上海地区灰霾天气气溶胶物理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先利用上海市气象局11个气象站地面观测资料对我国灰霾严重影响地区之一上海地区的灰霾气候特征和气象成因进行了分析,并利用地面气溶胶观测资料对灰霾发生时气溶胶物理特性进行了研究,然后利用地面微脉冲激光雷达资料反演了边界层高度,分析了不同强度灰霾发生时边界层高度的变化。最后采用国际上先进的CALIPSO卫星观测资料分析了长江三角洲地区灰霾的垂直分布特征。
     结果表明:上海地区多年平均的年灰霾日数约为154.6天。灰霾天气有明显的年变化,11月、12月、1月是灰霾天气的高发期。从季节变化来看,春季和冬季容易出现灰霾天气,轻度灰霾春季出现日数最多,重度灰霾冬季出现日数最多。风向、风速、降水量和降水天数与灰霾天气的发生都有密切关系。当上海吹西风、西南风和西北风时容易出现灰霾天气,而北风、东北风、东风、东南风对大气有一定的净化作用,灰霾天气出现较少。逆温层厚度和强度影响灰霾强度,从轻度灰霾日、中度灰霾日到重度灰霾日的接地逆温层厚度逐渐增大,逆温层出现高度逐渐降低,逆温层强度逐渐增强。当出现灰霾天气时,大气中细粒子较多,气溶胶质量浓度、体积浓度、黑碳浓度和气溶胶散射系数均比非灰霾天气时高。冬季黑碳浓度最大,细粒子所占比例最高。春季气溶胶质量浓度最大,大颗粒气溶胶最多。
     在利用导数法、归一化导数法和小波斜方差变换法反演边界层高度的三种方法中,用小波协方差变换法反演边界层得到的结果最好。在气象条件相同,气溶胶含量一定的情况下,能见度与边界层高度的变化趋势一致,但最大边界层高度出现的时间比最大能见度出现的时间早。夏季边界层最高,其次为秋季,春季和冬季边界层高度相近,为最低。重度灰霾时边界层高度小于650m,中度灰霾时为500-850m,轻度灰霾时为550-1100m,非灰霾时为850-1200m。
     CALIPSO观测结果与地面结果一致。在长三角地区,出现灰霾天气时,气溶胶大多集中在2km以下的区域内。在这个高度范围内,消光后向散射值主要集中在0.001-0.003 km~(-1)·sr~(-1)范围内,退偏比值主要集中在0-20%之间,色比值主要集中在0.2-0.9之间。对春、秋、冬三季样本进行统计时发现,消光后向散射在春季最小,体积退偏比和色比春季最大,秋季最小。这反映出春季受到北方沙尘输送的影响,导致春季灰霾天气的气溶胶颗粒比其他季节大,且颗粒较不规则,而秋季主要是较规则的小尺度气溶胶颗粒。出现灰霾天气时,越接近地面颗粒尺度越大,且颗粒越不规则。
In this paper, haze aerosols physical characteristics in Shanghai which was one of the most severely haze-affected areas in China were analyzed. First, the meteorological data and aerosol ground observation from Shanghai Meteorological Bureau were used to analyze climatic characteristics and meteorological cause of haze as well as physical characteristics of aerosols during haze periods. Then the height of boundary layer was retrieved and its variation for different intensity haze was analyzed using data from ground-Micro Pulse Lidar. The vertical distributions of aerosols in haze at Yangtze River Delta region were presented based on. the advanced CALIPSO satellite observations.
     The result showed that the multiyear average number of haze days per year was about 154.6 in Shanghai. Annual variation of haze was evident. November, December and January showed high occurrence of haze. Haze occurred most frequently in spring and winter, mild haze in spring and severe haze in winter. Wind direction, wind speed, precipitation and number of precipitation days all had an affinity with the occurrence of haze. When westerly, southwest or northwest winds blowed in Shanghai, there was higher occurrence of haze, while north, northeast east or south-east wind could purify atmosphere leading to less haze. Thickness and intensity of inversion layer influenced on haze. From mild haze to moderate one and then to severe haze, thickness of inversion layer from surface increased gradually while the height decreased and intensity increased gradually. During haze periods, there were more fine particles in the atmosphere and aerosol mass concentration, volume concentration, black carbon concentration and aerosol scattering coefficient were higher than those during non-haze periods. The highest concentration of black carbon and proportion of fine particles occurred in winter while the largest measurement of mass concentration and coarse particles of aerosols were in spring.
