用户名: 密码: 验证码:
高油玉米秸秆青贮品质分析和营养价值评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验(1)以151份青贮和风干玉米秸秆为材料,研究应用近红外反射光谱技术测定玉米秸秆品质性状的可行性和方法(2)以18个高油和12个普通玉米品种研究不同品种在不同成熟期的秸秆生物产量大小及青贮营养成分和消化率的变化规律,结果如下:
     1.本研究根据偏最小二乘(Partial Least Square,PLS)分析法,在国内首次建立了近红外反射光谱测定玉米秸秆的纤维素、木质素、ADF(酸性洗涤纤维)和灰分含量的定量分析模型,上述性状的模型定标决定系数(R_(cal)~2)分别为96.68、89.49、94.73、92.1,模型的外部验证决定系数(R_(val)~2)可达80.77(灰分含量)~94.55(ADF含量);预测均方差(RMSEP)为1.34g/kg(纤维素含量)~12.5g/kg(ADF含量)。此外,还利用15个玉米秸秆材料对上述4个模型的实际预测效果进行验证,预测值与化学值之间的相关系数(R)分别达0.99(纤维素含量)、0.99(ADF含量)、0.98(木质素含量)和0.93(灰分含量),模型的测定值与化学测定值相当,表明近红外反射光谱技术测定玉米秸秆营养成分是可行的。
     2.本研究大部分品种在收获期鲜秸杆DM含量均可达到青贮要求,单株秸杆鲜重389.31—1358.17g,单株秸杆干重146.28-362.75g。不同成熟期的平均秸秆鲜重有一定差异,其中M2的最高,M1次之,M3最低,高油玉米秸秆具有较高的含糖量。
     3.本研究表明不同品种与成熟期对青贮秸秆的营养成分和消化率具有极显著的影响。其中消化率排在前15位的品种中高油玉米占2/3,且大都在M3具有高的消化率。
     4.玉米青贮秸秆的ADF含量、木质素含量、木质化程度(g/gADF)、纤维素、灰分含量与消化率均呈显著负相关,其中ADF含量、木质化程度和灰分含量与消化率相关系数分别为-0.63,-0.60,-0.60。
The objectives of this study were:(1) to investigate the feasibility and methods of measuring quality of corn stalk with near infrared reflectance spectroscopy (NIRS) by using 151 powdery silage and air-dry stalk samples of maize hybrids(2) to study the yield, silage nutrition component and digestibility of different varieties and mature stage corn stalk with 18 high-oil and 12 normal varieties. The results were as follows:
    1. The calibration equations for quantitative determination of cellulose,lignin,ADF and mineral concentration of corn stalk were developed in China by partial least square regression (PLS) of chemical values on NIRS data and tested through both cross and external validation. The calibration coefficients of determination (R2cal) between NIRS and chemical values are 96.68, 89.49, 94.73, 92.1 respectively,the external validation coefficients of determination (R2cval) ranged from 80.77 for mineral to 94.55 for ADF, while the root mean square error of prediction (RMSEP) from 1.34g/kg for cellulose to 12.5g/kg for ADF. In addition, 15 additional samples of com stalk excluded in calibration and validation sets were used to evaluate the calibration equations' performance. Coefficients of correlation(R) between NIRS predicted values and chemical values were 0.99(cellulose concentration), 0.99(ADF concentration), 0.98(lignin concentration) and 0.93(mineral concentration). So,this study showed that NIRS was feasible to determine nutrition component of corn stalk.
    2.Dry matter(DM%) of all varieties ranged 25%~70%, single stalk fresh weight ranged 389.31~ 1358. 17g and single stalk dry weight ranged 146.28~362.75g. Average stalk fresh weights of different maturity were different and the highest at 3/4 milkline,next at 2/4 milkline ,the least at 4/4 milkline. High-oil corn stalk had higher water-solubility sugar concentration(WSC)compared with that of normal corn.
    3. Hybrid, and maturity had obvious effects on the chemical ingredient and digestibility of stalk in this experement.And two-third of anterior fifteen high digestibility varieties were high-oil corn.
    4.Significant negative correlation were found between digestibility and ADF, lignin, cellulose, mineral concentration and lignification degree(g/gADF) of silage stalk, and coefficients of correlation between ADF, lignification degree, mineral concentration and digestibility were -0.63,-0.60,-0.60 respectively.
引文
[1]. Albanell E,Plaixats J and Ferret A. Evaluation of near-infrared reflectance spectroscopy for predicting stover quality trait in semi-exotic populations of maize. Sci. Food Agric.1995.
