用户名: 密码: 验证码:
阿氏丝孢酵母(Trichosporon asahii)β-葡萄糖苷酶及葡萄糖苷类风味物质水解机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-葡萄糖苷酶(EC3.2.1.21),是一类能催化芳基糖苷、烷基糖苷、纤维素和纤维低聚糖等糖链末端非还原性的β-D-葡萄糖苷键水解以释放出糖配体的水解酶,在葡萄酒糖苷类风味前体的水解中起着非常重要的作用。葡萄酒在我国各类果酒中占有不可替代的主导地位,由于目前葡萄酒酿造专用β-葡萄糖苷酶的缺乏,在很大程度上影响了葡萄酒风味的全面提升和改善。富含β-葡萄糖苷酶制剂在葡萄酒风味提升中的使用受许多因素限制而无法普及,从而使得以风味为导向的β-葡萄糖苷酶研究成为葡萄酒品质提升研究的热点和难点。我国的葡萄酒起步较晚,虽然生产和销售都逐年攀升,但与老牌的外国葡萄酒相比还有很长的路要走。品质和风格见长的洋酒使中国成为它们竞相争夺的市场。将性能优良的β-葡萄糖苷酶与品质有待提升、风格极需体现的中国葡萄酒结合的尝试,不但可以丰富我国葡萄酒酿造与风味研究的理论,还为实际应用提供有价值的指导。
     基于我国葡萄酒产业风味酶研究与应用现状,从我国著名葡萄酒生产企业张裕集团有限公司,胶东半岛葡萄酒生产基地进行采样分离筛选具优良特性的β-葡萄糖苷酶。主要结论如下:
     (1)针对高糖低pH的葡萄醪特性,对β-葡萄糖苷酶产生菌进行筛选。共分离到了10种酵母,有4种能检测到β-葡萄糖苷酶活力的存在。其中阿氏丝孢酵母(Trichosporonasahii)F6菌株的β-葡萄糖苷酶活力最高,目前这是此种属酵母菌产β-葡萄糖苷酶的首次报道。针对影响酶活力的主要葡萄酒酿造相关因子(糖、pH、醇),F6菌株的β-葡萄糖苷酶与实验中其它菌株的β-葡萄糖苷酶的抗性进行比较,同时测试对糖苷提取物的水解情况。结果显示,F6菌株的β-葡萄糖苷酶具有较强的低pH耐受性,同时对糖苷提取物表现出显著优于其它种属酵母β-葡萄糖苷酶的水解效果。这些结论显示出了F6菌株β-葡萄糖苷酶优良的应用潜能。
     (2)应用发酵技术对F6菌株产酶培养基进行优化及纯酶的性质研究。培养基优化策略使产酶量较初始的YPD培养基提高了1.74倍,达到了0.216U/mL。F6菌株发酵上清液,经过硫铵沉淀、苯基疏水柱等纯化步骤较顺利地得到F6菌株β-葡萄糖苷酶的两个电泳纯的同功酶(BG1和BG2),它们的分子量分别为160kDa和30kDa;BG1的动力学参数显示对pNPG的亲和性和催化效率都远大于BG2;而且BG1在pH和温度耐受方面都显示出优于BG2的特性;BG1还展示出对SDS和β-巯基乙醇的抗性,后者显示BG1活性中心没有二硫键。BG1比BG2优良的许多抗性源于其圆二色谱揭示高比例的β-折叠结构,即富β-折叠结构蛋白具有较高的动力学稳定特性。除此之外,BG1还具有以葡萄糖或纤维二糖为底物合成低聚寡糖的转糖苷能力。这些性能显示BG1具有较宽的工业应用范围和潜在应用价值。
     (3) F6菌株纯酶(BG1)与商业酶香气释放能力比较及对葡萄酒颜色的影响。分别将BG1与黑曲霉和杏仁的β-葡萄糖苷酶(AS, Al)应用于同一葡萄品种糖苷提取物水解,以及加入葡萄醪中经历发酵过程,以考察对糖苷形式存在的风味前体的水解情况。结果显示在糖苷提取物水解实验中,三个酶各自表现出对不同类前体物质的水解差异。酶BG1对萜类、部分醛酮和醇类物质的前体表现出显著高于其它酶的水解能力;经历发酵过程后,三个酶都表现出明显差于在糖苷提取物水解条件下对风味物质的释放效果。与两个商业酶相比,BG1表现出了较为优越的在葡萄酒酿造条件下水解风味前体释放香气成分的能力。此外,在蛇龙珠葡萄酒中主要呈色糖苷类物质malvidol-3-glucoside、malvidol-3-acetylglucoside和malvidol-3-coumarylglucosid中,三个酶都有不同程度的水解作用,其中BG1酶的水解程度最小,Al酶其次,AS酶水解程度最大。此结果显示出BG1在保持酒体色泽方面显著优于商业酶的性能。
     (4)糖苷类风味物质水解差异机制的探讨。葡萄酒酿造过程中存在抑制或使酶失活的因素,且对参试各酶的活力抑制或失活的程度不同。在不同浓度葡萄糖和不同pH条件下的蛋白二级结构和酶活变化情况显示,葡萄糖施加的是可逆的产物抑制过程,在去除葡萄糖后,酶的活力得以恢复。此外葡萄糖对三个酶的活力抑制的程度不同,其中AS酶对葡萄糖极为敏感,随着葡萄糖浓度的增加,酶活力急剧下降,AS酶的蛋白结构中α-螺旋、β-折叠比例下降而无规则卷曲结构比例的迅速增加。低pH对所有酶的活力都有较强的抑制作用,随着pH的下降,抑制作用变强,但BG1在三个酶中的对低pH耐受性最强。与葡萄糖对酶活力的抑制不同,低pH的抑制作用对酶是一种不可逆的损伤。pH对三个酶二级结构的影响显现出相似的趋势,即随着pH的降低,蛋白α-螺旋、β-折叠含量下降,而表征变性的无规则卷曲结构比例增加。BG1耐葡萄糖、抗低pH特性,源于其蛋白结构中含量较少的α-螺旋结构和富β-折叠结构,这也使其更具有在葡萄酒酿造条件下的应用前景。
     此课题的结果证实,筛选得到的F6菌株的β-葡萄糖苷酶(BG1),其多方面的性能都优于来自黑曲霉和杏仁的β-葡萄糖苷酶。如高糖、低pH耐受性,尤其是对葡萄中存在的主要色素物质水解率极低而表现出对酒体色泽的保持作用。课题还就F6菌株的β-葡萄糖苷酶与商业β-葡萄糖苷酶,在糖苷提取物水解条件与真实酿酒环境下水解糖苷前体能力差异的机理进行了探讨。因此,本论文不但为葡萄酒产业提供了风味提升关键酶的酶源,更为其应用提供了丰富的理论和实践指导。
β-Glucosidases (EC3.2.1.21) is the key enzyme which releases alkyl and arylβ-glycosides, and disaccharide glucosides and short oligosaccharides of non-volatileglycosidic precursors present in fruit juices, musts and wines. It plays an important role in thehydrolysis of wine aroma precursors. Due to the absence of special β-glucosidase inwinemaking, it is difficult to enhance or modify wine flavor in industry. The application ofenzyme preparation rich in β-glucosidase was restricted by many factors in grape wine. So,more and more research have focused on the improvement of wine quality by the applied ofβ-glucosidases. It has been a difficulty and a focus of the enhancement of wine quality tostudy β-glucosidase by the orientation of wine flavor. Although wine industry is booming inChina and the production and sale of wines are increasing, there is still a long way to go toreach the quality and characteristics of foreign wine. The application of proper β-glucosidasewith excellent performance in Chinese wines to improve the quality and embody the spcialstyle will contribute the theory and practical application to the winemaking and wine flavor inChina.
