,JHEP1108(2011)097[arXiv:1105.0188[gr-qc]].
    [69] R. Banerjee, B.R. Majhi and S. Samanta, Noncommutative black hole thermodynamics, Phys.Rev. D77(2008)124035[arXiv:0801.3583[hep-th]].
    [70] R. Banerjee, B.R. Majhi and S.K. Modak, Noncommutative Schwarzschild black hole andarea law, Class. Quant. Grav.26(2009)085010[arXiv:0802.2176[hep-th]].
    [71] R. Banerjee, S. Gangopadhyay and S.K. Modak, Voros product, noncommutativeSchwarzschild black hole and corrected area law, Phys. Lett. B686(2010)181
    [arXiv:0911.2123[hep-th]].
    [72] K. Nozari and S.H. Mehdipour, Hawking radiation as quantum tunneling from noncommuta-tive Schwarzschild black hole, Class. Quant. Grav.25(2008)175015[arXiv:0801.4074[gr-qc]].
    [73] K. Nozari and S.H. Mehdipour, Parikh-Wilczek tunneling from noncommutative higher-dimensional black holes, JHEP03(2009)061[arXiv:0902.1945[gr-qc]].
    [74] S.H. Mehdipour, Charged particles’ tunneling from a noncommutative charged black hole,Int. J. Mod. Phys. A25(2010)5543[arXiv:1004.1255[gr-qc]].
    [75] Y.-G. Miao, Z. Xue and S.-J. Zhang, Tunneling of massive particles from noncommutativeSchwarzschild black hole, Gen. Rel. Grav.44(2012)555[arXiv:1012.2426[hep-th]].
    [76] Y.-G. Miao, Z. Xue and S.-J. Zhang, Quantum tunneling and spectroscopy of noncommutativeKerr black hole, Int. J. Mod. Phys. D21(2012)1250018[arXiv:1102.0074[hep-th]].
    [77] V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B558(2003)191
    [arXiv:hep-th/0212262].
    [78] J. Lee and H.S. Yang, Quantum gravity from noncommutative spacetime,arXiv:1004.0745[hep-th].
    [79] H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class.Quant. Grav.27(2010)133001[arXiv:1003.4134[hep-th]].
    [80] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory Vol1,2(Cambridge UniversityPress, Cambridge, UK,1987).
    [81] J. Polchinski, String theory Vol I,II (Cambridge University Press, Cambridge, UK,1998).
    [82] C.S. Chu and P.M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B550(1999)151[arXiv:hep-th/9812219].
    [83] C.S. Chu and P.M. Ho, Constrained quantization of open string in backgroud B field andnoncommutative D-brane, Nucl. Phys. B568(2000)447[arXiv:hep-th/9906192].
    [84] J. Wess, q-Deformed Heisenberg Algebras, arXiv:math-ph/9910013.
    [85] B.L. Cerchiai, R. Hinterding, J. Madore and J. Wess, A calculus based on a q-deformedHeisenberg algebra, Eur. Phys. J. C8(547)(1999)[arXiv:math/9809160].
    [86] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nucl.Phys. B (Proc. Suppl)18(1990)302.
    [87] W.B. Schimidke, J. Wess and B. Zumino, A q-deformed Lorentz algebra, Z. Phys. C52(1991)471.
    [88] W. Behr, Noncommutative gauge theory beyond the canonical case (PhD Thesis), arXiv:hep-th/0511119.
    [89] M. Kontsevich, Deformation quantization of Poisson manifolds,I, Lett. Math. Phys.66(2003)157[arXiv:q-alg/9709040].
    [90] G. Felder and B. Shoikhet,Deformation quantization with traces, Lett. Math. Phys.53(2000)75[arXiv:math/0002057].
    [91] F.G. Scholtz, L. Gouba, A. Hafver and C.M. Rohwer, Formulation,interpretationand application of noncommutative quantum mechanics, J. Phys. A42(2009)175303
    [arXiv:0812.2803[math-ph]].
    [92] S. Gangopadhyay and F.G. Scholtz, Path-Integral Action of a Particle in the NoncommutativePlane, Phys. Rev. Lett.102(2009)241602.
    [93] M. Chaichian, A. Demichev, P. Presnajder and A. Tureanu, Space-time noncommutativity,discreteness of time and unitarity, Eur. Phys. J. C20(2001)767[arXiv:hep-th/0007156].
    [94] Y.G. Miao and S.J. Zhang, The coordinate coherent states approach revisited,arXiv:1105.4025[hep-th].