    [2]. Andrae J.G., Duckett S.K., Hunt C.W.,etal. Effects of feeding high-oil corn to beef steers on carcass characteristics and meat quality.Journal of Animal Science,Mar 2001, 79, 3.
    [3]. Andrae J.G., Hunt C.W., Pritchard G.T., Kennington L.R.,etal. Effect of hybrid, maturity, and mechanical processing of corn silage on intake and digestibility by beef cattle.Journal of Animal Science, Sep 2001, 79, 9.
    [4]. Andrew L Lewis, William J Cox, Jerome H Cherney Hybrid, Maturity, and Cutting Height Interactions on Corn Forage Yield and Quality.Agronomy Journal, Jan/Feb 2004, 96, 1
    [5]. ATWELL D.G., JASTER E.H., MOORE K.J., FERNANDO R.L. Evaluation of High Oil Corn and Corn Silage for Lactating Cows Journal of Dairy Science 1988, Vol.71,No 10.
    [6]. Bal, M. A., J. G. Coors, and R. D. Shaver. 1997. Corn silage maturity effects on intake and milk production by dairy cows. J. Anim. Sci. 79(Suppl.1):96.
    [7]. Bal, M. A., J. G. Coors, and R. D. Shaver. Kernel milk line stage effects on the nutritive value of corn silage for lactating dairy cows. J. Dairy Sci. 1996.79 (Suppl.1):150.
    [8]. Barton F.E. Optimal geometrics for the development of rice qulity spectroscopic chemometric models. Cereal Chem., 1998, 75(3): 315-319.
    [9]. Beeghly, H.H.,The Effect of Cell Wall Constituents in Detrmining Resistance of Maize to the European Corn Borer,ph,D.Thesis, University of wisconsint[M].Madison,WI,1990.
    [10]. Bowden,D.M.,etal.Feeding Value of Silage From a Tillering and Nontillering Hybrid Corn. Can[J]. Plant Sci. 1975,55,955.
    [11]. Campbell M R, Mannis S R, Port H A, et al. Prediction of starch amylose content versus total grain amylose content in corn by near-infrared transmittance spectroscopy. Cereal Chem., 1999.
    [12]. Campbell M, Brumm T J, and Glover DV. Whole grain amylose analysis in maize using near-infrared transmittance spectroscopy. Cereal Chemistry.1997, 74:300-303.
    [13]. Casler. M. D. Crop Sci. 1999. 39:381-390
    [14]. Champagne E T, Bett-Garber K L, Grimm C C, et al. near-infrared reflectance analysis for prediction of cooked rice texture. Cereal Chem. 2001,78(3): 358-362.
    [15]. Crookston, R. K., and J. E. Kurle. 1988. Using the kernel milk line to determine when to harvest corn for silage. J. Prod. Agric. 1:293.
    [16]. Cummins, D. G. 1970. Quality and yield of corn plants and component parts when harvested for silage at different maturity stages. Agron. J. 62:781.
    [17]. Davies A. M. C., Coxon D T, Gavrel G M et al. Determination of starch and lipid in pea flour by near-infrared reflectance analysis. The effect of pea genotype on starch and lipid content. J Sci. Food Agric. 1985,36:49-54.
    [18]. Daynard T. B., and Hunter R. B.. 1975. Relationships among whole-plant moisture, grain moisture, dry matter yield, and quality of whole-plant corn silage. Can. J. Plant Sci. 55:77.
    [19]. Delwiche S R, Chen Y R and Hruschka W R . Differentiation of hard red wheat by near-infrared analysis of bulk samples. Cereal Chem., 1995,72 (3): 243-247.
    [20]. Delwiche S.R, Bean M M, Miller R E, et al, Apparent amylose content of milled rice by
    
    near-infrared reflectance spectrophotometry. Cereal Chemistry. 1995, 72: 182-187.
    [21]. Dowell F E. Differentiating vitreous and nonvitreous durum wheat kernels by using near-infrared spectroscopy. Cereal Chem., 2000,77(2): 155-158.
    [22]. Dnncan, W. G., and Daynard, T. B. 1969. The black layer and grain maturity in corn. Crop Sci. 9:473.
    [23]. Fonseca C. E. L., J. L. Hansen, E. M. Thomas, A. N. Pell, and D. R. Viands Near Infrared Reflectance Spectroscopy Prediction and Heritabilityof Neutral Detergent-Soluble Fiber in Alfalfa. Crop Science Volume 39 September-October 1999 Number 5.
    [24]. Fontaine J, Schirmer B and Horr J. Near-infrino acid contents. 2. Results for wheat, barley, corn, triticale, wheat ared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of the essential ambran/middlings, rice bran, and sorghum. J. Agric. Food Chem., 2002,50: 3902-3911.