     Based on the little research and applications of β-glucosidase in Chinese wine, theproducer of β-glucosidase was isolated and screened from the enology environment of wineryof Jiaodong peninsula, belonged to Changyu Group Company Ltd.
     (1) Screening of wine yeast for β-glucosidase activity with high sugar and low pHtolerances. Among the10species,4exhibited higher β-glucosidase activity. Trichosporonasahii (F6) exhibited the highest β-glucosidase activity. This is the first description ofβ-glucosidase activity involved in Trichosporon yeast. The resistances of F6β-glucosidase tomain enological factors (high sugar, low pH, and alcohol) and the capacity to hydrolyzearoma precursors from glycoside extract was investigated compared with the β-glucosidasesfrom other species yeasts. The results showed that β-glucosidase of F6had stronger resistanceto low pH and better ability to hydrolyze aroma precursors than other β-glucosidases.
     (2) The production enhancement and characteristics of β-glucosidase from F6strain. Themaximum β-glucosidase production (0.216U/mL) of F6strain was achieved after theoptimization of medium, which led to an increase in β-glucosidase production of F6by1.74times than the basal medium YPD. The β-glucosidase of F6was purifed successively throughammonium sulphate precipitation, hydrophobic interaction chromatography, anion exchangechromatography, and gel fltration. Two β-glucosidases were obtained, namely BG1and BG2.The molecular weights of BG1and BG2were160kDa and30kDa, respectively. Due to thelower Km, BG1had more affinity for pNPG and higher catalytic efficiency than BG2. BG1also exhibited better resistance to SDS and β-mercaptoethanol, and the latter suggested theprobable absence of a disulfde bond in the active catalytic site of BG1. The better resistanceof BG1to many factors derived from the predominance of β-sheet structure. TheSDS-resistant and high β-sheet secondary structure of BG1suggests higher kinetic stabilitythan BG2. Additionally, BG1had the ability to synthesize oligosaccharides bytransglycosylation. Due to its unique characteristics, BG1from T. asahii appears to represent a novel β-glucosidase. These properties mark BG1as a potential enzyme for a wide range ofindustrial application.
     (3) β-Glucosidase BG1of F6was added to the glycosides extract and grape must toinvestigate the hydrolysis ability to aroma precursors under the two conditions, comparedwith commercial β-glucosidases from Aspergillus niger (AS) and almond (Al). The resultsrevealed that the three β-glucosidases exhibited different hydrolysis abilities under the grapeextract conditions. BG1had stronger ability to hydrolyze the precursors of terpenes, somealdehydes, ketones, and alcohols compounds; Al had more affinity for some glycosides ofaldehydes and ketones, AS exhibited stronger ability to release β-damascenone, C6compounds and some terpenes from their precursors. However, under the winemakingconditions, the three β-glucosidases did not show the similar performances. In comparisonwith AS and Al, BG1exhibited good performance under winemaking conditions. Due to thedifferent affinity for anthocyanins, the three β-glucosidases exhibited different hydrolysisdegrees to the main anthocyanin glycosides from Cabernet Gernischt wine, such asmalvidol-3-glucoside, malvidol-3-acetylglucoside, and malvidol-3-coumarylglucosid. BG1exerted the lowest hydrolysis degree, followed by Al. However, AS showed the highesthydrolysis ability. These results revealed that BG1has better property on protectinganthocyanin glycosides than commercial β-glucosidases. All of these will provide BG1wideapplication domain in industry.
     (4) Investigation of hydrolysis mechanism on aroma glycosides. The differentperformances of the three β-glucosidases under the two conditions suggested that theactivities of β-glucosidases were inhibited or inactivated by some factors during winemakingprocess. The extents of inhibition were different according to different β-glucosidase. Toinvestigate the possible reason, the effects of different pH and glucose concentrations on thesecondary structures and activity of β-glucosidases were studied. The assay of secondarystructures of different β-glucosidases revealed that glucose exerted reversible effects on thestructures of β-glucosidases. The activities of β-glucosidases recovered after removing theglucose. Among the three β-glucosidases, AS showed the highest sensitivity to glucose.Glucose inhibited the activity of AS resulting in a decrease in α-helix and β-sheet structuresand an increase in random coil structure. Low pH showed stronger inhabitation on theactivities of β-glucosidases and exhibited irreversible influence on the structures and activitiesof β-glucosidases. When the pH value was further decreased, the contents of α-helix andβ-sheet decreased and β-turn and random coil increased with decreasing pH. The lowercontent of α-helix and higher content of β-sheet gave BG1stronger resistance against glucoseand low pH and provides this β-glucosidase with a great impetus for application duringwinemaking process.
