用户名: 密码: 验证码:
银杏叶提取物对AFB1致大鼠肝癌抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(Primary hepatic carcinoma, PHC)是人类比较常见的一种恶性肿瘤,在全球范围内的发病率排第五,死亡率排第三。我国是原发性肝癌高发的国家,每年因原发性肝癌死亡的人数有23万之多,占全部恶性肿瘤死亡率近20%,仅次于胃癌位居第二位,在江苏启东及广西扶绥地区原发性肝癌的发病率尤其突出。原发性肝癌具有诊治难、进展快、预后差的特点,严重危害着人们的健康,必须进一步加强原发性肝癌的防治研究。
     流行病学及动物学实验研究表明,在我国和一些非洲国家,慢性乙型肝炎病毒(HBV)感染和饮食中黄曲霉毒素(Aflatoxins, AFT)污染是原发性肝癌高发人群的2个主要危险因素。而且,这两个因素之间能够相互协同,共同促进肝癌的发生发展。AFT是由黄曲霉菌和寄生曲霉菌所产生的一种代谢产物,化学上属二呋喃香豆素的衍生物。根据其分子结构的不同,天然产生的AFT分为B1、B2、G1及G2四种异构体。在我国,许多的食物、粮油、药品原料、农副产品及其制成品均易被AFT所污染,其中又以黄曲霉素B1(Aflatoxin B1, AFB1)的污染最为广泛,毒理作用也最强。AFB1是目前所知的最强致癌物质之一。研究表明,食物中黄曲霉毒素的含量多少与肝癌的发生呈正相关,这已被许多流行病学实验病理学研究所证实。
     研究表明,AFB1在没有经过代谢活化之前的母体化合物是无致癌性的,它进入机体后必须通过体内的Ⅰ相药物代谢酶细胞色素P450系统作用,生物代谢活化后才能表现出毒性作用,被吸收的AFB1进入机体后,经Ⅰ相药物代谢酶代谢转化,形成黄曲霉毒素M1(Aflatoxin M1, AFM1)、黄曲霉毒素P1(Aflatoxin P1, AFP1)、黄曲霉毒素Q1(Aflatoxin Q1, AFQ1)及黄曲霉毒素醇,后三者被认为无活性而通过尿液或粪便排泄出体外。而AFM1和AFB1可被细胞色素P450lA2(Microsomal cytochrome P4501A2,CYP1A2)、细胞色素P4503A4(Microsomal cytochrome P4503A4, CYP3A4)代谢活化为能与细胞大分子物质(DNA或蛋白)结合形成活性中间体AFM1-8,9环氧化物(AFM1-exo-8,9-epoxide)及AFB1-8,9环氧化物(AFB1-exo-8,9-epoxide, AFBO)方才具有基因毒性及致癌性。作为催化这一代谢反应的关键酶——细胞色素P450,主要存在于肝细胞内,其中又以CYP3A4的含量最多及活性最高。AFBO能自发和核酸及蛋白质等生物大分子相结合而形成相应加合物。AFB1和DNA共价结合形成AFB1-DNA加合物是引起基因突变的基础,也是导致原发性肝癌发生的第一步。AFB1-DNA加合物主要存在于肝细胞内,除部分被体内Ⅱ相代谢酶如谷胱苷肽转移酶(GST)等作用下转为无毒物排出体外,由于分子内电子场的改变,也可自发形成其它DNA加合物,导致DNA损伤。
     AFT严重危害着人类的健康,为了防止或者减少其造成的各种危害,除了避免食物被污染及去除毒素等措施外,用各种化学的方法抑制、延迟或者逆转癌变过程,并防止癌症发生的途径也日益被人们所重视。研究发现,一些植物性化学物如叶绿素、茶多酚、黄酮类化合物等在肿瘤化学预防这一邻域有着独特的防癌作用。通过在AFT高污染地区补充植物化学物制剂或其含量较高的食物来预防AFT致肝癌效应的作用越来越受到众多学者的重视。食物及其成分作为化学预防剂具有安全、易接受的优点,是目前开展AFB1相关恶性肿瘤化学预防剂的重点研究领域之一。
     银杏(Ginkogo biloba L)为银杏科植物,其叶和果均具有重要的药用价值。标准银杏叶提取物(Ginkgo Biloba Extract)被国际通称为EGb761,一般含有24%的黄酮甙类及5-7%的银杏特有的萜烯类。近来研究发现EGb761及其组分可以通过抗氧化、抗血管生成及其基因调节而具有抗癌的作用。因此,目前对银杏叶的药用价值研究已从最初在心、脑血管系统疾病的应用扩展至抗肿瘤领域。前期实验研究证实EGb761对AFB1诱导的大鼠肝癌有抑制作用,但其具体作用机制尚未完全明确。研究发现在实验大鼠肝癌表达的众多基因中,IGF-Ⅱ、P16Ink4a、NADE、GST-Pi及UGT等肿瘤相关基因的表达明显大于正常肝脏,p75NTR、P53、AKR7A及COX-2等基因与大鼠肝癌的关系尤为突出。本研究通过动态观察EGb761在AFB1诱发大鼠肝癌实验过程中对肝脏相关代谢酶及上述肿瘤相关基因表达的影响,进一步探讨EGb761化学阻断大鼠肝癌发生发展中的分子生物学机制。为肝癌防治药物的研制提供更多的实验依据,将有很大的经济及社会效益。
     方法
     建立AFB1致PHC大鼠模型:70只雄性4周龄Wistar大鼠适应环境后,按体重随机将其分为3组:AFB1组,25只,喂饲正常饲料,于第4周开始腹腔注AFB1至第52周;EGb761+AFB1组,25只,每天喂饲含2g/kgEGb761饲料至实验结束,腹腔注AFB1剂量及时间同AFB1组;空白对照组,20只,喂饲正常饲料,不给AFB1处理。分别于实验第13周、23周、33周、43周、53周及63周对全部动物进行剖腹肝活检,第73周结束实验,处死全部实验动物。所取肝组织标本分成3块,一块立即制备肝匀浆,分离出肝微粒体进行肝代谢酶CYP3A4及GSH的检测;一块冷冻保存于-80℃,用于检测肿瘤相关基因的表达情况;一块放入10%中性福尔马林溶液内固定后常规石蜡包埋,用于HE染色。采用Real time-PCR及Western Blotting技术相对定量分析IGF-Ⅱ、p16Ink4a、NADE及p75NTR等肿瘤相关基因的表达情况,并对各蛋白表达的相关性进行统计分析。
     结果
     1.大鼠肿瘤发生情况:
     第73周实验结束时,各组有效动物数及肿瘤发生情况如下:AFB1组17只,发生恶性肿瘤13例(76.5%),其中10例为肝细胞肝癌(Hepatocellular carcinoma, HCC),其余为胆管细胞癌2例、纤维肉瘤1例,原发性肝癌发生率为70.6%(12/17);EGb761+AFB1组17只,发生恶性肿瘤6例(35.3%),其中HCC为5例,胆管细胞癌1例,原发性肝癌发生率为35.3%(6/17)。对照组16只,无肿瘤发生;EGb761+AFB1组肝癌发生率显著低于AFB1组(P<0.01)。
     2.大鼠肝脏组织形态学变化情况
     实验过程中,由AFB1诱发的肝脏恶性肿瘤最早出现在第52周,为纤维肉瘤,第一例肝癌的出现在第55周,最早出现肿瘤及第一例肝癌的大鼠均为AFB1组大鼠。镜下动态观察肝活检组织病理切片显示AFB1诱发大鼠肝癌的癌变过程大致可以分为三个阶段,第一阶段(13周~33周),出现不同程度的肝细胞变性;第二阶段(34周~53周)出现异常肝细胞增生灶及增生结节,主要为嗜碱性结节;第三阶段(54周~73周)肝病变进一步加重,逐渐可见癌结节。EGb761+AFB1组大鼠在诱癌各阶段的肝脏损害均较同时段AFB1组要轻,发生增生性病变比AFB1组亦较迟,对照组无上述改变。
     3.EGb761对肝药酶的影响
     3.1大鼠肝组织代谢酶CYP3A4活性的变化情况
     在整个实验过程中,各组大鼠肝组织代谢酶CYP3A4活性在第23周及53周时呈现双波峰变化;CYP3A4酶活性在AFB1组、EGb761+AFB1组,除第13周外,其他时段均高于对照组;AFB1组在第53周及63周时CYP3A4的活性显著于高于EGb761+AFB1组,差异有统计学意义(P<0.05)。
     3.2大鼠肝组织GSH含量的变化情况
     在整个实验过程中,AFB1组和EGb761+AFB1组肝组织GSH含量在第13至33周时较正常对照组要低,随着实验的进展,呈现逐渐下降趋势,但AFB1组下降过程明显要快于EGb761+AFB1组,在第43周及53周时差异最明显(P<0.05)。而正常对照组在整个实验过程中各时段的变化并不明显。
     4.EGb761对大鼠肝癌发生过程中肿瘤相关基因表达的影响
     4.1EGb761对大鼠肝组织p16Ink4a mRNA及相应蛋白表达的影响