     Among the derivative-based method, normalized oblique derivative method and wavelet covariance transform method, the third can obtain the best result of boundary layer height retrieval. Under the same weather conditions and aerosol content, visibility and boundary layer height had a consistent variation trend. But the highest boundary layer height appeared earlier than the maximum visibility. The maximum boundary layer height appeared in summer, followed by the fall and the lowest was in spring and winter. When severe haze appeared, the boundary layer height was less than 650m, while the corresponding height was between 550-850m during moderate haze, 550-1100m during light haze and 850-1200m during non-haze periods.
     Observations from CALIPSO data were consistent with that of ground-based. In the Yangtze River Delta region, when haze occurred, aerosols were mostly concentrated below 2km altitude. Within such a height, back scattering coefficient mainly ranged from 0.001 to 0.003km~(-1)·sr~(-1), depolarization ratio ranged from 0 to 20% and color ratio ranged from 0.2 to 0.9. Based on the statistics for spring, autumn and winter, attenuated back scattering in spring was smallest, depolarization ratio and color ratio in spring were largest. Due to dust transport from north in spring, there were relatively large particles with irregular shape during haze periods, in autumn, aerosol particles were smaller and more regular than the other two seasons. When haze occurred, the lower the altitude was, the larger and more irregular the particles were.
引文
1.吴兑,毕雪岩,邓雪娇,等.都市霾与雾的区分及粤港澳的灰霾天气观测预报预警标准[J].广东气象,2007,29(2):5-10.
    2.孙娟,束炯。鲁小琴,等.MODIS遥感气溶胶光学厚度产品在地面能见度中的应用[J].环境科学与管理,2006,31(5):97-101.
    3.李莉,束炯,李朝颐,等.上海市氮氧化物污染与气象条件关系特征分析[J].安全与环境学报.2004.4(1):36-39.
    4.Nan Hao,Bin zhou,Dan Chen,et al,Measurements of NO2,S02,03,BENZENE and Toluene using differential optical absorption spectroscopy(doas) in Shanghai,China[J].Annali di Chimica,2006,96:365-375.
    5.王佳,韩见弘,黄蕊.浅析灰霾的形成及危害[J].内蒙古科技与经济,2007,9(17):37-38.
    6.张保安,钱公望,中国灰霾历史渊源和现状分析[J].ENVIRONMENT AND SUSTAINABLE DEVELOPENT,2007,1:56-58.
    7.吴对林.灰霾污染及预防措施[J].环境保护,2009,1(420):46-47.
    8.白志鹏,蔡斌彬,董海燕,等.灰霾的健康效应[J].环境污染与防治,2006,28(3):198-201.
    9.肖红,张保森,魏云慧.灰霾天气的危害与预防途径[J].湖北气象,2006,3:44.
    10.吴兑.再论都市霾与雾的区别[J].气象,2006,32(4):9-15.
    11.吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].气象,2005,31(4):3-7.
    12.江崟,曹春燕.2003年深圳市灰霾气候特征及影响因素[J].广东气象,2004:14-15.
    13.刘爱君,杜尧东,王惠英.广州灰霾天气的气候特征分析[J].气象与城市环境,2005,30(12):68-71.
    14.郭军.天津地区灰霾天气的气候特征分析[J].城市环境与城市生态,2008,21(3):12-14.
    15.童尧青,银燕,钱凌,等.南京地区灰霾天气特征分析[J].中国环境科学,2007,27(5):584-588.
    16.Fu,Q.Y.,G.S.Zhuang,et al."Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta,China." Atmospheric Environment 42(9):2023-2036.
    17.吴兑,邓雪娇,毕雪岩,等.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报,2007,23(1):1-6.
    18.吴兑.沿海工业城市灰霾天气增多与海盐气溶胶粒子的关系[J].广东气象, 2009,31(2):1-3.
    19.闽敏,王普才,宗雪梅,等.灰霾过程中的气溶胶特性观测研究[J].气候与环境研究,2009,14(2):153-160.
    20.Welton E J,Voss K J,Quinn P K,et al.Measurements of aerosol vertical profiles and optical properties during IN-DOEX 1999 using micropulse lidars[J].Geophys Res,2002,107(D19):8019-8031.
    21.Voss K J,Welton E J,Quinn P K,et al.Lidar measurements during Aerosols 99[J]Geophys Res,2001,106(D 18):821-831.
    22.Weibiao Chen,Hiroaki Kuzea,Akihiro Uchiyama,et al.One year observation of urban mixed layer characteristics at Tsukuba[J].Japan using a micropulse lidar.Atmospheric Environment,2001,35:4273-4280.
    23.Charlson,R.J.,S.E.,Schwartz,J.M.Hales,et al.Climate forcing by anthropogenic aerosols[J],Science,1992,255:423-430.