     All of these results showed that the β-glucosidase of F6strain exhibited more superiorproperties than commercial β-glucosidases from Aspergillus niger and almond, especially, thelow hydrolysis ratio of pigments in the wine treated by the β-glucosidase BG1of F6. Themechanism was explored for the different performances of the β-glucosidases between thehydrolysis of glycoside extract and the winemaking conditions. The results of this workprovided both the proper β-glucosidase and the valuable guidance of theory and practice for
     the usage of this enzyme.
引文
1. Ribéreau-Gayon P, Dubourdieu D, Donèche B. Handbook of enology [M]. Hoboken, NJ:Wiley,2006.
    2. Ribéreau-Gayon P, Glories Y, Maujean A, et al. Handbook of enology, volume2-Thechemistry of wine, stabilization and treatments [M]. New York: Wiley,2006.
    3. Styger G, Prior B, Bauer F. Wine flavor and aroma [J]. J Ind Microbiol Biotechnol,2011,38(9):1145-1159.
    4. Soles R, Ough C, Kunkee R. Ester concentration differences in wine fermented byvarious species and strains of yeasts [J]. American Journal of Enology and Viticulture,1982,33(2):94.
    5. Robinson J. Jancis Robinson's wine course: Aguide to the world of wine [M]. New York:Abbeville Press Publishers,2003.
    6. Berger R G. Flavours and fragrances [M]. Verlag Berlin Heidelberg: Springer,2007.
    7. Berger R G. Advances in Biochemical Engineering Biotechnology: Biotechnology ofAroma Compounds [M]. Berlin: Springer,1997.
    8. Sefton M, Francis I, Williams P. The volatile composition of Chardonnay juices: Astudyby flavor precursor analysis [J]. American Journal of Enology and Viticulture,1993,44(4):359.
    9. Spillman P, Pollnitz A, Liacopoulos D, et al. Formation and degradation of furfurylalcohol,5-methylfurfuryl alcohol, vanillyl alcohol, and their ethyl ethers in barrel-agedwines [J]. Journal ofAgricultural and Food Chemistry,1998,46(2):657-663.
    10. Günata Z, Wirth Jérémie L, Guo W, et al. C13-Norisoprenoid aglycon composition ofleaves and grape berries from Muscat of Alexandria and Shiraz Cultivars [M]. AmericanChemical Society,2001.255-261.
    11. Winterhalter P, Skouroumounis G. Glycoconjugated aroma compounds: Occurrence, roleand biotechnological transformation [M]. Springer Berlin/Heidelberg,1997.73-105.
    12. Abbott N A, Coombe B G, Williams P J. The contribution of hydrolyzed flavorprecursors to quality differences in shiraz juice and wines-An investigation by sensorydescriptive analysis [J]. American Journal of Enology and Viticulture,1991,42(3):167-174.
    13. Francis I, Sefton M, Williams P. Astudy by sensory descriptive analysis of the effects ofoak origin, seasoning, and heating on the aromas of oak model wine extracts [J].American Journal of Enology and Viticulture,1992,43(1):23.
    14. Cordonnier R, Bayonove C. Demonstration in Alexandria Muscat grape variety ofbound monoterpenes using one or more enzymes of the fruit [J]. Comptes Rendus AcadSciences,1974,278:3387–3390.
    15. Cabaroglu T, Selli S, Canbas A, et al. Wine flavor enhancement through the use ofexogenous fungal glycosidases [J]. Enzyme and Microbial Technology,2003,33(5):581-587.
    16. Günata Z, Vallier M J, Sapis J C, et al. Hydrolysis of monoterpenyl-β-glucosides bycloned β-glucosidases from Bacillus polymyxa [J]. Enzyme and Microbial Technology,1996,18(4):286-290.
    17. Günata Z D I, Vallier M J, Sapis J. C. Bayonove C. Multiple forms of glycosidases in anenzyme preparation from Aspergillus niger: Partial characterization of a β-apiosidase [J].Enzyme and Microbial Technology,1997,21(1):39-44.
    18. Barbagallo R N, Spagna G, Palmeri R, et al. Selection, characterization and comparisonof β-glucosidase from mould and yeasts employable for enological applications [J].Enzyme and Microbial Technology,2004,35(1):58-66.
    19. Francis M J O, Allcock C. Monoterpene β-D-glucosides in roses-Isolation andformation from dl-[2-14c]mevalonate [J]. Biochemical Journal,1969,113(3): P38-42.
    20. Francis M J O, Allcock C. geraniol β-D-glucoside-occurrence and synhesis in roseflowers [J]. Phytochemistry,1969,8(8):1339-1345.
    21. Williams P J, Strauss C R, Wilson B, et al. Use of C18reversed-phaseliquid-chromatography for the isolation of monoterpene glycosides and nor-isoprenoidprecursors from grape juice and wines [J]. Journal of Chromatography,1982,235(2):471-480.
    22. Stahl-Biskup E. Monoterpene glycosides, state-of-the-art [J]. Flavour and FragranceJournal,1987,2(2):75-82.
    23. Stahl-Biskup E, Intert F, Holthuijzen J, et al. Glycosidically bound volatiles-A review1986–1991[J]. Flavour and Fragrance Journal,1993,8(2):61-80.
    24. López R, Ezpeleta E, Sánchez I, et al. Analysis of the aroma intensities of volatilecompounds released from mild acid hydrolysates of odourless precursors extracted fromTempranillo and Grenache grapes using gas chromatography-olfactometry [J]. FoodChemistry,2004,88(1):95-103.
    25. Williams P, Strauss C, Wilson B, et al. Studies on the hydrolysis of Vitis viniferamonoterpene precursor compounds and model monoterpene β-D-glucosidesrationalizing the monoterpene composition of grapes [J]. Journal of Agricultural andFood Chemistry,1982,30(6):1219-1223.
    26. Gunata Z, Bitteur S, Brillouet J, et al. Sequential enzymic hydrolysis of potentiallyaromatic glycosides from grape [J]. Carbohydr Res,1988,184:139-149.