    [95] M. Rinaldi, Particle production and transplanckian problem on the non-commutative plane,Mod. Phys. Lett. A25(2010)2805[arXiv:1003.2408[hep-th]].
    [96] R.M. Wald, General relativity (The University of Chicago Press, Chicago and London,1984).
    [97] P.K. Townsend, Black holes, arXiv:gr-qc/9707012.
    [98] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge University Press,Cambridge, England,1982).
    [99] V.F. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity (Cambridge Uni-versity Press, Cambridge, England,2007).
    [100] R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev.101(1956)1597.
    [101] T.W.B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys.2(1961)212.
    [102] C.J. Isham, A. Salam and J. Strathdee, SL(6,C) gauge invariance of Einstein like La-grangians, Lett. Nuovo Cim.5(1972)969.
    [103] F.W. Hehl, P. Von Der Heyde, G.D. Kerlick and J.M. Nester, General relativity with spin andtorsion: foundations and prospects, Rev. Mod. Phys.48(1976)393.
    [104] A.H. Chamseddine, Application of the gauge principle to gravitational interactions, Int. J.Geom. Meth. Mod. Phys.3(2006)149[arXiv:hep-th/0511074].
    [105] A. Stern, Emergent abelian gauge fields from noncommutative gravity, SIGMA6(2010)019
    [arXiv:0912.3021[hep-th]].
    [106] K. Schwarzschild,U¨ber das Gravitationsfeld eines Massenpunktes nach der EinsteinschenTheorie, Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech. bf189(1916).
    [107] W. Israel, Event horizons in static vacuum space-times, Phys. Rev.164(1967)1776.
    [108] B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett.26(1971)331.
    [109] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time (Cambridge Univer-sity Press, London, England,1975).
    [110] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun.Math. Phys.31(1973)161.
    [111] S.W. Hawking, Black hole explosions, Nature248(1974)30.
    [112] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43(1975)199
    [Erratum-ibid.46(1976)206].
    [113] W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D14(1976)870.
    [114] M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett.85(2000)5042[arXiv:hep-th/9907001].
    [115] M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D13(2004)2351; Gen.Rel. Grav.36(2004)2419[arXiv:hep-th/0405160].
    [116] P. Painleve′, La me′canique classique er la thorie de relativite′, C. R. Acad. Sci.(Paris)173(1921)677.
    [117] J.Y. Zhang and Z. Zhao, Hawking radiation of charged particles via tunneling from theReissner-Nordstrom black hole, JHEP10(2005)055.
    [118] K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys.Rev. D60(1990)024007[arXiv:gr-qc/9812028].
    [119] M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini, Hawking radiation as tunneling forextremal and rotating black holes, JHEP05(2005)014[arXiv:hep-th/0503081].
    [120] R. Kerner and R.B. Mann, Tunneling, termperature, and Taub-NUT black holes, Phys. Rev.D73(2006)104010[arXiv:gr-qc/0603019].
    [121] X. Calmet and M. Wohlgenannt, Effective field theories on noncommutative space-time,Phys. Rev. D68(2003)025016[arXiv:hep-ph/0305027].
    [122] W. Behr and A. Sykora, NC Wilson lines and the inverse Seiberg-Witten map for nondegen-erate star products, Eur. Phys. J. C35(2004)145[arXiv:hep-th/0312138].
    [123] D.V. Vassilevich, Tensor calculus on noncommutative spaces, Class. Quant. Grav.27(2010)095020[arXiv:1001.0766[hep-th]].
    [124] P. Mukherjee and A. Saha, A note on the noncommutative correction to gravity, Phys. Rev.D74(2006)027702[arXiv:hep-th/0605287].
    [125] X. Calmet and A. Kobakhidze, Second order noncommutative corrections to gravity, Phys.Rev. D74(2006)047702[arXiv:hep-th/0605275].
    [126] R. Banerjee and B.R. Majhi, Connecting anomaly and tunneling methods for the Hawkingeffect through chirality, Phys. Rev. D79(2009)064024[arXiv:0812.0497[hep-th]].
    [127] R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanism, Phys.Lett. B675(2009)243[arxiv:0903.0250[hep-th]].
    [128] Y.G. Miao, Z. Xue and S.J. Zhang, Massive charged particle’s tunneling from sphericalcharged black hole, Europhys. Lett.96(2011)10008[arXiv:1012.0390[hep-th]].
    [129] E.T. Newman and A. Janis, Note on the Kerr spinning-particle metric, J. Math. Phys.6(1965)915.
    [130] L. Herrera and J. Jimenez, The complexification of a nonrotating sphere: An extension of theNewman-Janis algorithm, J. Math. Phys.23(1982)2339.