    24.贺千山,毛节泰.北京城市大气混合层与气溶胶垂直分布观测研究[J].气象学报,2005,63(3):374-384.
    25.邱金恒,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测[J].大气科学.2003,27(1):1-7.
    26.孙兆滨,郭金家,刘智深,等.微脉冲激光雷达测量大气水平能见度[J].激光技术,2007,31(2):200-202.
    27.王雁鹏,陈岩,董旭辉,等.激光雷达观测北京大气气溶胶的垂直分布[J].光谱实验室.2007.24(6):1153-1156.
    28.刘诚.明海,王沛,等.西藏那曲与北京郊区对流层气溶胶的微脉冲激光雷达测量[J].光子学报,2006,35(9):1432-1439.
    29.Winker Dave,Vaughan M,Hunt B.The CALIPSO mission and initial results from CALIOP[J].Lidar Remote Sensing for Environmental Monitoring,2006,6409:640902.
    30.刘刚,史伟哲,尤睿.美国云和气溶胶星载激光雷达综述[J].航天器工程,2008,17(1):78-84.
    31.肖昊.美国发射“云卫星”利“卡利普索”“地球观测系统”又添2颗重要卫星[J].国际太空,2006,6:1-5.
    32.董旭辉,祁辉,任立军,等.偏振激光雷达在沙尘暴观测中的数据解析[J].环境科学研究,2007,20(2):106-111.
    33.Jianping Huang,Patrick Minnis,Yuhong Yi,et al.Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J].Geophysical Research Letters.2007,34:1-5.
    34.Ben Wiltshire,Rajesh Govindan,et al.Combining CALIPSO and meteosat images to study the distribution of atmospheric dust[J].Laser Radar Techniques for Atmospheric Sensing.2004,5240:153-164.
    35.O.Chomette A.Garnier J.Pelon,et al.Retrieval of cloud emissivity and particle size in the frame of the CALIPSO mission[J].IEEE,2003,2(3):7803-7929.
    36.V.Noel,D.M.Winker,T.J.Garrett,M.McGill.Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-Iike algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE[J].Atmospheric Chemistry and Physics,2007,7:1415-1422.
    37.L.W.Thomason,M.C.Pitts,and D.M.Winker.CALIPSO observations of stratospheric aerosols:a preliminary assessment[J].Atmospheric Chemistry and Physics Discussions,2007,7:5595-5615.
    38.Jianping Huang,Patrick Minnis,Bin Chen et al.Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J].J.Geophys,2008,113:1-13.
    39.吴兑.霾与雾的区别和灰霾天气预警建议[J].气象,2005,31(4):3-7.
    40.吴兑.大城市区域霾与雾的区别和灰霾天气预警信号发布[J].环境科学与技术,2008,31(9):1-7.
    4I.王明星.大气化学[M].北京,气象出版社,1999,160-177.
    42.阴俊,谈建国.上海地区地面风向对空气污染物浓度的影响[J],气象科技,2003,31(6):366-369.
    43.王治华.大气消光系数反演方法参数优化及成都地区大气边界层特性研究[D].四川:四川大学,2006.
    44.贺千山,毛节泰.微脉冲激光雷达及其应用研究进展[J].气象科技,2004,32(4):219-224.
    45.Stull R.B.,An introduction to boundary layer meteorology[M].The Netherlands Kluwer Academic Publisher,1998
    46.Siebert P.,Beyrich F.,Gryning S.,et al.,Review and intercomparion of operational methods for the determination of the mixing height,Atoms.Environ.,2000,34:1001-I027
    47.Flamant C,Pelon J,Flamant R Durand P.Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer[J].Boundary-Layer Meteorol,1997,83:247-84.
    48.贺千山,微脉冲激光雷达研究对流层气溶胶光学属性和分布特征[D],北京:北京大学,2006.
    49.IAN M.Brokks,Finding boundary layer top:application of a Wavelet Covariance Transform to lidar backscatter profiles[J],Atmospheric and oceanic technology,2003,20:1092-1104.
    50.H.Barrs,A.Ansmann,R.Engelmann,et al.Countinuous monitoring of the boundary-layer top with lidar[J], Atmospheric Chemistry and Physics, 2008, 8: 7281-7296.
    
    51. Liu, Zhaoyan; Omar, Ali; Vaughan, Mark et al. CALIPSO lidar observations of the optical properties of Saharan dust:A case study of long-range transport.Journal of Geophysical Research, 2007, 113(D7)
    
    52. Z.Liu, D.Liu, J.Huang.et.al Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations[J],Atmospheric Chemistyry and Physics,2008, 8:5045-5060

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700