    27. Voirin S G, Baumes R L, Bitteur S M, et al. Novel monoterpene disaccharide glycosidesof Vitis vinifera grapes [J]. Journal of Agricultural and Food Chemistry,1990,38(6):1373-1378.
    28. Palmeri R, Spagna G. β-Glucosidase in cellular and acellular form for winemakingapplication [J]. Enzyme and Microbial Technology,2007,40(3):382-389.
    29. Liebig J, Wohler F. The composition of bitter almonds [J]. Annalen,1837,22(1):1-24.
    30. Feldwisch J, Vente A, Zettl R, et al. Characterization of two membrane-associatedβ-glucosidases from maize (Zea mays L.) coleoptiles [J]. Biochemical Journal,1994,302(Pt1):15.
    31. Martino A, Pifferi P G, Spagna G. Immobilization of β-glucosidase from a commercialpreparation2: Optimization of the immobilization process on chitosan [J]. ProcessBiochemistry,1996,31(3):287-293.
    32. Spano G, Rinaldi A, Ugliano M, et al. A β-glucosidase gene isolated from wineLactobacillus plantarum is regulated by abiotic stresses [J]. Journal of AppliedMicrobiology,2005,98(4):855-861.
    33. Spagna G, Barbagallo R N, Greco E, et al. A mixture of purified glycosidases fromAspergillus niger for oenological application immobilised by inclusion in chitosan gels[J]. Enzyme and Microbial Technology,2002,30(1):80-89.
    34. Kamiya S, Esaki S, Shiba N. syntheses of several β-L-rhamnopyranosides [J].Agricultural and Biological Chemistry,1987,51(8):2207-2214.
    35. Martino A, Schiraldi C, Di Lazzaro A, et al. Improvement of the flavour of Falanghinawhite wine using a purified glycosidase preparation from Aspergillus niger [J]. ProcessBiochemistry,2000,36(1-2):93-102.
    36. Palomo E S, Hidalgo M M, Gonzalez-Vinas M A, et al. Aroma enhancement in winesfrom different grape varieties using exogenous glycosidases [J]. Food Chemistry,2005,92(4):627-635.
    37. Günata Z, Bayonove C, Tapiero C, et al. Hydrolysis of grape monoterpenylβ-D-glucosides by various β-glucosidases [J]. JAgric Food Chem,1990,38:1232-1236.
    38. Pogorzelski E, Wilkowska A. Flavour enhancement through the enzymatic hydrolysis ofglycosidic aroma precursors in juices and wine beverages: A review [J]. Flavour andFragrance Journal,2007,22(4):251-254.
    39. Aryan A, Wilson B, Strauss C, et al. The properties of glycosidases of Vitis vinifera anda comparison of their β-glucosidase activity with that of exogenous enzymes. Anassessment of possible applications in enology [J]. American Journal of Enology andViticulture,1987,38(3):182.
    40. Sarry J, Günata Z. Plant and microbial glycoside hydrolases: Volatile release fromglycosidic aroma precursors [J]. Food Chemistry,2004,87(4):509-521.
    41. Amano Y, Kanda T. New insights into cellulose degradation by cellulases and relatedenzymes [J]. Trends in Glycoscience and Glycotechnology,2002,14(75):27-34.
    42.李远华. β-葡萄糖苷酶的研究进展(综述)[J].安徽农业大学学报,2002,(04).
    43. Decker C, Visser J, Schreier P. β-Glucosidase multiplicity from Aspergillus tubingensisCBS643.92: Purification and characterization of four β-glucosidases and theirdifferentiation with respect to substrate specificity, glucose inhibition and acid tolerance[J]. Applied Microbiology and Biotechnology,2001,55(2):157-163.
    44. Grimaldi A, McLean H, Jiranek V. Identification and partial characterization ofglycosidic activities of commercial strains of the lactic acid bacterium, Oenococcus oeni[J]. American Journal of Enology and Viticulture,2000,51(4):362.
    45. Guilloux-Benatier M, Bouhier S, Feuillat M. Activités enzymatiques: Glycosidases etpeptidase chez Leuconostoc oenos au cours de la croissance bactérienne. Influence desmacromolécules de levures [J]. Vitis,1993,32(1):51-57.
    46. Ugliano M, Genovese A, Moio L. Hydrolysis of wine aroma precursors duringmalolactic fermentation with four commercial starter cultures of Oenococcus oeni [J].Journal ofAgricultural and Food Chemistry,2003,51(17):5073-5078.
    47. D'Incecco N, Bartowsky E, Kassara S, et al. Release of glycosidically bound flavourcompounds of Chardonnay by Oenococcus oeni during malolactic fermentation [J].Food Microbiology,2004,21(3):257-265.
    48. Boido E, Lloret A, Medina K, et al. Effect of β-glycosidase activity of Oenococcus oenion the glycosylated flavor precursors of Tannat wine during malolactic fermentation [J].Journal ofAgricultural and Food Chemistry,2002,50(8):2344-2349.
    49. Ugliano M, Moio L. The influence of malolactic fermentation and Oenococcus oenistrain on glycosidic aroma precursors and related volatile compounds of red wine [J].Journal of the Science of Food andAgriculture,2006,86(14):2468-2476.
    50. Darriet P, Boidron J, Dubourdieu D. L'hydrolyse des hétérosides terpéniques du Muscatà petits grains par les enzymes périplasmiques de Saccharomyces cerevisiae [J].Connaissance de la Vigne et du Vin,1988,22(3):189-195.
    51. Williams P J, Cynkar W, Francis I L, et al. Quantification of glycosides in grapes, juices,and wines through a determination of glycosyl glucose [J]. Journal of Agricultural andFood Chemistry,1995,43(1):121-128.
    52. Zoecklein B, Marcy J, Williams J, et al. Effect of native yeasts and selected strains ofSaccharomyces cerevisiae on glycosyl glucose, potential volatile terpenes, and selectedaglycones of White Riesling (Vitis vinifera L.) wines [J]. Journal of Food Compositionand Analysis,1997,10(1):55-65.
    53. Zoecklein B, Marcy J, Jasinski Y. Effect of fermentation, storage sur lie orpost-fermentation thermal processing on White Riesling (Vitis vinifera L.)glycoconjugates [J]. American Journal of Enology and Viticulture,1997,48(4):397.