     在第13周、33周时,各组p16Ink4a mRNA的表达量差异不明显(P>0.05)。至第53、73周时,AFB1组、EGb761+AFB1组p16Ink4a mRNA的表达量均较对照组下调(P<0.05),AFB1组下调最明显,与EGb761+AFB1组比较差异有统计学意义(P<0.05)。
     在第13周、33周时,p16Ink4a蛋白在各组的表达水平无明显差异(P>0.05)。至第53周、73周时,AFBl组和EGb761+AFB1组中表达量较对照组均有所下调(P<0.05)。p16Ink4a蛋白在EGb761+AFB1组表达水平较同时段AFB1组要高,差异有统计学意义(P<0.05)。
     4.2EGb761对大鼠肝组织P53mRNA表达的影响
     P53mRNA的表达量于第13周时在各组大鼠肝组织中均有低度表达,差异不明显;至第33、53及73周时,AFB1组、EGb761+AFB1组的表达量均较对照组上调(P<0.01);但P53mRNA在EGb761+AFB1组的表达量较同时段AFB1组要高,差异有统计学意义(P<0.01)。
     4.3EGb761对大鼠肝组织IGF-ⅡmRNA及蛋白表达的影响
     第13周、33周时,IGF-ⅡmRNA在各组肝组织中均有表达,但无明显差异(P>0.05);至第53周、73周时,与对照组比较,AFB1组和EGb761+AFB1组中IGF-ⅡmRNA的表达均明显上调(P<0.01);EGb761+AFB1组中IGF-ⅡmRNA表达水平较同时段AFB1组明显要低,差异有统计学意义(P<0.01)。
     第13周、33周时,IGF-Ⅱ蛋白在各组肝组织中均为低表达或几乎不表达,无明显差异;至第53周、73周时,IGF-Ⅱ蛋白在AFB1组和EGb761+AFB1组均为高表达,明显高于对照组;且随肝癌的发生发展有逐渐增高趋势;第53周、73周时,EGb761+AFB1组IGF-Ⅱ蛋白表达水平始终低于同期AFBl组,差异有统计学意义(P<0.01)。
     4.4EGb761对大鼠肝组织NADE mRNA及蛋白表达的影响
     自第33周开始,NADE mRNA的表达量在AFB1组和EGb761+AFB1组均较同时段正常对照组要高,差异有统计学意义(P<0.05),两组间差异不明显(P>0.05)。
     第33、53及73周时,AFB1、EGb761+AFB1两组中NADE蛋白的表达量均较正常对照组明显要高,差异有统计学意义(P<0.01);两组间比较,EGb761+AFB1组表达较AFB1组要高,但差异无统计学意义。
     4.5EGb761对大鼠肝组织p75NTR mRNA及蛋白表达的影响
     在实验开始的第13至第33周,各组的p75NTR mRNA表达量差异不明显。到第53周及第73周时,在AFB1组及EGb761+AFB1组中的p75NTRmRNA表达量较正常对照组明显下调(P<0.05);其中AFB1组下调更为明显,与EGb761+AFB1组比较,差异有统计学意义(P<0.01)。
     实验至第53周时开始,p75NTR蛋白在AFB1组及EGb761+AFB1组中的表达量较正常对照组明显下降(P<0.01);AFB1组p75NTR蛋白表达量较EGb761+AFB1组要低,差异有统计学意义(P<0.05)。
     4.6EGb761对大鼠肝组织COX-2mRNA表达的影响
     在实验开始的第13及33周时,COX-2mRNA在AFB1组、EGb761+AFB1组均呈低表达状态,差异无统计学意义;至第53周及73周时COX-2mRNA在AFB1组及EGb761+AFB1组均呈高表达量状态,与正常对照组比较差异明显(P<0.01);而两组间比较差异无统计学意义(P>0.05);空白对照组的COX-2mRNA在整个实验过程中,都呈低表达甚至无表达状态。
     4.7EGb761对大鼠肝组织UGT mRNA表达的影响
     在实验过程中的第13、33、53及73周时,UGT mRNA在AFB1组及EGb761+AFB1组中表达量均较正常对照组明显上调,差异有统计学意义(P<0.01);其中UGT在EGb761+AFB1组中的表达量在各时段较AFBl组显著要高,差异有统计学意义(P<0.01)。
     4.8EGb761对大鼠肝组织AKR7A mRNA表达的影响
     在实验开始的第13周,AKR7A mRNA的表达量在AFB1组及EGb761+AFB1组中较正常对照组均要明显增高,差异有统计学意义(P<0.01);第33、53周及73周,EGb761+AFB1组中的表达量要高于AFB1组(P<0.01)。
     4.9EGb761对大鼠肝组织GST-Pi mRNA表达的影响
     在整个实验过程中,GST-Pi mRNA的表达量在AFB1组及EGb761+AFB1组中较正常对照组均要明显增高,差异有统计学意义(P<0.01);至第33、53周时,AFB1组的表达量要高于EGb761+AFB1组,但无显著性差异(P>0.05);至第73周,AFB1组的表达量要显著高于EGb761+AFB1组,差异有统计学意义(P<0.01)。
     5.0p16Ink4a、IGF-ⅡNADE及P75NTR蛋白表达的相互关系
     在实验第73周、53周及33周时,AFB1组及EGb761+AFB1组中p16Ink4a蛋白的表达与p75NTR蛋白的表达呈显著的正相关关系(P<0.05)。
     结论
     1.银杏叶提取物能有效降低AFB1诱发肝癌的发生率,具有防癌作用,可成为人类与AFB1相关性肝癌的化学预防剂。
     2.在AFB1诱发大鼠肝癌过程中,银杏叶提取物能抑制肝脏Ⅰ相酶CYP3A4的活性,从而减少具有基因毒性及致癌性的AFBO的形成,降低其致癌性。
     3.银杏叶提取物能提高大鼠肝脏GSH的含量水平,从而提高机体的抗氧化能力,减轻AFB1诱癌过程中自由基所致的脂质过氧化损伤,亦可能是其发挥抗癌作用的机制之一。
     4.银杏叶提取物在AFB1诱发大鼠肝癌过程中,能够上调抑癌基因p16Ink4a、P53及p75NTR的表达水平,下调肝癌病变相关增殖基因IGF-Ⅱ的表达量,可能是其抗癌作用的分子生物学基础之一。
     5.银杏叶提取物在AFB1诱发的大鼠肝癌病变过程中,可以显著提高肝组织相关解毒代谢酶UGT及AKR7A的表达水平,以增强机体自身对真菌毒素的解毒能力。
     6.银杏叶提取物在AFB1诱发的大鼠肝癌病变过程中,能够下调GST-Pi的表达水平,可能与GST-Pi启动子区的甲基化现象有关。
     7.银杏叶提取物在AFB1诱发的大鼠肝癌病变过程中,p16Ink4a蛋白与p75NTR蛋白的表达呈正相关关系,提示银杏叶提取物可通过同时调节不同的基因即阻滞了细胞周期,又诱导了相应肿瘤细胞的凋亡,这可能是其抗癌机制之一。
Background and Objective
     Primary hepatic carcinoma (PHC) is more common malignant tumor in human. The incidence of PHC is the fifth most common cancer and the mortality rate is the third leading cause of cancer in worldwide. PHC is the second cause leading cancer death in China. In any given year20%of total fatalities caused by malignant tumor are PHC in China. The incidence and fatalities of PHC is especially striking in Qidong of Jiangsu and Fusui Country of Guangxi province where PHC is the first most common cancer. The patients of PHC have the characteristics with the difficult of diagnosis and treatment, illness progress fast and poor prognosis. PHC is a terrible disease and this situation is very harmful to people's health.