    [25]. Ganoe, K. H., and G. W. Roth. 1992. Kernel milk line as a harvest indictor for corn silage in Pennsylvania. J. Prod. Agric. 5:519.
    [26]. Geiger, H.H.,etal.Analysis of Factorial Crosses between Flint and Dent Maize Inbred for Forage Performance and Quality Traits ,in Breeding of Silage Maize,13th Congr.of the Maize and Sorghum Section[M].Netherlands,1986.
    [27]. Hallauer, Arnel R.,Specialty corns. Boca Raton Crc Press,c2001.
    [28]. Hunt C. W., Kezar W., and Vinande R.. 1989. Yield, chemical composition and ruminal fermentability of corn whole plant, ear and stover as affected by maturity. J. Prod. Agric. 2:357.
    [29]. John Leidner. Sold on corn silage. Progressive Farmer, May/Jun 2002, 117, 7.
    [30]. Johnson L.M., Harrison J.H., Davidson D.,etal. Corn silage management: Effects of hybrid, maturity, chop length, and mechanical Processing on Rate and Extent of Digestion. Journal of Dairy Science, Oct 2003; 86, 10.
    [31]. Johnson, R. R., Mcclure K. E., Johnson L J.,etal. Corn plant maturity. Ⅰ. Changes in dry matter and protein distribution in corn plants. Agron. J., 1966,58:151.
    [32]. Kim H.O., Williams P. Determination of starch and energy in feed grains by near-infrared transmittance spectroscopy. J. Agrie. Food Chem. 1990, 38:682-688.
    [33]. LaCOUNT D.W., DRACKLEY J.K., CICELA T.M., and CLARK J.H. High Oil Corn as Silage or Grain for Dairy Cows During an Entire Lactation Journal of Dairy Science 1995, Vol.78.No.8.
    [34]. Lauer, J.,Coors J.,and Shaver R.. What's coming down the pike in corn genitics? value-added corn silage-brown midrib, waxy and high-oil and others. Proceedings of the 31st California Alfalfa & Forage Symposium. 2001.
    [35]. Mcdonald,P.,Henderson A.R.,and Heron S.J.E.. The biochemistry of silage. 2nd ed. Chalcombe Publ., Madow, United Kingdom. 1991.
    [36]. Meadows F and Barton F E. Determination of rapid visco analyzer parameters in rice by near-infrared spectroscopy. Cereal Chem. 2002, 79(4): 563-566.
    [37]. Miedema, P..Breeding of silage maize :proceedings of the ... / Wageningen :Pudoc,1986.
    [38]. Orman B.A. and Schumann R.A. Comparison of near-infrared spectroscopy Calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chemistry. 1991,39: 883-886.
    [39]. Roth,L.s.,Marten,G.C.,etal.Genetic Variation for Quality Traits in Maize Forage [J].CropSci.
    
    1970, 10,365.
    [40]. Russell, J. R. Influence of harvest date on the nutritive value and ensiling characteristics of maize stover. Animal Feed Sci. and Technol. 1986.14:11.
    [41]. Seitz,G,Geiger, H.H.,et al.Genetipic Correlation in Forage Maize.Relationship between Inbred line and Testcross Performance,Maydica. 1992, 37,101.
    [42]. Shenk J.S. and Westerhaus M.O. Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Sci., 1991,31:469-474
    [43]. Tjardes K.E., Buskirk D.D., Allen M.S., etal. Brown midrib-3 corn silage improves digestion but not performance of growing beef steers. Journal of Animal Science, Nov 2000, 78, 11.
    [44]. Velasco L, Mollers C, Nondestructive assessment of protein content in single seed rapeseed (BrassicanapusL.) bynear-infrared reflectance spectroscopy. Euphytica, 2002,123:89-93
    [45]. Velasco L, Perez-Vich B and Fernandez-Martinez J M. Nondestructive screening for oleic and linoleic acid in single sunflower achenes by near- infrared reflectance spectroscopy Crop Sci.1999, 39:219-222
    [46]. Velasco L. and Becker H. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphitica, 1998, 101:221-230.