    54. McMahon H, Zoecklein B W, Fugelsang K, et al. Quantification of glycosidase activitiesin selected yeasts and lactic acid bacteria [J]. Journal of Industrial Microbiology&Biotechnology,1999,23(3):198-203.
    55. Arévalo Villena M, Díez Pérez J, úbeda J F, et al. Arapid method for quantifying aromaprecursors: Application to grape extract, musts and wines made from several varieties[J]. Food Chemistry,2006,99(1):183-190.
    56. Günata Z, Dugelay I, Sapis J, et al. Role of enzymes in the use of the flavour potentialfrom grape glycosides in winemaking [J]. Progress in flavour precursors studies-analysis,generation, biotechnologyAllured Publishing, Carol Stream, Ill,1993:219-234.
    57. Kotseridis Y, Baumes R L, Skouroumounis G K. Quantitative determination of free andhydrolytically liberated β-damascenone in red grapes and wines using a stable isotopedilution assay [J]. Journal of ChromatographyA,1999,849(1):245-254.
    58. Ugliano M, Bartowsky E J, McCarthy J, et al. Hydrolysis and transformation of grapeglycosidically bound volatile compounds during fermentation with three Saccharomycesyeast strains [J]. Journal ofAgricultural and Food Chemistry,2006,54(17):6322-6331.
    59. Gueguen Y, Chemardin P, Janbon G, et al. A very efficient β-glucosidase catalyst for thehydrolysis of flavor precursors of wines and fruit juices [J]. Journal of Agricultural andFood Chemistry,1996,44(8):2336-2340.
    60.孙爱东,葛毅强.不同来源的增香酶酶解澄汁(皮)中键合态主要芳香物质的效果分析[J].食品与发酵工业,2001,27(11):1-4.
    61.李平.黑曲霉β-葡萄糖苷酶的食品增香应用[J].2000,26(002):5-6.
    62. Christen P, López‐Munguía A. Enzymes and food flavor-A review [J]. FoodBiotechnology,1994,8(2-3):167-190.
    63.陈守文.利用黑曲霉β-葡萄糖苷酸改善葡萄酒的风味[J].中国酿造,1999,3(003):17-19.
    64. Ogawa K, Ijima Y, Guo W, et al. Purification of a β-primeverosidase concerned withalcoholic aroma formation in tea leaves (Cv. Shuixian) to be processed to Oolong tea [J].Journal ofAgricultural and Food Chemistry,1997,45(3):877-882.
    65.李远华. β-葡萄糖苷酶的研究进展(综述)[J].安徽农业大学学报,2002,29(004):421-425.
    66.徐茂军. β-葡萄糖苷酶对豆奶及豆奶粉中大豆异黄酮糖苷化合物的转化作用研究[J].中国食品学报,2005,5(004):28-33.
    67. Pyo Y, Lee T, Lee Y. Enrichment of bioactive isoflavones in soymilk fermented with[beta]-glucosidase-producing lactic acid bacteria [J]. Food Research International,2005,38(5):551-559.
    68. Saloheimo M, Kuja-Panula J, Ylosmaki E, et al. Enzymatic Properties and intracellularlocalization of the novel trichoderma reesei β-glucosidase BGLII (Cel1A)[J]. Appliedand Environmental Microbiology,2002,68(9):4546.
    69.邵金辉. β-葡萄糖苷酶在工农医领域的应用[J].生命的化学,2005,25(1):22-24.
    70. Yan T, Liau J. Synthesis of cello-oligosaccharides from cellobiose with β-glucosidase IIfrom Aspergillus niger [J]. Biotechnology Letters,1998,20(6):591-594.
    71. Tamborra P, Martino N, Esti M. Laboratory tests on glycosidase preparations in wine [J].Analytica Chimica Acta,2004,513(1):299-303.
    72.赵林果,游丽金,孟鹏等.黑曲霉胞外耐高糖β-葡萄糖苷酶的分离纯化及部分特性研究[J].林产化学与工业,2008,27(6):41-46.
    73. Fu-Mian C, Pifferi P, Setti L, et al. Immobilization of an anthocyanase (β-glucosidase)from Aspergillus niger [J]. Italian Journal of Food Science,1994,6(1):31-42.
    74. Sestelo A B F, Poza M, Villa T G. β-Glucosidase activity in a Lactobacillus plantarumwine strain [J]. World Journal of Microbiology&Biotechnology,2004,20(6):633-637.
    75. Le Traon-Masson M-P, Pellerin P. Purification and characterization of twoβ-D-glucosidases from an Aspergillus Niger enzyme preparation: Affinity andspecificity toward glucosylated compounds characteristic of the processing of fruits [J].Enzyme and Microbial Technology,1998,22(5):374-382.
    76. Villena M A, Iranzo J F ú, Pérez A I B. β-Glucosidase activity in wine yeasts:Application in enology [J]. Enzyme and Microbial Technology,2007,40(3):420-425.
    77. McMahon H, Zoecklein B, Fugelsang K, et al. Quantification of glycosidase activities inselected yeasts and lactic acid bacteria [J]. Journal of Industrial Microbiology andBiotechnology,1999,23(3):198-203.
    78.李景明,于静,吴继红等.不同酵母发酵的赤霞珠干红葡萄酒香气成分研究[J].食品科学,2009,30(2):185-189.
    79.戴蕴青,赵文恩.红葡萄酒中白藜芦醇及其糖苷异构体的反相HPLC分析[J].中国农业大学学报,2002,7(001):14-18.
    80.丁燕,赵新节.酚类物质的结构与性质及其与葡萄及葡萄酒的关系[J].中外葡萄与葡萄酒,2003,(001):13-17.
    81.高年发,李小刚.葡萄及葡萄酒中的有机酸及降酸研究[J].中外葡萄与葡萄酒,1999,(004):6-6.
    82.李华,胡博然,张予林.贺兰山东麓地区霞多丽干白葡萄酒香气成分的GC/MS分析[J].中国食品学报,2004,4(3):72-75.
    83.芮玉奎,于庆泉,金银花等.应用ICP-MS快速测定葡萄酒中40种元素的含量[J].光谱学与光谱分析,2007,27(5):1015-1017.