     Epidemiological research and experimental study of zoology evidenced that chronic hepatitis B virus (HBV) infection and diet aflatoxins (AFT) pollution are thought to be two largely responsible for the high incidence of PHC in southern Africa and southeast China. However, The two factors can be synergies between, jointly promote the development of PHC. AFT is a metabolic product of aspergillus flavus and Parasitic aspergillus and the chemical is belong to two furan coumarin derivatives. According to the different of its molecular structure, the natural AFT divided into B1, B2, G1and G2. In our country, a lot of food, grain and oil, drugs raw materials, agricultural and sideline products and finished goods are contaminated by AFT, which Aflatoxin B1(Aflatoxin B1, AFB1) of the pollution is the most extensive and toxicological effect is the most strongest. At present, AFB1is one of the strongest carcinogenic substance. Research shows that the positive correlation between the amount of AFB1in food and the occurrence of hepatocellular carcinoma. It has been confirmed by many epidemic research institutions in Asia and Africa.
     Research shows that, the parent compound of AFB1is without carcinogenicity before metabolic activation. After entering the body, this chemical is biotransformed by cytochrome P450system to the reactive intermediante AFB1-exo-8,9-epoxide (AFBO)exert its gene toxicity and carcinogenicity. Cytochrome P450is the key enzyme when it catalytics the metabolic reactions. cytochrome P450is mainly exist in the liver cells, which the content of cytochrome P4503A4is the most and activity is the highest.
     AFBO can combined with biological macromolecules such as nucleic acids and proteins to form corresponding the adducts. AFB1and DNA covalent bonding form AFB1-DNA adducts is formed the basis of genetic mutations, also which led to the first step of Primary hepatic carcinoma. AFB1-DNA adducts exist mainly in liver cells. Part of AFB1-DNA adducts are converted into non-toxic substance and eliminated from the body under the action of the body Ⅱ phase metabolic enzymes such as Glutathione S-transferase (GST). Due to the change of the electronic field in molecules, AFB1can also add other DNA spontaneously formed and lead to the DNA damage.
     AFT is very harmful to human health. In order to prevent or reduce the harm caused by AFT, all kinds of methods were used such as avoid the food pollution and remove toxins measures and so on. Chemoprevention is a pharmacological approach to suppress, delay or reverse cancerous process, and to prevent cancer ways have also increasingly concerned by people. Research shows that some plant chemicals such as chlorophyll, tea polyphenol, flavonoids compounds has a unique anti-cancer effects in the neighborhood of cancer prevention. Through add chemical preparation plants or its content of food is higher in high pollution area to prevent the function of AFT lead to PHC attracted more and more researchers'attention. Food and its composition as chemical prevention agent has the advantages such as safe, easy to accept. It became one of the important fields in conducting chemical preventive research.
     Gingko (Ginkogo biloba L) for ginkgo secco plant, its leaves and fruit has important medicinal value. Ginkgo biloba leaf extract, Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, typically contains about24%flavonoid glycosides and about5-7%terpene trilactones that are unique to Ginkgo. Recent research shows that EGb761and its components has the function of antitumor through anti-oxidation, antiangiogenic and gene regulation. So, the study of EGb761on the application of cardiovascular system disease and cerebrovascular disorder has been expanded to antitumor territory.
     The experimental study was confirmed that EGb761has Inhibition on Aflatoxin B1-induced Hepatocarcinogenesis in wistar Rats. However, the specific mechanism was not completely clear. In recent years, the studies found that the expression of related genes in hepatocellular carcinoma of experimental rat such as IGF-II, NADE, P16INK4a, GST-Pi, UGT etc were significantly greater than normal liver, and the relationship of P53, AKR7A, P75NTR, COX-2with the tumor are very outstanding. Therefore, we investigated dynamic the influence of EGb761on liver related metabolic enzymes and tumor gene expression on Aflatoxin B1-induced Hepatocarcinogenesis in wistar Rats. We investigated the molecular biology mechanism of the blocking hepatocellular carcinoma occurrence and development. For the drug of prevention liver cancer, it can provide more experimental basis. There will be a great economic and social benefits.
     Methods
     The model of aflatoxin B1-induced Primary hepatic carcinoma was established in wistar Rats. Among the totale of70, four-weeks old male wistar Rats were divided randomly into three groups:AFB1, EGb761+AFB1and normal control groups. AFB1group:25rats were exposed to AFB1by intraperitoneally injection from the fourth week experimental and feeding normal feed in the first week until the end of experiment. AFB1+EGb761group:25rats were exposed to AFB1done as AFB1group and were fed feedstuff containing2g/kg EGb761from the experiment in the first week until the end of experiment. Control groups,20rats were not exposed to AFB1and were fed normal feed in the first week from the beganing until the end of experiment. During hepatocarcinogenesis, liver biopsies were performed on all of animals at13thW,23thW,33thW,43thW,53thW and63thW of the experiment. All survivals animals were sacrificed by cervical dislocation at73rd-week and liver tissues and tumor were collected. The Liver tissue samples were separated into three pieces. Microsomal and cytosolic fractions were prepared from fresh liver tissue and applied to detect the hepatic drug-metabolizing enzymes CYP3A4activity and GSH. One section of liver tissue samples snap-frozen in liquid N2and stored at-80℃for investigated related gene expression of the tumor. Some liver tissues were immerged in10%formalin fixation and paraffin embedded for HE dyeing. The relative quantitative analysis technology Real time-PCR and Western Blotting were used to investigate the genes expression situation in the tumors such as IGF-II, p16Ink4a, P53, NADE and p75NTR etc. The correlation of the protein expression were analysed by statistics.
     Results
     1. The data of rats tumor occurrence:
     The effective numbers of animals and tumorigenesis effective at the end of experiment (73W)as follows:the effective numbers of animals in AFB1group was17, occurred malignant tumor13cases (76.5%), including hepatocellular carcinoma (HCC)10cases, bile duct carcinoma two cases, fibrosarcoma one case, PHC incidence was70.6%(12/17); EGb761+AFB1group was17, occurred malignant tumor6cases (35.3%), including hepatocellular carcinoma5cases, bile duct carcinoma one case, PHC incidence was35.3%(6/17); The control group was16, no tumor was occurrenced. The incidence of PHC in EGb761+AFB1group was significantly lower than that in AFB1group (P<0.01).
     2. The morphology change of rat liver tissue:
     The earliest time AFB1-induced rat liver malignant tumors(including fibrosarcoma) formation was at52thW. The first case of Primary hepatic carcinoma was occured in AFB1group rats at the55thW.
     Microscopically dynamic observation of liver biopsy histopathology shows that AFB1-induced rats liver cancerous process can be divided into three stages: The first stage (13thW-33thW), there were some different degrees of liver cell denaturation appear in rats liver. The second stage (34thW-53thW), the abnormal liver cell hyperplasia and focal hyperplasia nodules, mainly for basophilic nodules were developed. The third stage (54thW-73thW), liver disease become accentuate further, gradually visible carcinoma nodules. In the date using EGb761intervention the liver damages in different stage were lighter than AFB1group at the same stage. The proliferative lesion was also later than AFB1group and the control group was not changes alone.
     3. Effect of EGb761on hepatic tissues metabolic enzymes
     3.1The changes of CYP3A4activity in rat hepatic tissues
     During the whole experimental process, the activity of CYP3A4in AFB1group and EGb761+AFB1group had different levels of changes. The activity of CYP3A4were formed double peaks at23thW and53thW. The activity of CYP3A4in AFB1group and EGb761+AFB1group were higher than that in control group except13thW. The activity of CYP3A4increased significantly during53thW and63thW in AFB1group compared to EGb761+AFB1group (P<O.05). The activity of CYP3A4in control group was decreased at the33thW and63thW. There are no change significantly in other stage.
     3.2The changes of GSH conten in rat hepatic tissues
     The content of GSH in rat hepatic tissues is lower in AFB1group and EGb761+AFB1group compared to control group. Along with the progress of the experiment, the content of GSH decreased gradually in AFB1groups and EGb761+AFB1group. The content of GSH decreased significantly during43W and53W in AFB1group compared to EGb761+AFB1group (P<0.05). The change of GSH in normal control group was not obvious during each period of the whole process of experiment.
     4. Effect of EGb761on the expression of related cncer genes
     4.1Effect of EGb761on the expression of p16Ink4a mRNA and corresponding protein in rat hepatic tissues
     The expression of p16Ink4a mRNA is not significantly higher or lower in each group at13thW and33thW(P>0.05), however, in AFB1group and EGb761+AFB1group were significantly lower than that in the control groups during53thW and73thW(P<0.05). The expression of p16Ink4a mRNA in AFB1group was significantly lower than that in the EGb761+AFB1group from53thW to73thW (P<0.05).
     The p16Ink4a protein expressions were not significant difference in each group during13thW and33thW(P>0.05), however, in AFB1group and EGb761+AFB1group were significantly lower than that in the control groups during53thW and73thW(P<0.05). The p16Ink4a protein expression in EGb761+AFB1group was significantly higher than that in the AFB1groups (P<0.05).