    [47]. Velasco L., Mollers C. and Becker H.C. Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (Brassica napus L.) by near-infrared reflectance spectros-copy. Euphitica, 1999,106:79-85
    [48]. Wehling R.L, Jackson D S, Hooper D G, et al. Prediction of wet-milling starch yield from corn by near-infrared spectroscopy. Cereal Chem.1993, 70 (6): 720-723
    [49]. Weller, R.F.,Phipps,R.H.,and Cooper,A.,The Effect of Brown Midrib—3 Gene on The maturity and Yield of Forage Maize [J] Grass Forage Sci. 1985, 40,335
    [50]. Whitlock L.A., Schingoe D.J. Milk Production and Composition from Cows Fed High Oil or Conventional Corn at Two Forage Concentrations.Journal of Dairy Science,2003.Vol.86,No7,
    [51]. Wiersma, D.W., P. R. Charter, K. A. Albrecht, and J. G. Coors. Kernel milk line stage and corn forage yield, quality and dry matter content. J. Prod. Agric. 1993, 6:94.
    [52]. Wiersma,D.W.,Carter, P.R.,Albrecht,K.A.,etal. Milklinee Stage and Corn for forage Yield ,Quality, and Dry Matter Content,[J]Prod Agric. 1993,6.94.
    [53]. Williams P.C., Norris K.H. and sobering D.C. Determination of protein and moisture in wheat and barley by near-infrared transmission. J. Agric. Food Chem., 1985,33:239-244
    [54]. Woolford, Michael K.,The silage fermentation.New York :M. Dekker, c1984.
    [55]. Wu J.G, Shi C.H. and Zhang X.M. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crops Research.. 2002,75:1-7.
    [56].卞田 吴融 青贮玉米 北京:科学技术文献出版社,1992.
    [57].蔡敦江,周兴民,朱廉.1997.苜蓿添加剂、半干青贮与麦秸混贮的研究.草地学报.5(2):123.
    [58].陈刚 品种、密度、收割期对玉米青贮品质的影响 北京农业科学,1989,(1):20-23.
    [59].陈庆今,刘焕彬,胡勇有 瘤胃微生物对纤维素降解机理 微生物学杂志 2002年第22卷第2期.
    [60].陈邵苹 近红外漫反射光谱测定饲料中粗纤维 饲料工业 1996年第17卷第6期.
    [61].陈喜斌,饲料学.北京:科学出版社,2003,78~85.
    [62].陈自胜 孙中心 徐安凯 青贮玉米及其经济效益 吉林农业科学 2000,25(4):41~44.
    
    
    [63].丁丽敏 计成 戎易 近红外(NIRS)和粗蛋白预测氨基酸含量的精度比较研究 饲料工业 2002年第23卷第4期.
    [64].董世魁,魏小红.实验室条件下几种青贮饲料的加工与调制.青海畜牧兽医杂志 2000年第4期.
    [65].段明孝,郭景伦,王元东,等.利用近红外透射分析仪快速测定玉米子粒品质的初步研究.华北农学报,2003,1:37-40.
    [66].高文淑,张录达,王万军.应用付里叶变换近红外反射光谱法测定几种谷物籽粒中蛋白质含量.北京农业大学学报.1990,16(增刊):72-79
    [67].郭乐群,张忠,谷明光 二倍体多年生大刍草(ZeaDiploperennis)是有价值的新种质资源 玉米科学 2000,8(4):12~14.
    [68].韩正康 陈杰.反刍动物瘤胃的消化和代谢.北京:科学出版社.
    [69].霍鲜鲜,侯先志,李翠英.瘤胃微生物对纤维物质的粘附作用 内蒙古畜牧科学 2001年第3期.
    [70].吉海彦,严衍禄.在国产近红外光谱仪实验样机上用偏最小二乘法定量分析大麦成分.分析化学,1998,5:607-611.
    [71].刘建学,吴守一,方如明.基于近红外光谱的神经网络预测大米直链淀粉含量.农业机械学报,2001,2:55-57.
    [72].刘全宏.2001.自然贮存条件下苹果的营养成分分析.西北植物学报.21(4):668.
    [73].卢德明,杨克英,郑存节.用近红外仪快速测定油料及粕中蛋白质、脂肪和水分方法的探讨 中国油脂 1998年第23卷第6期.
    [74].卢德勋等编著.现代反刍动物营养研究方法和技术.北京:农业出版社,1991.
    [75].卢庆萍,张铁鹰,姜文志.酶在反刍动物日粮中的应用 中国畜牧兽医 2002年第29卷第3期.
    [76].陆婉珍,袁洪福,徐广通,等编著.现代近红外光谱分析技术.北京:中国石化出版社,2000.
    [77].毛胜勇 朱伟云 反刍动物瘤胃真菌的研究进展 中国奶牛 2000年第5期.
    [78].宁开桂编著.实用饲料分析手册.北京:中国农业科技出版社,1992.
    [79].彭玉魁,李菊英.NIRS法同时测定小麦种子水分、粗蛋白、赖氨酸和粗淀粉含量研究.西北农业学,1996,5(3):31-34.