    [131] S. Iso, H. Umetsu and F. Wilczek, Anomalies, Hawking radiations and regularity in rotatingblack holes, Phys. Rev. D74(2006)044017[arXiv:hep-th/0606018].
    [132] K. Umetsu, Hawking radiation from Kerr-Newman black hole and tunneling mechanism, Int.J. Mod. Phys. A25(2010)4123[arXiv:0907.1420[hep-th]].
    [133] R. Banerjee and B.R. Majhi, Quantum tunneling and black hole spectroscopy, Phys. Lett. B686(2010)279[arXiv:0907.4271[hep-th]].
    [134] R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP06(2008)095[arXiv:0805.2220[hep-th]].
    [135] R. Banerjee and S.K. Modak, Quantum tunneling, blackbody spectrum and non-logarithmicentropy correction for lovelock black holes, JHEP11(2009)073[arXiv:0908.2346[hep-th]].
    [136] B.R. Majhi, Hawking radiation and black hole spectroscopy in Horˇava-Lifshitz gravity, Phys.Lett. B686(2010)49[arXiv:0911.3239[hep-th]].
    [137] Q.-Q. Jiang, Y. Han and X. Cai, Quantum corrections and black hole spectroscopy, JHEP08(2010)049[arXiv:1007.4456[hep-th]].
    [138] Q.-Q. Jiang and X. Cai, Back reaction, emission spectrum and entropy spectroscopy, JHEP11(2010)066[arXiv:1011.0243[hep-th]].
    [139] K. Umetsu, Recent attempts in the analysis of black hole raditaion, arXiv:1003.5534[hep-th].
    [140] E.T. Akhmedov, T. Pilling and D. Singleton, Subtleties in the quasi-classical calculation ofHawking radiation, Int. J. Mod. Phys. D17(2008)2453[arXiv:0805.2653[gr-qc]].
    [141] V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Temporal contribution to gravitationalWKB-like calculations, Phys. Lett. B666(2008)269[arXiv:0804.2289[hep-th]].
    [142] V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Comments on anomaly ver-sus WKB/tunneling methods for calculating Unruh radiation, Phys. Lett. B673(2009)227[arXiv:0808.3413[hep-th]].
    [143] P. Nicolini and M. Rinaldi, A minimal length versus the Unruh effect, Phys. Lett. B695(2011)303[arXiv:0910.2860[hep-th]].
    [144] M. Chaichian, A. Tureanu and G. Zet, Twist as a symmetry principle and the noncommutativegauge theory formulation, Phys. Lett. B651(2007)319[arXiv:hep-th/0607179].
    [145] M. Chaichian, M. Oksansen, A. Tureanu and G. Zet, Gauging the twisted Poincare symmetryas noncommutative theory of gravitation, Phys. Rev. D79(2009)044016[arXiv:0807.0733[hep-th]].
    [146] D.V. Vassilevich, Diffemorphism covariant star products and noncommutative gravity, Class.Quant. Grav. bf26(2009)145010[arXiv:0904.3079[hep-th]].
    [147] M. Chaichian, M. Oksansen, A. Tureanu and G. Zet, Covariant star product on symplecticand Poisson spacetime manifolds, Int. J. Mod. Phys. A25(2010)3765[arXiv:1001.0503[math-ph]].
    [148] M. Chaichian, M. Oksanen, A. Tureanu and G. Zet, Noncommutative gauge theory usingcovariant star product defined between Lie valued differential forms, Phys. Rev. D81(2010)085026[arXiv:1001.0508[hep-th]].
    [149] D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at theLHC, JHEP1005(2010)022[arXiv:1003.1798].
    [150] F. Lizzi, G. Mangano, G. Miele and M. Peloso, Cosmological perturbations and short dis-tance physics from noncommutative geometry, JHEP0206(2002)049[arXiv:hep-th/0203099].
    [151] S. Alexander and J. Magueijo, Noncommutative geometry as a realization of varying speedof light cosmology, arXiv:hep-th/0104093.
    [152] S. Koh and R.H. Brandenberger, Cosmological perturbations in non-commutative inflation,JACP0706(2007)021[arXiv:hep-th/0702217].
    [153] W. Nelson and M. Sakellariadou, Cosmology and the noncommutative approach to the stan-dard model, Phys. Rev. D81(2010)085038[arXiv:0812.1657[hep-th]].
    [154] Y.S. Myung, Cosmological parameters in the noncommutative inflation, Phys. Lett. B601(2004)1[arXiv:hep-th/0407066].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700