     4.2Effect of EGb761on the expression of P53mRNA in rat hepatic tissues
     The expression of P53mRNA was low expression and no significant difference in each group during13thW. The expression of P53mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control group during33thW,53thW and73thW(P<0.01). The expression of P53mRNA in EGb761+AFB1group was significantly higher than that in the AFB1group (P<0.01).
     4.3Effect of EGb761on the expression of IGF-II mRNA and corresponding protein in rat hepatic tissues
     The expression of IGF-II mRNA was not significant difference in each group during13thW and33thWCP>0.05). The expression of IGF-II mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control groups during53thW and73thW. The expression of IGF-II mRNA in EGb761+AFB1group was significantly lower than that in the AFB1group (P<0.01).
     The IGF-II protein expressions were low expression or not expression in each group during13thW and33thW. There was not significant difference in each group during13thW. Along with the progress of the experiment, the IGF-II protein expressions increased gradually. The IGF-II protein expressions in AFB1group and EGb761+AFB1group were significantly higher than that in the control group during53thW and73thW. The IGF-II protein expressions in EGb761+AFB1group was significantly lower than that in AFB1group during53thW and73thW (P<0.05).
     4.4Effect of EGb761on the expression of NADE mRNA and corresponding protein in rat hepatic tissues
     The expression of NADE mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control group from33thW to73thW and the difference have statistical significance (P<0.01). The expression of NADE mRNA in EGb761+AFB1group was higher than that in the AFB1group. However, there was not statistical significance on the differences between AFB1andEGb761+AFB1group(P>0.05).
     The NADE protein expression in AFB1group and EGb761+AFB1group were significantly higher than that in the control group from33thW to73thW (P<0.05). The NADE protein expression in EGb761+AFB1group was slight higher than that in the AFB1group, however, there was not statistical significance on the difference among them (P>0.05).
     4.5Effect of EGb761on the expression of p75NTR mRNA and corresponding protein in rat hepatic tissues
     The expression of p75NTR mRNA was not significantly difference in each group during13thW and33thW(P>0.05). The expression of p75NTR mRNA in AFB1group and EGb761+AFB1group were significantly lower than that in the control group during53thWand73thW (P<0.05). The expression of p75NTR mRNA in EGb761+AFB1group was higher than that in the AFB1group (P<0.01).
     The p75NTR protein expression in AFB1group and EGb761+AFB1group were significantly lower than that in the control group from55thW to73thW(P<0.01). The p75NTR protein expression in AFB1group was significantly lower than that in the EGb761+AFBl group from55thW to73thW (P<0.05).
     4.6Effect of EGb761on the expression of COX-2mRNA in rat hepatic tissues
     The expression of COX-2mRNA were low expression in AFB1group and EGb761+AFB1group during13thW and33thW. The expression of COX-2mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control group during53thW and73thW (P<0.01). There was not significantly difference between AFB1group and EGb761+AFB1group(P>0.05). The expression of COX-2mRNA was low or no expression in control group from13thW to73thW.
     4.7Effect of EGb761on the expression of UGT mRNA in rat hepatic tissues
     The expression of UGT mRNA in AFB1group and EGb761+AFB1group are significantly higher than that in the control group from13thW to73thW and the difference have statistical significance (P<0.01). The expression of UGT mRNA in EGb761+AFB1group are significantly higher than that in the AFB1group during whole of the experimental process and the difference have statistical significance (P<0.01).
     4.8Effect of EGb761on the expression of AKR7A mRNA in rat hepatic tissues
     The expression of AKR7A mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control group from13thW to73thW and the difference have statistical significance (P<0.01). The expression of AKR7A mRNA in EGb761+AFB1group are significantly higher than that in the AFB1group(P<0.01).
     4.9Effect of EGb761on the expression of GST-Pi mRNA in rat hepatic tissues
     The expression of GST-Pi mRNA in AFB1group and EGb761+AFB1group were significantly higher than that in the control group from13thW to73thW and the difference have statistical significance (P<0.01). The AFB1group are not significantly higher than that in AFB1+EGb761group during33thW and53thW. The expression of GST-Pi mRNA in AFB1group was not only significantly higher than that in the control group, but also higher than those in the EGb761+AFB1group during73thW(P<0.01).
     5.0Effect of EGb761on the mutual relations of p16Ink4a, IGF-II, NADE and p75NTR protein expression
     The protein expression between p16Ink4a and p75NTR in in AFB1group and EGb761+AFB1group was positive correlation during73thW,55thW and33thW(P <0.01).
     Conclusions
     1. EGb761can reduce the incidence of PHC induced by AFB1. It indicated that EGb761has the effects of anti-cancer development and may be used at the chemoprevention for human PHC related with AFB1.
     2. EGb761can restrain the liver enzymes I phase CYP3A4activity, reduced the AFBO formation, and weaken the carcinogenicity of AFB1.
     3. EGb761can improve the content of rat liver GSH level, so as to improve the body's anti-oxidation ability, reduced lipid peroxidation damage caused by free radicals in the carcinogenesis induced by AFBl, which is one of the mechanism of EGb761anti-cancer effects.
     4. In the carcinogenesis AFB1-induced, EGb761can upregulate the expressive level of tumor-suppressor genes such as P16Ink4a, p53and P75NTR, downregulate the expressive level of IGF-II related proliferation which is one of the foundation of molecular biology of anti-cancer effects.
     5. In order to enhance the detoxify ability against the mycotoxin's for organism itself, EGb761can greatly improve the expressive level of metabolic enzymes related detoxification in the liver tissue such as UGT and AKR7A, during hepatocarcinogenesis aflatoxin B1-induced in Wistar Rats.
     6. EGb761can cut the expression level of GST-Pi during hepatocarcinogenesis aflatoxin Bl-induced in Wistar Rats.This may be due to the methylation about promotor of CpG-island.
     7. There was a positive correlation between the protein expression of p16Ink4a and p75NTR during hepatocarcinogenesis aflatoxin B1-induced in Wistar Rats. This phenomenon was indicated that EGb761can adjust different genes that block the cell cycle, and induced apoptosis of corresponding of tumor cells through the meanwhile, this could be one of its anti-cancer mechanism.
引文
1 Ramos S. Cancer chemoprevention and chemotherapy:dietary polyphenols and signalling pathways [J]. Mol Nutr Food Res.2008 52(5):507-526.
    2. Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma[J]. Clin Liver Dis,2005,9:191-211.
    3. Ming L, Thorgeirsson SS, Gail MH, et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qi dong [J]. China Hepatology,2002,36:1214-20.
    4. Wang JS, Hunag T, Su J, et al. Hepatocellular carcinoma and aflatoxin exposure in Zhuqing Village, Fusui Country, People s Republic of China[J]. Cnaeer Epidemiol Biomakrers Prev,2001,10:143-6.
    5. Yu MC, Yuna JM. Environmental factors and risk of the hepatocellular carcinoma[J]. Gastroenterology,2004,127:572-8.
    6. Yu MW, Lien JP, Chiu YH, et al. Eeffct of aflatoxin Metabolism and DNA adduct formation on hepatocellular carcinoma among chronic Hepatitis B carriers inTaiwna[J]. J Hepatol,1997,7:20-30.
    7.杨建伯.真菌毒素与人类疾病.中国地方病学杂志,2002,1(21):4-10.
    8. Wang JS, Groopman JD. DNA damage by mycotoxins [J]. Mutat Res, 1999,424(1-2):167-181.
    9. Hertzog PJ, Lindsay-Smith JR, Garner RC. A high pressure liquid Chromatogrphy study on the removal of DNA-bound aflatoxin B1 in rat liver and in vitro [J]. Carcinogenesis,1980, (9):787-793.
    10. Croy RG, Wogan GN. Quantitative comparison of covalent aflatoxin-DNA adducts formed in rat and mouse livers and kidneys [J]. J Natl Cancer Inst,1981,66(4):761-768.
    11. Guengerichn FP, Johnson WW, Shimada T, et al. Activation and detoxication of aflatoxin B1[J]. Mutat Res,1998,402 (1-2):121-128.
    12.姜丽娜,杨杰,李君文.黄曲霉毒素B1诱发肝癌的生物标记物检测技术[J].中国公共卫生,2005,21(1):114-115.
    13. Gescher A, Sharma RA, Steward WP. Canecr chemoprevention by dietary constituents:a tale of failure and promise[J]. Lancet Oncol, 2001,2(6):371-379.
    14. Farombi EO, Adepoju BF, Ola-Davies OE, et al. Chemoprevention of Aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural bioflavonoid of Garcinia kola seeds [J]. Eur J Cancer Prev,2005,14(3):207-214.