    84.王华,尉亚辉.葡萄酒中白藜芦醇的HPLC测定[J].西北农业大学学报,1999,27(004):83-87.
    85.李小燕,李梅,陈其锋等.固相萃取-高效液相色谱检测葡萄酒中罗丹明B [J].食品科学,2011,32(08).
    86.张岱,王方,王伟等.顶空固相微萃取-气相色谱质谱联用技术比较赤霞珠干化葡萄和干化葡萄酒香气成分[J].食品与发酵工业,2010,(002):168-171.
    87.王燕,王方,张岱等.葡萄酒有机酸的HPLC分析中色谱条件的优化[J].中外葡萄与葡萄酒,2010,(005):34-37.
    88. González-Pombo P, Pérez G, Carrau F, et al. One-step purification and characterizationof an intracellular β-glucosidase from Metschnikowia pulcherrima [J]. BiotechnologyLetters,2008,30(8):1469-1475.
    89. Van Rensburg P, Stidwell T, Lambrechts M G, et al. Development and assessment of arecombinant Saccharomyces cerevisiae wine yeast producing two aroma-enhancingβ-glucosidases encoded by the Saccharomycopsis fibuligera BGL1and BGL2genes [J].Annals of Microbiology,2005,55(1):33-42.
    90. Aryan A, Wilson B, Strauss C, et al. The properties of glycosidases of Vitis vinifera anda comparison of their β-glucosidase activity with that of exogenous enzymes. Anassessment of possible applications in enology [J]. American Journal of Enology andViticulture,1987,38(3):182.
    91. Faia A M, Ferreira A M, Climaco M C. The role of non-Saccharomyces species inreleasing glycosidic bound fraction of grape aroma components-Apreliminary study [J].Journal ofApplied Microbiology,2001,91(1):67-71.
    92. Restuccia C, Pulvirenti A, Caggia C, et al. A β-glucosidase positive strain ofSaccharomyces cerevisiae isolated from grape must [J]. Annals of Microbiology,2002,52(1):47-53.
    93. Belancic A, Gunata Z, Vallier M, et al. β-Glucosidase from the grape native yeastDebaryomyces vanrijiae: purification, characterization, and its effect on monoterpenecontent of a Muscat grape juice [J]. Journal of Agriculture and Food Chemistry,2003,51(5):1453-1459.
    94. Rodriguez M E, Lopes C, Valles S, et al. Selection and preliminary characterization ofβ-glycosidases producer Patagonian wild yeasts [J]. Enzyme and Microbial Technology,2007,41(6-7):812-820.
    95. Günata Z, Bayonove C, Tapiero C, et al. Hydrolysis of grape monoterpenylβ-D-glucosides by various β-glucosidases [J]. Journal of Agricultural and FoodChemistry,1990,38:1232-1236.
    96. Wang Y. Screening of sparkling wine's yeast strains [D]. Xi'an: Northwest A&FUniversity,2008.
    97. Guillamón J M, Sabaté J, Barrio E, et al. Rapid identification of wine yeast speciesbased on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region [J].Archives of Microbiology,1998,169(5):387-392.
    98. Teresa Fernández-Espinar M, Esteve-Zarzoso B, Querol A, et al. RFLP analysis of theribosomal internal transcribed spacers and the5.8S rRNA gene region of the genusSaccharomyces: A fast method for species identification and the differentiation of floryeasts [J]. Antonie van Leeuwenhoek,2000,78(1):87-97.
    99. Kang W, Xu Y, Qin L, et al. Effects of different β-D-glycosidases on bound aromacompounds in Muscat grape determined by HS-SPME and GC-MS [J]. Journal of theInstitute of Brewing,2010,116(1):70-77.
    100. Sun H H, Ma H Q, Hao M L, et al. Identification of yeast population dynamics ofspontaneous fermentation in Beijing wine region, China [J]. Annals of microbiology,2009,59(1):69-76.
    101. Falqué E, Fernández E, Dubourdieu D. Differentiation of white wines by their aromaticindex [J]. Talanta,2001,54(2):271-281.
    102. Ribéreau-Gayon P. The chemistry of wine stabilization and treatments [M]. Chichester;New York: Wiley,2000.404p.
    103. Molina A M, Guadalupe V, Varela C, et al. Differential synthesis of fermentative aromacompounds of two related commercial wine yeast strains [J]. Food Chemistry,2009,117(2):189-195.
    104. Espinosa E, Sánchez S, Farrés A. Nutritional factors affecting lipase production byRhizopus delemar CDBB H313[J]. Biotechnology Letters,1990,12(3):209-214.
    105. Arasaratnam V, Senthuran A, Balasubramaniam K. Supplementation of whey withglucose and different nitrogen sources for lactic acid production by Lactobacillusdelbrueckii [J]. Enzyme and Microbial Technology,1996,19(7):482-486.
    106. Hu J N, Zhu X M, Lee K T, et al. Optimization of ginsenosides hydrolyzingβ-glucosidase production from Aspergillus niger using response surface methodology [J].Biological&Pharmaceutical Bulletin,2008,31(10):1870-1874.
    107. Nilegaonkar S S, Zambare V P, Kanekar P P, et al. Production and partialcharacterization of dehairing protease from Bacillus cereus MCM B-326[J].Bioresource Technology,2007,98(6):1238-1245.
    108. Tiwary E, Gupta R. Medium optimization for a novel58kDa dimeric keratinase fromBacillus licheniformis ER-15: biochemical characterization and application in featherdegradation and dehairing of hides [J]. Bioresource Technology,2010,101(15):6103-6110.
    109. Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding [J]. AnalyticalBiochemistry,1976,72(1-2):248-254.
    110. Laemmli U. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227(5259):680-685.
    111. Mukherjee S, Khowala S. Secretion of cellobiase is mediated via vacuoles inTermitomyces clypeatus [J]. Biotechnology Progress,2002,18(6):1195-1200.
    112. Whitmore L, Wallace B. Protein secondary structure analyses from circular dichroismspectroscopy: Methods and reference databases [J]. Biopolymers,2008,89(5):392-400.