    [80].皮.麦克德纳,青贮饲料的生物化学,北京:北京农业大学出版社,1988,58~115.
    [81].曲永利 姜宁 苗树君 贾永全 不同收获期玉米青贮干物质在奶牛瘤胃内降解率的研究 黄牛杂志 2003年11月第29卷第6期.
    [82].史永刚,冯新泸,李子存,等.近红外光谱分析中应考虑的几个问题.光谱实验室,2001,4:435-437.
    [83].舒庆尧,吴殿星,夏英武,高明尉.用近红外反射光谱测定小样本糙米粉的品质性状,中国农业科学.1999,32(4):92-97.
    [84].宋同明 苏胜宝 陈绍江 赵永亮 高油玉米前途光明 玉米科学 1997,5(3).
    [85].隋华,刘克祥,张义林,鄂士斌,吕祥,张金锁.高油玉米青贮秸秆饲喂试验研究 《天津农林科技》 1999年第5期.
    [86].孙玲,侯长国,姜岩.大力发展高油玉米,促进农业产业化.作物杂志 2001(2).
    [87].王芳,陈达,邵学广.近红外光谱与卷烟样品常规成分的关系模型研究.烟草科技,2002,5:23-26.
    [88].王伟东,王璞 高油玉米的研究现状 黑龙江农业科学 2002,(2).
    [89].王文杰 穆淑琴 刘兰兰 任鹏 近红外光谱法检测预混料中的维生素A 天津畜牧兽医 1998年.
    
    
    [90].王文真.在近红外光谱定量分析中应注意的几个问题.现代科学仪器,1996,1:24-25.
    [91].王元东,段民孝,邢锦丰,滕海涛,郭景伦,赵久然.青贮玉米育种研究进展 玉米科学 2002,10(2).
    [92].魏国才 矮秆玉米的选育与利用 黑龙江农业科学 1999年第3期.
    [93].吴坤,张世敏,朱显峰.木质素生物降解研究进展.河南农业大学学报.2000年12月第34卷第4期.
    [94].吴秀琴,梁冬升,吴燕凤,等.应用NIRS测定菜豆嫩荚的粗蛋白和纤维含量.作物品种资源,1993,1:28-29.
    [95].夏清阳 玉米秸秆的利用 中国饲料 2001年第18期.
    [96].肖文一 饲用植物栽培与利用 北京:农业出版社 1989年.
    [97].徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,2:134-142.
    [98].徐坤,刘鹏起,张玉娜,等.近红外光谱分析技术及应用.莱阳农学院学报,2001,3:237-240
    [99].严衍禄,吉海彦.傅里叶变换近红外光谱技术及应用.见:吴谨光编,近代傅里叶变换近红外光谱技术及应用,北京:科学技术文献出版社,1994,251-301.
    [100].严衍禄,吉海彦.傅里叶变换近红外光谱技术及应用.见:吴谨光编,近代傅里叶变换近红外光谱技术及应用,北京:科学技术文献出版社,1994,251-301.
    [101].严衍禄,景茂,张录达,等.付里叶变换近红外漫反射光谱分析测量误差的研究.北京农业大学学报,1990(增刊):3748.
    [100].严衍禄,赵龙莲,李军会,等.现代近红外光谱分析的信息处理技术.光谱学与光谱分析,2000,6:777-780.
    [101].晏向华瞿明仁黎观红 王加启 秸秆饲料资源开发技术与应用研究新进展 江西饲料 2001年第2期.
    [102].翟少伟,高俊.高油玉米的营养价值及发展前景.粮食与饲料工业.2001年第6期.
    [103].张吉旺,王空军,胡昌浩 收获期对玉米饲用营养价值的影响 玉米科学 2000,8(增刊):33~35.
    [104].张录达,沈晓南,赵龙莲,等.近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量.分析化学,2000,6:723-725.
    [105].张晔晖.傅里叶变换近红外光谱法测定完整的单粒玉米含油份量.[硕士学位论文]:北京,中国农业大学,1995.
    [106].赵环环,严衍禄.利用付里叶近红外漫反射技术快速测定玉米子粒中蛋白质含量.玉米科学,1999,3:77-79.
    [107].赵遵阳.高油玉米品种与成熟期的互作对青贮发酵品质和生长牛饲喂价值影响的研究:[硕士学位论文].北京:中国农业大学,2003.
    [108].郑伟 濯景坤 玉米青贮技术的研究 饲料博览 14-16(3)1994.
    [109].周国顺.近红外分光光度法测定饲料氨基酸含量.中国饲料.1997年,第4期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700