    15.苏建家,陈志英,覃国忠,等.叔丁基对羟基茴香醚对黄曲霉毒素诱癌的影响(Ⅱ)肝癌及其他肿瘤形成的观察[J].广西医学院学报,1983,1:10-15.
    16.严瑞琪,陈志英,覃国忠,等.当归等三种中药及联苯双酯对黄曲霉毒素B1致大鼠肝癌作用的影响[J].癌症,1986,5(2):141-144.
    17.陈志英,严瑞琪,覃国忠,等.茶叶等六种可食植物对黄曲霉毒素B1致大鼠肝癌作用的影响[J].中华肿瘤杂志,1987,9(2):109-112.
    18.李瑗,严瑞琪,覃国忠,等.AFB1致肝癌作用短期体内实验模型的长期观察及绿茶和BHA对AFB1诱发大鼠肝癌的影响[J].肿瘤防治研究,1990,17(4):204-207.
    19.李瑗,苏建家,覃柳亮,等.OLT对AFB1致树鼩肝癌前病变的化学诱发作用[J].癌症,1999,18(1):34-36.
    20.欧超,李瑗,苏建家,等.金蒲抑瘤片对黄曲霉毒素B1诱发大鼠肝癌作用的影响[J].世界元素医学,2002,9(2):53-58.
    21.曹骥,李瑗,张丽生,等.茶多酚在树鼩肝癌形成中的化学预防作用[J].肿瘤,2005,25(2):118-121.
    22. Egner PA, Wang JB, Zhu YR, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer[J]. Proc NatlAcad Sci,2001,98(25):14601-14606.
    23.崔英,梁新强,岳惠芬,等.茶多酚对肝癌高危人群T淋巴细胞亚群和NK细胞活性的影响[J].肿瘤防治杂志,2005,12(2):92-94.
    24.蒿艳蓉,杨芳,曹骥,等.银杏叶提取物对AFB 1致HepG2细胞毒性保护作用的观察[J].中华肿瘤防治杂志,2008,15(23):1796-1799.
    25.蒿艳蓉,曹骥,李媛,等.银杏叶提取物阻断AFB1致大鼠肝癌及其机制研究[J].中药材,2009,32(1):92-96.
    26. Wei-Bing Kan, Zhao-Qin Fang, et al. Up-regulated genes in diethylnitrosamine-induced liver cancer in rats. World Chin J Digestol 2005,13(20):2420-2426.
    27.丛文铭,朱世能.肝胆肿瘤诊断外科病理学[M].2002,P132-244.上海科技教育出版社.
    28. Ogawa K, Yokokawa K, Tomoyori T, et al. Induction of gamma-glu-Tamyltranspeptidase-positive altered hepatocytic lesions by combination of transplacental-initiation and postanal-selection [J]. Int J Cancer, 1982,29 (3):333-336.
    29. Rabes HM, Scholze P, Jantsch B. Growth kinetics of diethylnitrosamine-induced,enzyme-deifcient "preneoplastic" liver cell populations in vivo and in vitro[J]. Cancer Res,1972,32 (11):2577-2586.
    30. Drieu K, Preparation and definition of Ginko biloba extract. In: funfgeld EW, editor. Ronkan, Ginkgo biloba:Recent results in pharmacology and clinic. Berlin:Springer-Verlag,1988,p.32-36.
    31. Xu SQ, Ji M. Antineoplasmic activity of ginkgolic acid monomer[J]. Zhongguo Zhongyao Zazhi,2007,32(13):1365-1366.
    32. Diaz GJ, Murcia HW, Cepeda SM. Bioactivation of aflatoxin B1 by turkey liver microsomes:responsible eytochrome P450 enzymes [J].Br Poult Sci,2010,51(6):828-837.
    33. Guengerich FP, JohnsonWW, Ueng YF, et al. Involvement of eytoehrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer[J]. Environ Health Perspect,1996,104(Suppl 3):557-562.
    34. Swenson DH, Lin JK, Miller EC, et al. Aflatoxin B1-2,3-oxide as a Probable intermediate in the covalent binding of aflatoxins B1 and B2 to rat liver DNA and ribosomal RNA invivo[J]. Cancer Res,1997,37(1): 172-181.
    35. Ueng YF, Shimada T, Yamazaki H, et al. Aflatoxin B1 oxidation by human eytoehrome P450s[Jl. J Toxicol Sci,1998,23(SuPP12):132-135.
    36. Wild CP, Turner PC. The toxicology of aflatoxins as a basis for public health decisions[J].Mutagenesis,2002,17(6):471-481.
    37. Wang JS, Shen X, He X, et al. Protective alterations in phase 1 and 2 metabolism of aflatoxin B1 by oltipraz in residents of Qidong, People's Republic of China[J]. J Natl Cancer Inst,1999,91(4):347-354.
    38. Primiano T, Egner PA, Sutter TR, et al. Intermittent dosing with oltipraz:relationship between chemoprevention of aflatoxin-induced tumorigenesis and induction of glutathione S-transferases [J]. Cancer Res, 1995,55(19):4319-4324.
    39. Kelly VP, Ellis EM, Manson MM, et al. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver [J]. Cancer Res,2000,60(4):957-969.
    40. Kwak MK, Egner PA, Dolan PM, et al. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones[J]. Mutat Res,2001, 480-481:305-315.
    41. Miyata M, Takano H, Guo LQ, et al. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity[J]. Carcinogenesis, 2004,25(2):203-209.
    42. Bailey EA, Iyer RS, Stone MP, et al.Mutational properties of the primary aflatoxin B1-DNA adduct[J].Proc Natl Acad Sci USA,1996,93(4): 1535-1539.
    43.刘茶珍,边建超,江峰,等.细胞色素P4503A4基因多态性与肝癌易感性研究[J].肿瘤,2003,23(1):7-10.
    44.冷欣夫,邱星辉,编著.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社,2001.76-77,80-81,87-91.
    45. Wojnowski L, Turner PC, Pedersen B, et al. Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in The Gambia, West Africa[J].Pharmacogenetics,2004,14(10):691-700.
    46.张昊,郝冰涛,贺福初.DNA损伤修复基因的遗传动态与肝癌易感性研究[J].中国肿瘤临床,2005,32(15):841-843.
    47. Riffel AK, Schuenemann E, Vyhlidal CA, et al. Regulation of the CYP3A4 and CYP3A7 promoters by members of the nuclear factor I transcription factor family [J].Mol Pharmacol,2009,76(5):1104-1114.
    48. Wang JS, Groopman JD. DNA damage by mycotoxins [J]. Mutat Res, 1999,424(1-2):167-181.
    49. McDonagh PD, Judah DJ, Hayes JD, et al. Determinants of specificity for aflatoxin B1-8,9-epoxide in alpha-class glutathione s-transferases[J]; Biochem J,1999,339(pt 1):95-101.
    50. Farombi EO, Adepoju BF, Ola-Davies OE, et al. Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, anatural bioflavonoid of Garcinia kola seeds[J]. Eur J Cancer Prev,2005,14(3):207-214.
    51. Haleng J, Pincemail J, Defraigne JO, etal. Oxidative stress[J].Rev Med Liege,2007,62(10):628-638.
    52. Trueba GP, Sanchez GM, Giuliani A. Oxygen free radical and antioxidant defense mechanism in cancer[J]. Front Biosci,2004,9: 2029-2044.
    53. Laurent A, Nicco C, Chereau C, et al. Controlling tumor growth by modulating endogenous production of reaetive oxygen species[J]. Cancer Res,2005,65(3):948-956.
    54. Hwang ES, Bowen PE. DNA damage, a biomarker of careinogenesis: its measurement and modulation by diet and environment[J].Crit Rev Food Sci Nut,2007,47(1):27-50.
    55. Mukherjee B, Das T, Ghosh S, et al. Changes in the antioxidant defense and hepatic drug metabolizing enzyme and isoenzyme levels, 8-hydroxydeoxyguanosine formation and expressions of c-raf.l and insulin-like growth factor II genes during the stages of development of hepatocellular carcinoma in rats [J]. Eur J Cancer Prev,2007, 16(4):363-371
    56. Liu KX, Wu WK, He W, et al. Ginkgo biloba extract(EGb761) attenuates lung injury induced by intestinal ischemia/reperfusion in rats: roles of oxidative stress and nitric oxide[J]. World J Gastroenterol,2007,13(2):299-30
    57. Esaki H, Kumagai S. Glutathione-S-transferase activity toward aflatoxin epoxide in livers of mastomys and other rodents[J]. Toxicon, 2002,40(7):941-945.