    113. Pal S, Banik S P, Ghorai S, et al. Purification and characterization of a thermostableintra-cellular β-glucosidase with transglycosylation properties from filamentous fungusTermitomyces clypeatus [J]. Bioresource Technology,2010,101(7):2412-2420.
    114. Yang S Q, Jiang Z Q, Yan Q J, et al. Characterization of a thermostable extracellularβ-glucosidase with activities of exoglucanase and transglycosylation from Paecilomycesthermophila [J]. Journal ofAgricultural and Food Chemistry,2008,56(2):602-608.
    115. Wang Q, Gao Z X, Zhang N, et al. Purification and characterization of trypsin from theintestine of hybrid tilapia (Oreochromis niloticus x O.aureus)[J]. Journal of Agriculturaland Food Chemistry,2010,58(1):655-659.
    116. Wallecha A, Mishra S. Purification and characterization of two β-glucosidases from athermo-tolerant yeast Pichia etchellsii [J]. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics,2003,1649(1):74-84.
    117. Seidle H F, Allison S J, George E, et al. Trp-49of the family3β-glucosidase fromAspergillus niger is important for its transglucosidic activity: Creation of novelβ-glucosidases with low transglucosidic efficiencies [J]. Archives of Biochemistry andBiophysics,2006,455(2):110-118.
    118. Nakkharat P, Haltrich D. Purification and characterisation of an intracellular enzymewith β-glucosidase and β-galactosidase activity from the thermophilic fungusTalaromyces thermophilus CBS236.58[J]. J Biotechnol,2006,123(3):304-313.
    119. Parry N J, Beeyer, D.E., Owen, E., Vandenberghe, I., Beeurmen, J.V., Bhat, M.K.Biochemical characterization and mechanism of action of a thermostable β-glucosidasepurified from Thermoascus aurantiacus [J]. Biochemical Journal,2001,353(pt.1):117-127.
    120. Khantaphant S, Benjakul S. Purification and characterization of trypsin from the pyloriccaeca of brownstripe red snapper (Lutjanus vitta)[J]. Food Chemistry,2010,120(3):658-664.
    121. Jiang Y K, Sun L C, Cai Q F, et al. Biochemical characterization of chymotrypsins fromthe hepatopancreas of Japanese sea bass (Lateolabrax japonicus)[J]. Journal ofAgricultural and Food Chemistry,2010,58(13):8069-8076.
    122. Okamoto K, Sugita Y, Nishikori N, et al. Characterization of two acidic β-glucosidasesand ethanol fermentation in the brown rot fungus Fomitopsis palustris [J]. Enzyme andMicrobial Technology,2011,48(4-5):359-364.
    123. Souza F H M, Nascimento C V, Rosa J C, et al. Purification and biochemicalcharacterization of a mycelial glucose-and xylose-stimulated β-glucosidase from thethermophilic fungus Humicola insolens [J]. Process Biochemistry,2010,45(2):272-278.
    124. Elyas K K, Mathew A, Sukumaran R K, et al. Production optimization and properties ofβ-glucosidases from a marine fungus Aspergillus-SA58[J]. N Biotechnol,2010,27(4):347-351.
    125. Wang Q, Gao Z X, Zhang N, et al. Purification and characterization of trypsin from theintestine of hybrid Tilapia (Oreochromis niloticus x O.aureus)[J]. Journal ofAgricultural and Food Chemistry,2010,58(1):655-659.
    126. Harnpicharnchai P, Champreda V, Sornlake W, et al. A thermotolerant β-glucosidaseisolated from an endophytic fungi, Periconia sp., with a possible use for biomassconversion to sugars [J]. Protein Expr Purif,2009,67(2):61-69.
    127. Joo A-R, Jeya M, Lee K-M, et al. Production and characterization of β-1,4-glucosidasefrom a strain of Penicillium pinophilum [J]. Process Biochemistry,2010,45(6):851-858.
    128. Saibi W, Gargouri A. Purification and biochemical characterization of an atypicalβ-glucosidase from Stachybotrys microspora [J]. Journal of Molecular Catalysis B:Enzymatic,2011,72(3-4):107-115.
    129. Manning M, Colón W. Structural basis of protein kinetic stability: Resistance to sodiumdodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure [J].Biochemistry,2004,43(35):11248-11254.
    130. Badal C. Saha S N F, Rodney J. Bothast. Production, purification, and properties of athermostable β-glucosidase from a color variant strain of Aureobasidium pullulans [J].Applied and Environmental Microbiology,1994,60(10):3774-3780.
    131. Matern H, Gartzen R, Matern S. β-Glucosidase activity towards a bile acid glucoside inhuman liver [J]. FEBS Lett,1992,314(2):183-186.
    132. Gao J, Zhao X S, Liu H B, et al. A highly selective ginsenoside Rb-1-hydrolyzingβ-D-glucosidase from Cladosporium fulvum [J]. Process Biochemistry,2010,45(6):897-903.
    133. Zhao X, Gao L, Wang J, et al. A novel ginsenoside Rb1-hydrolyzing β-D-glucosidasefrom Cladosporium fulvum [J]. Process Biochemistry,2009,44(6):612-618.
    134. Langston J, Sheehy N, Xu F. Substrate specificity of Aspergillus oryzae family3β-glucosidase [J]. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics,2006,1764(5):972-978.
    135. Bhatia Y, Mishra S, Bisaria V. Microbial β-glucosidases: Cloning, properties, andapplications [J]. Critical Reviews in Biotechnology,2002,22(4):375-407.
    136. Chowdhury S, Ghorai S, Banik S P, et al. Characterization of a novel low molecularweight sucrase from filamentous fungus Termitomyces clypeatus [J]. ProcessBiochemistry,2009,44(10):1075-1082.
    137. Ma H, Huang L, Jia J, et al. Effect of energy-gathered ultrasound on Alcalase [J].Ultrason Sonochem,2011,18(1):419-424.
    138. Fujimoto Y, Hattori T, Uno S, et al. Enzymatic synthesis of gentiooligosaccharides bytransglycosylation with β-glycosidases from Penicillium multicolor [J]. Carbohydr Res,2009,344(8):972-978.