    58. Bell DA, Thompson CL, Taylor J, et al. Genetic monitoring of human polymorphic cancer susceptibility genes by polymerase chain reaction: application to glutathione transferase mu[J]. Environ Health Perspect,1992,98:113-117.
    59. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-408.
    60. Yao D F, Wu X H, Zhu Y, et al. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicpathologic features in human hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int,2005,4:220-225.
    61. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved ingenesis of many tumor types [J]. Science,1994, 264:436-440.
    62. Noborl T, Mlura K, Uw DJ, et al. Deletion of the cyclin dependent kinase-4 inhibitor gene in multiple human cancers [J]. Nature,1994,368:735-749.
    63. Drake RR, Schwegler EE, Malik G, et al. Lectin cap ture strategies combined with mass spectrometry for the discovery of serum glycolp rotein biomarkers[J]. Mol Cell Proteomics,2006,5:1957-1967
    64. Huang J, Shen W, Li B, et al. Molecular and immunohisto-chemical study of the inactivation of the p16 gene in primary hepatocellular carcinoma [J]. Chin Med J,2000,113(10):889-893.
    65. Marrero JA, Romano PR, Nikolaeva O, et al. GP73, a resident golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma[J]. J Hepatol,2005,43:1007-1012.
    66. Willian H, Ligget Jr, David Sidransky. Role of the p16 Tumor Suppressor Gene in Cancer[J]. Clininal oncology,1998,16(3):1197-1201.
    67. Ivy HN, Wong YM, Dennis Lo, et al. Detection of Aberrant p16 Methylation in the Plasma and Serum of Liver Cancer Patients [J]. Cancer Res,1999,59(1):71-73.
    68. Matsuda Y. Molecular mechanism underlying the functional loss of cyclindependent kinase inhibitors p16 and p27 in hepatocellular carcinoma[J]. World J Gastroenterol,2008,14(11):1734-1740.
    69. Ahmed R, Salama H, Fouad A, et al. Detection of aberrant p16INK4A methylation in sera of patients with HCV-related liver diseases:An Egyptian study [J]. Med Sci Monit,2010,16(9):CR410-415.
    70.高丽莉,胡义德,李军果,等.非小细胞肺癌INK4a和ARF基因甲基化与其蛋白共表达关系的探讨[J].中国肿瘤临床,2006,33(3):130-133.
    71.刘建余,覃扬,李波,等.人原发性肝癌中p16基因表达及CpG岛甲基化状态的研究[J].华西医科大学学报,2002,33:540-547.
    72. Liew G, Li MH, Lo KW. High Frequency of p16INK4 Gene Alteration in Hepatocellular Carcinoma[J].Oncongene,1999,18:789-795.
    73.娄诚,杜智,高英堂.区域癌化及其临床意义[J].国际肿瘤学杂志2007,34(10):747-750.
    74. Matsuda Y, Ichida T, Mastuzawa J, et al. p16INK4 is Inactivated by Extensive CpG Methylation in Human Hepatocellular Carcinoma[J]. Gastroenterology,1999,116(2):394-400.
    75. Kim Y, Sills RC, Houle CD. Over view of the molecular biology of hepatocellular neoplasms and hepatoblastomas of the mouse liver[J].ToxieolPathol,2005,33(1):175-180.
    76. Wang Chun-lei,Wan Yuan-lian,et al. Apoptosis of human hepatoma cell lines induced by transforming growth factor beta 1(TGF-pi) correlates with P53 and Smad4 activation[J]. Journal of Peking University,2006,38(2):176-178.
    77. Mazzatti DJ, Lee YJ, Helt CE. p53 modulates radiation sensitivity independent of p21 transcriptional activation[J]. Am J Clin Oncol, 2005,28(1):4350.
    78. Ding X, Park YN, T altavull TC, et al. Geographic characterization of hepatitis virus infections, genotyping of hepatitis B virus, and p53 mutation in hepatocellular carcinoma analyzed by in situ detection of viral genomes from carcinoma tissues:comparison among six different countries[J]. Jpn J Inf ect dis,2003,56(1):12-18.
    79. Zekri AR, Bahnassy AA, Madbouly MS, et al. p53 mutation in HCV-genotype-4 associated hepatocellular carcinoma in Egyptian patients [J]. J Egypt Nat 1 Cane Ins t,2006,18(1):17-29.
    80. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation [J].Cell,l 991,65:765-774.
    81. Iizuka N, Oka M, Tamesa T, et al. Imbalance in expression levels of insulin-like growth factor 2 and H19 transcripts linked to progression of he-patocellular carcinoma[J]. Anticancer Res.2004;24:4085-9.
    82. Sohda T, Iwata K, Soejima, et al. In situ detection of insulin-like growth factor II(IGF-Ⅱ)and H19 gene expression in hepatocellular cancinoma[J]. J Hum Genet,1998,43:49
    83. Fan ZR, Yang DH, Cui J, et al. Expression of insulin like growth factor II and its receptor in hepatocellular carcinogenesis[J]. World J Gastroenterol 2001,7:285-288.
    84. Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis[J]. Mol Pathol 2001,54:138-144.
    85. Weng CJ, Hsieh YH, Tsai CM, et al. Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma. Ann Surg Oncol[J].2010,17(7):1808-15.
    86.孔滨,杨波,刘峰.IGF-Ⅱ基因在肝细胞癌组织中表达的研究[J].中国现代普通外科进展,2007,10(4):286-286.
    87. Bae MH, Lee MJ, Bae SK, et al. Insulin-like growth factor II (IGF-Ⅱ)secreted from HepG2 human hepatocellular carcinoma cells shows angiogenic activity[J]. Cancer Lett,1998,128:41
    88. Kim KW, Bae SK, Lee OH, et al. Insulin-like growth factor II induced by hypoxia may contribute to angiogennesis of human hepatocellular car-cinoma[J].Cancer Res,1998;58:348-351.
    89. Seo JH, Park BC. Expression of IGF-II in chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma [J]. Gan to Kagaku Ryoho,1995,22(supple 3):292-307.
    90.吕勇刚,窦科峰.胰岛素样生长因子Ⅱ及其受体在肝组织中的表达意义[J].第四军医大学学报,2002,23(14):1315-7.
    91. Lu ZL, Luo DZ, Wen JM. Expression and significance of tumor-related genes in HCC[J]. World J Gastroenterol, 2005,11(25):3850-3854.
    92. Huynh H, Chow PK, Ooi LL, et al. A possible role for insulin-like growth factor-binding protein-3 autocrine/paracrine loops in controlling hepato-cellular carcinoma cell proliferation [J]. Cell Growth differ,2002, 13:115-120.
    93. Ubagai T, Kikuchi T, Fukusato T, et al. Aflatoxin B1 modulates the insulin-like growth factor-2 dependent signaling axis[J]. Toxicol In Vitro,2010,24(3):783-789.
    94. Xu XC. COX-2 inhibitions in cancer treatment and prevention, a recent development [J]. Anticancer Drugs,2002,13(2):127-137.
    95. Soslow RA, Dannenberg AJ, Rush D, et al. Cox-2 is expressed in human pulmonary, colonic and mammary tumors[J]. Cancer,2000,89 (12):2637-2645.
    96. Bae SH, Jung ES, Park YM, et al. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor,NS-398[J]. Clin Cancer Res,2001,7(5): 1410-1418.
    97. Qiu DK, Ma X, Peng YS, et al. Significance of cyclooxygenase-2 expression in human primary hepatocellular carcinoma[J]. World J Gastroenterol,2002,8(5):815-817.
    98. Sung YK, Hwang SY, Kim JO, et al. The corelation between cyclooxygenase-2 expression and hepatocellular carcinogenesis [J]. Mol Cells,2004,29,17(1):35-38.
    99. XIE Ying-hui, YUAN Meng-biao. The expression and significance of Cyclooxygenase-2 during hepatocarcinogenesis in rats[J]. Journal of ShangdongUniversity,2005,43(7):602-608.
    100. Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis [J]. Biochim Biophys Acta,2000,1470(2):69-78.
    101. Cheng AS, Chan HL, To KF, et al. Cyclooxygenase-2 pathway correlates with vascular endothelia growth factor expression and tumor angiogenesis in hepatitis B virus associated hepatocellular carcinoma [J]. Int J Oncol,2004,24(4):853-860.
    102. Mukai J, Hachiya T, Shoji-Hoshino S, et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR[J]. J Biol Chem 2000,275:17566-17567.
    103. Mukai J, Suvant P, Sato TA. Nerve growth factor-dependent regulation of NADE-induced apoptosis[J]. Vitam Horm,2003,66:385-402.