    139. Hiroyuki Kono S K, Kenji Tajima, Tomoki Erata and Mitsuko Takai. Structural analysesof new tri-and tetrasaccharides produced from disaccharides by transglycosylation ofpurified Trichoderma viride β-glucosidase [J]. Glycoconjugate Journal,1999,16(8):415–423.
    140. Todaro A, Palmeri R, Barbagallo R N, et al. Increase of trans-resveratrol in typicalSicilian wine using β-glucosidase from various sources [J]. Food Chemistry,2008,107(4):1570-1575.
    141. Wang Y, Li J, Xu Y. Characterization of novel β-glucosidases with transglycosylationproperties from Trichosporon asahii [J]. Journal of Agricultural and Food Chemistry,2011,59(20):11219-11227.
    142. Rodríguez M E, Lopes C, Valles S, et al. Selection and preliminary characterization ofβ-glycosidases producer Patagonian wild yeasts [J]. Enzyme and Microbial Technology,2007,41(6-7):812-820.
    143. Spagna G, Barbagallo R N, Palmeri R, et al. Properties of endogenous β-glucosidase of aPichia anomala strain isolated from Sicilian musts and wines [J]. Enzyme and MicrobialTechnology,2002,31(7):1036-1041.
    144. Swangkeaw J, Vichitphan S, Butzke C E, et al. The characterisation of a novel Pichiaanomala β-glucosidase with potentially aroma-enhancing capabilities in wine [J].Annals of microbiology,2009,59(2):335-343.
    145. Kaur J, Chadha B, Kumar B, et al. Purification and characterization of β-glucosidasefrom Melanocarpus sp. MTCC3922[J]. Electronic Journal of Biotechnology,2007,10:260-270.
    146. Barbagallo R N, Spagna G, Palmeri R, et al. Assessment of β-glucosidase activity inselected wild strains of Oenococcus oeni for malolactic fermentation [J]. Enzyme andMicrobial Technology,2004,34(3-4):292-296.
    147. Gueguen Y, Chemardin P, Arnaud A, et al. Comparative study of extracellular andintracellular β-glucosidases of a new strain of Zygosaccharomyces bailii isolated fromfermenting Agave Juice [J]. Journal ofApplied Bacteria,1995,78:270-280.
    148. Canuti V, Conversano M, Calzi M L, et al. Headspace solid-phase microextraction-gaschromatography-mass spectrometry for profiling free volatile compounds in CabernetSauvignon grapes and wines [J]. Journal of Chromatography A,2009,1216(15):3012-3022.
    149. Torrens J, Urpí P, Riu-Aumatell M, et al. Different commercial yeast strains affectingthe volatile and sensory profile of cava base wine [J]. International Journal of FoodMicrobiology,2008,124(1):48-57.
    150. Xi Z, Zhang Z, Cheng Y, et al. The effect of vineyard cover crop on main monomericphenols of grape berry and wine in Vitis viniferal L. cv. Cabernet Sauvignon [J].Agricultural Sciences in China,2010,9(3):440-448.
    151. Tao Y-S, Liu Y-q, Li H. Sensory characters of Cabernet Sauvignon dry red wine fromChangli County (China)[J]. Food Chemistry,2009,114(2):565-569.
    152. Chinnici F, Sonni F, Natali N, et al. Colour features and pigment composition of Italiancarbonic macerated red wines [J]. Food Chemistry,2009,113(2):651-657.
    153. Esti M, Tamborra P. Influence of winemaking techniques on aroma precursors [J].Analytica Chimica Acta,2006,563(1-2):173-179.
    154. García-Carpintero E G, Sánchez-Palomo E, Gallego M A G, et al. Volatile and sensorycharacterization of red wines from cv. Moravia Agria minority grape variety cultivatedin La Mancha region over five consecutive vintages [J]. Food Research International,2011,44(5):1549-1560.
    155. Ferrari G, Lablanquie O, Cantagrel R, et al. Determination of key odorant compounds infreshly distilled cognac using GC-O, GC-MS, and sensory evaluation [J]. Journal ofAgricultural and Food Chemistry,2004,52(18):5670-5676.
    156. Burdock G A. Fenaroli's handbook of flavor ingredients,5th edition [M]. Boca RatonLondon New York Washington, D.C.,2004.
    157. Ash M, Ash I. Handbook of flavors and fragrances [M]. Synapse Information Resources,
    2006.
    158. Penza M, Cassano G. Application of principal component analysis and artificial neuralnetworks to recognize the individual VOCs of methanol/2-propanol in a binary mixtureby SAW multi-sensor array [J]. Sensors and Actuators B: Chemical,2003,89(3):269-284.
    159. Wang Y, Kang W, Xu Y, et al. Effect of different indigenous yeast β-glucosidases on theliberation of bound aroma compounds [J]. Journal of the Institute of Brewing,2011,117(2):230-237.
    160. Ma H, Huang L, Jia J, et al. Effect of energy-gathered ultrasound on Alcalase [J].Ultrason Sonochem,2011,18(1):419-424.
    161. Chauve M, Mathis H, Huc D, et al. Comparative kinetic analysis of two fungalβ-glucosidases [J]. Biotechnol Biofuels,2010,3(1):3.
    162. Bohlin C, Olsen S N, Morant M D, et al. A comparative study of activity and apparentinhibition of fungal β-glucosidases [J]. Biotechnology and Bioengineering,2010,107(6):943-952.
    163. Kara H E, Sinan S, Turan Y. Purification of β-glucosidase from olive (Olea europaea L.)fruit tissue with specifically designed hydrophobic interaction chromatography andcharacterization of the purified enzyme [J]. Journal of Chromatography B-AnalyticalTechnologies in the Biomedical and Life Sciences,2011,879(19):1507-1512.
    164. Pitson S M, Seviour R J, McDougall B M. Purification and characterization of anextracellular β-glucosidase from the filamentous fungus Acremonium persicinum and itsprobable role in β-glucan degradation [J]. Enzyme and Microbial Technology,1997,21(3):182-190.
    165. Wang J Z, Lin T, Teng T, et al. Spectroscopic studies on the irreversible heat-inducedstructural transition of Pin1[J]. Spectrochim Acta A: Molecular and BiomolecularSpectroscopy,2011,78(1):142-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700