    104. Tong X, Xie D, Roth W, et al. NADE (p75NTR-associated cell death executor) suppresses cellular growth in vivo[J]. Int J Oncol,2003,22: 1357-1362.
    105. Wei-Bing Kan, Zhao-Qin Fang, et al. Up-regulated genes in diethylnitrosamine-induced liver cancer in rats[J]. World Chin J Digestol,2005,13(20):2420-2426.
    106. Bernstein SL, Koo JH, Slater BJ, et al. Analysis of optic nerve stroke by retinal Bex expression [J]. MolVis,2006,12:147-155.
    107. Harrington AW, Kim JY, Yoon SO. Activation of Rac GTPase by p75 is necessary for c-junN-terminal kinasemediated apoptosis[J].J Neurosci,2002,22(1):156-166.
    108. Yeiser EC, Rutkoski NJ, Naito A, et al. Neurotrophin signaling through the p75 receptor is deficient in traf6-/-mice[J]J Neurosci,2004,24(46):10521-10529.
    109. Wheeler EF, Gong H, Grimes R, et al. p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions[J]. J Comp Neurol,1998,391:407-428.
    110. Allen J, Khwaja F, Djakiew D. Gene therapy of prostate xenograft tumors with a p75NTR lipoplex [J]. Anticancer Res,2004,24(5A): 2997-3003.
    111. Krygier S, Djakiew D. The neurotrophin receptor p75NTR is a tumor suppressor in human prostate cancer. Anticancer Res[J]. 2001,21(6A):3749-3755.
    112. Dolle L, Adriaenssens E, El Yazidi-Belkoura I, et al. Nerve growth factor receptors and signaling in breast cancer[J]. Curr Cancer Drug Targets,2004,4(6):463-470.
    113. DimarasH, Gallie BL. The p75NTR neurotrophin receptor is a tumor suppressor in human and murine retinoblastoma development[J]. Int J Cancer,2008,122(9):2023-2029.
    114. Jin H, Pan Y, Zhao L, et al. p75 neurotrophin receptor suppresses the proliferation of human gastric cancer cells [J]. Neoplasia,2007,9(6): 471-478.
    115. Khwaja F, Tabassum A, Allen J, et al. The p75(NTR) tumor sup-pressor induces cell cycle arrest facilitating caspasemediated apoptosis in prostate tumor cells[J]. Biochem Biophys Res Commun,2006,341(4): 1184-1192.
    116. Passino MA, Adams RA, Sikorski SL,et al. Regulation of Hepatic Stellate Cell Differentiation by the Neurotrophin Receptor p75NTR[J].Science,2007,315(5820):1853-1856.
    117. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferase: metabolism,expression and disease[J]. Annu Rev Pharmacol Toxicol, 2000,40:581-616.
    118. Judah DJ, Hayes JD, Yang JC, et al. A novel aldehyde reductase with activity towards a metabolite of aflatoxin B1 is expressed in rat liver during carcinogenesis and following the administration of an anti-oxidant[J]. Biochem J,1993,292:13-18.
    119. Ellis EM, Judah DJ, Neal GE, Hayes JD.An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases[J]. Proc Natl Acad Sci USA,1993,90:10350-10354.
    120. Hayes JD, McLeod R, Ellis EM, et al. Regulation of glutathione S-transferases and aldehyde reductase by chemoprotectors:studies of mechanisms responsible for inducible resistance to aflatoxin B1[J]. I ARC Sci Publ,1996:175-187.
    121. Ellis EM, Judah DJ, Neal GE, O'Connor T,Hayes JD. Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors [J]. Cancer Res,1996,56:2758-2766.
    122. Kelly VP, Ellis EM, Manson MM, et al. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver[J].Cancer Res,2000,60:957-969.
    123. Manson MM, Hudson EA, Ball HW, et al. Chemoprevention of aflatoxin Bl-induced carcinogenesis by indole-3-carbinol in rat liver-predicting the outcome using early biomarkers[J]. Carcinogenesis,1998,19:1829-1836.
    124. Hayes JD, Judah DJ, McLellan LI, et al. Ethoxyquin-induced resistance to aflatoxin Bl in the rat is associated with the expression of a novel alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin Bl-8,9-epoxide[J]. Biochem J,1991,279:385-398.
    125. Hayes JD, Judah DJ, Neal,GE. Resistance to aflatoxin Bl is associated with the expression of a novel aldo-keto reductase which has catalytic activity towards a cytotoxic aldehyde-containing metabolite of the toxin[J]. Cancer Res,1993,53:3887-3894.
    126. Ahmed MM, Wang T, Luo Y, et al. Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity[J].Hepatology,2011,54(4):1322-1332.
    127. Satoh K, Kitahara A, Soma Y, et al. Purification, in curntion and distribution of p lacental glutathione S-transferase-Pas a new mark enzyme for preneoplastic cells in the rat chemical nepatocarcinogenesis[J]. ProcN atlA cadSci USA,1985,82(10): 3964-3968.
    128. Campbell JAH, Corrigall AV, Guy A, et al. Immunohistologic localization of alpha, muand piclass ghutathione S-transferase in human tissues[J].Cancer,1991,67(7):1608-1613.
    129. Kang GH, Lee S, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia[J].J Pathol,2004,202(2):233-240.
    130. Mannervik B, Alin P, Guthenberg C, et al, Identification of three classes of cytosolic glutathione transferase common to sereral mammalian species; correlation between structural data and enzymatic properties[J].Proc Matl Acad Sci USA,1985,82(21):7202-7206.
    131. Tsuchida S, Sekine Y, Shineha R, et al. Elevation of the placental glutathione S-transferase from (GST-P) in tumor tissues and the levels in serum of patients w ith cancer [J]. Cancer Res,1989,49(22):5225-5229.
    132. Zhong S, Tang MW, Yeo W, et al. Silencing of GSTPi gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas[J].Clin Cancer Res,2002,8(4):1087-1092.
    133. Tchou JC, Lin X, Freije D, et al. GSTPI CpG island DNA hypermethylation in hepatocellular carcinomas [J]. Int J Oncol,2000,16 (4):663-676.
    134. Khwaja F, Djakiew D. Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor[J]. Mol Carcinog,2003,36(3):153-160.
    1.蔡静平.真菌对食品安全性的影响[J].粮油食品微生物学,2003,1:296-301.
    2.栾丽杰.黄曲霉毒素与食品安全[J].山东省农业管理干部学院学报,2005,6:73-79.
    3.吴丹.黄曲霉毒素在粮食和食品中的危害及防治[J].粮食加工,2007,32(3):91-94.
    4.李荣启,范自营.粮食中黄曲霉毒素污染[J].粮食与油脂,2006,8,17
    5.吴梅松.浅谈黄曲霉毒素的预防及去除[J].西部粮油科技,1997,1:45.
    6. Kwak MK, Patricia AE, Patrick MD, et al. Role of phase enzyme induction in chemoprotection by dithiolethiones[J]. Mut Res,2001,480 (1):305-315.
    7. Wang JS, Huang T, SuJJ, et al. Hepatocellular Carcinoma and Aflatoxin Exposure in Zhuqing Village, Fusui County, Peoples Republic of China. Cancer Epidemiology[J]. Bio & Pre,2001,10(2):143-146.
    8. Zhuang ZH, Zhang F, Li YY, et al. The progress on the carcinogenesis mechanism of aflatoxins[J]. Hubei Agricultural Science,2011,50 (8):1522-1525.
    9. Hazra TK, Hill JW, Izumi T, et al. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions[J]. Prog Nucleic Acid Res Mol Biol,2001,68:193-205.
    10. Farombi EO, Adepoju BF, Ola-Davies OE, et al. Chemoprevention of aflatoxin Bl-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seeds[J]. Eur J Cancer Prev,2005,14(3):207-214.
    11. Denissenko MF, Cahill LJ, Koudriakova TB, etal. Quantitation and mapping of aflatoxin B1-induced DNA damage in genomic DNA using aflatoxin B1-8,9-epoxide and microsomal activation systems[J].Mutat Res,1999,425(2):205-211.
    12. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer[J].Nature,2001,411(6835):366-374.
    13.龙喜带,唐月浩,曲德英,等.黄曲霉毒素B1毒性及其发挥与DNA修复(修复相关酶)[J].右江民族医学院学报,2006,28(2):278-279.
    14.马韵,邓卓霖,罗虹,等.广西肝癌高低发区p53基因突变热点的对比研究[J].临床与实验病理学杂志,1997,13(4):302-304.
    15.杜艳平,朱惠莲.黄曲霉毒素B1致癌机制及植物性化学物防治的研究进展[J[.现代食品与药品杂志,2006,16(1):3-8.
    16. Chan KT, Dennis PH, Maria LL, et al. In vitro aflatoxin B1 induced p53 mutations[J]. Cane Let,2003,199(1):1-7.
    17. Aguilar F, Harris CC, Sun T, et al. Geographic variation of p53 mutational profile in nonmalignant human liver[J].Science,1994,264: 1317-1319.
    18. Shimizu Y, Zhu JJ, Han F, et al. Different frequencies of p53 codon-249 hotspot mutations in hepatocellular carcinomas in Jiang-Su Province of China[J]. Int J Cancer,1999,82:187-190.
    19. Paul CT, Abdoulaye S, Kuang SK, et al. Absence of P53 Codon 249 mutations in young guinean children with high Aflatoxin exposure [J]. CancEpidBio & Pre,2005,14:2053-2055.
    20.许真,金银龙.环境致癌剂与P53基因突变[J].卫生研究,2004,33(2):239-243.
    21. Su JJ, Ban KC, Li Y, et al. Alteration of p53 and p21 during hepatocarcinogenesis in tree shrews[J]. World J Gas,2004,10 (24):3559-3563.
    22.苏建家,李瑗,班克臣,等.动态研究HBV和AFB1诱发树鼩肝细胞癌过程中一些基因的表达[J].广西医科大学学报,2001(18):151-154.
    23.班克臣,曹骥.Survivin在AFB1高暴露地区肝细胞癌中的表达及其临床意义[J].中国肿瘤临床,2005,32(11):614-617.
    24. Duan XX, Ou JS, Li Y, et al. Dynamic expression of apoptosis-related genes during development of laboratory hepatocellular carcinoma and its relation to apoptosis[J]. World J Gas,2005,11(30):4740-4744.
    25. Henry SH, Bosch FX, Bowers JC, et al. Aflatoxin, hepatitis and worldwide liver cancer risks[J]. Adv Exp Med Biol,2002,504:229-233.
    26. Qian GS, Yu MC, Ross RK, et al. A follow-up study of urinary markers os aflatoxin exposure and liver cancer risk in Shanghai, PRC[J]. Cancer Epidemiol Biomarkers & Prev,1994,3:3-10.
    27.吴一迁,仇效坤,万曙光,等.HBVX转基因小鼠肝组织基因表达谱的微阵列研究[J].肿瘤,2001,21(4):235-238.
    28. Zhang YJ, Ahsan H, Chen Y, et al. High Frequency of promoter hypermethylation of RASSF1A and p16 and its Relationship to aflatoxin B1-DNA adduct Levels in human hepatocellular carcinoma[J]. Mole Care, 2002,35:85-92.
    29.翟红艳,黄天壬.黄曲霉毒素与肝癌关系研究现况[J].综述与进展,2008,37(1):93-95.
    30. Chen CJ, Yu MW, Liaw YF, et al. Chronic hepatitis B carriers with null genotypes of glutathione S-transferase M1 and T1 polymorphisms who are exposed to aflatoxin are art increased risk of hepatocellular carcinoma[J]. Am J Hum Genet,1996,59:128-134.
    31. Sun CA, Wang LY, Chen CJ, et al. Genetic polymorphisms of glutathione S-transferases M1 and T1 associated with susceptibility to aflatoxin-related hepatocarcinogenesis among chronic hepatitis B carriers: a nested case-control study in Taiwan[J].Carcinogenesis,2001,22: 1289-1294.
    32. Kensler TW, Groopman JD, Wogan GN. Use of carcinogen-DNA and carcinogen-protein adduct biomarkers for cohort selection and as modifiable end points in chemoprevention trials[A]. Stewart BW, McGregor D, Kleihues P, et al. Principles of Chemoprevention[M] Lyon:IARC,1996.237-248.
    33. Michael BS, Nanjoo Suh. Chemoprevention of cancer[J]. Carciongenesis,2000,21:525-530.
    34. Egner PA, Wang JB, Zhu YR, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer[J]. Proc Natl Acad Sci,USA,2001,98:14601-14606.
    35. Gratz S, Mykkanen H, El-Nezami H. Aflatoxin B1 binding by a mixture of lactobacillus and propionibacterium:in vitro versus ex vivo [J]. J Food Prot,2005,68(11):2470-2474.
    36. E1-Nezami H, Polychronaki NN, Ma J. Prnbiofic supple mentation reduces a biomarker for increased risk of liver cancer in young men from Southern China[J]. Am J Clin Nutr,2006,83(5):1199-1203.
    37. Jansen Van Rensburg C, Van Rensuburg CE, Van Ryssen JB, et a1. In vitro and in vivo assessment of humic acid as an aflatoxin binder in broiler chickens[J]. Poult Sci,2006,85(9):1576-1583.
    38. Mata JE, Yu z, Gray JE, et a1. Effects of chlorophyllin on transport of dibenzo(a,1)pyrene,2-amino-l-methyl-6-phenylimidazo-[4,5-b]pyridine, and atlatoxin B1 across Caco-2 cell monolayers[J]. Toxicology,2004,196, (12):117-125.
    39. Egner PA,Wang JB, Zhu YR, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer[J]. Proc Natl Acad Sci,USA,2001,98:14601-14606.
    40.王清兰,陶艳艳,刘成海.黄曲霉毒素体内吸收与代谢的干预措施研究进展[J].肿瘤,2007,27(5):415-418.
    41. Lee SE, Campbell BC, Molyneux RJ, et al. Inhibitory Effects of Naturally Occurring Compounds on Aflatoxin B1 Biotransformation [J].Agric.Food Chem,2001,49(11):5171-5177.
    42. De Bore JG, Quiney B, Walter PB, et al. Protection against aflatoxin B1-induced liver mutagenesis by Scutellaria baicalensis[J]. MuratRes,2005,578(1/2):15-22.
    43.蒿艳蓉,杨芳,曹骥,等.银杏叶提取物对AFB 1致HepG2细胞毒性保护作用的观察[J].中华肿瘤防治杂志,2008,15(23):1796-1799.
    44.蒿艳蓉,曹骥,李媛,等.银杏叶提取物阻断AFBl致大鼠肝癌及其机制研究[J].中药材,2009,32(1):92-96.
    45. Liu J, Yang CF, Wasser S, et al. Protection of salvia mihiorrhiza against aflatoxin-B 1-induced hepatocarcinogenesis in fischer 344 rats dual mechanisms involved [J].Life Sci,2001,69(3):309-326.
    46. Peng CH, Huang CN, Wang CJ. The anti-tumor efect and mechanisms of action of penta-acetyl geniposide[J]. Curr Cancer Drug Targets,2005, 5(4):299-305.
    47. Chan HT, Chan C, Ho JW. Inhibition of glycyrrhizic acid on aflatoxin Bl-induced cytotoxicity in hepatoma cells[J]. Toxicology,2003,188(2-3): 211-217.
    48.Pokharel YR, Han EH, Kim JY, et al. Potent protective effect of isoimperatorin against aflatoxin Bl-inducible cytotoxicity in H4ⅡE cells: bifunctional effects on glutathione S-transferase and CYPIA[J]. Carcinogenesis,2006,27(12):2483-2490.
    49.曹骥,李瑗,张丽生,等.茶多酚在树鼩肝癌形成中的化学预防作用[J].肿瘤,2005,25(2):118-121.
    50. Kelly VP, Ellis EM, Mansom MM, et al. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver[J]. Cancer Res,2000,60(4):957-969.
    51. Singh V, Belloir C, Siess MH, et al. Inhibition of carcinogen-induced DNA damage in rat liver and colon by garlic powders with varying alliin content[J]. Nutr Cancer,2006,55(2):178-184.
    52. Belloir C, Singh V, Daurat C, et al. Protective efects of garlic sulfur compounds against DNA damage induced by direct and indirect-acting genotoxic agents in HepG2 cells[J]. Food Chem Toxicol,2006, 44(6):827-834.
    53. Bintvihok A, Kositcharoenkul S. Effect of dietary calciam propionate on performance, hepatic enzyme activities and ariatoxin residues in broilers fed a diet containing low levels of afiatoxinBl[J]. Toxicon,2006, 47(1):41-46.
    54. Ezzei-Arab AM, Girgis SM, Hegazy EM, et al. Effect of dietary honey on intestinal microflora and toxicity of mycotoxins in mice[J]. BMC Complement Altem Med,2006,6(1):6.
    55. Abdel-Wahhab MA, Ahmed HH, Hagazi MM. Prevention of aflatoxin B1-initiated hepatotoxicity in rat by marine algae extracts[J]. J Appl Toxicol,2006,26(3):229-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700