用户名: 密码: 验证码:
小径高速液体悬浮主轴热动力润滑特性与表面微结构效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体悬浮主轴以其高回转精度、高动态刚度、高阻尼减振性和长寿命等性能优势,在高速精密机床领域获得广泛应用。液体悬浮主轴日益发展成将机床主轴功能与电机功能从结构上融为一体的新型电主轴单元,它省去了复杂中间传动环节,具有调速范围宽、振动噪声小、可快速启动和准停等优点,不仅可极高提高生产率,而且可显著提高零件的加工精度和表面质量。小径高速液体悬浮主轴是现代汽车发动机“凹面型凸轮”高效精密磨削装备的核心功能部件,但兼具高效率和高精度的小径高速液体悬浮主轴国内外迄今阙如。为进一步适应超高速精密加工的需要,小径高速液体悬浮主轴不仅迫切需要解决高速化和结构集成化带来的轴承温升控制,而且还面临解决受主轴结构尺寸和高速下轴承油膜温升制约的主轴系统刚度提升的技术难题。
     本文提出以表面微结构技术来调控小径高速液体悬浮主轴轴承系统热动力性能的学术思想,建立了基于计算流体动力学的液体悬浮轴承热动力润滑理论分析与设计方法,探讨了轴承工作参数、结构参数、微结构几何参数与分布参数对液体悬浮轴承的油膜流场特性与热动力润滑基本性能的影响规律和优化匹配准则,开发了兼具高承载刚度和低温升特性的小径高速液体悬浮电主轴并进行了综合性能实验研究。本文主要研究工作与关键研究结论如下:
     (1)为克服基于雷诺方程的液体悬浮轴承热动力润滑理论模型和计算方法的不足,建立了基于计算流体动力学与有限体积法的高速液体悬浮轴承三维热动力润滑理论模型和高效数值计算方法,并比较研究了该方法与基于雷诺假设的一维及二维动力润滑理论在经典流体动力润滑问题中的应用,结果表明该方法具有高效正确性,可作为液体悬浮轴承热动力润滑理论研究的基本工具。利用非结构网格与分块划法及网格尺寸函数建立了符合孔口进油动静压径向轴承、环形腔静压止推轴承及相应表面微结构轴承几何尺度特征的三维油膜CFD计算网格,并深入探讨了液体悬浮轴承热动力润滑边界条件选取类型及计算参数优选的方法,解决了三维油膜网格划分易畸变、协调性差的难题,确保了计算效率与精度综合最优。
     (2)研究了工作参数和结构参数对高速动静压径向轴承油膜流场形态与热动力润滑基本性能的影响规律,指出进油孔径及进油孔周向与轴向分布数对高速动静压径向轴承的动压效应和静压效应的配比影响显著,较大孔径有利于降低油膜温升和温度场的均匀化,进油孔周向分布数大于10时对抑制油膜温升的作用有限。进而提出了高承载刚度和低温升特性约束下轴承工作参数与结构参数的匹配准则,指出转速为30000r/min时,供油压力宜选择5MPa~6MPa;较大封油系数和较小进油孔径组合有利于提升轴承综合性能,而承载刚度一定时,较小长径比来有利于降低油膜温升;可通过同时增加长径比、封油系数及进油孔轴向分布数可使同等油膜温升水平下轴承承载能力和刚度极大提高。最后推导了基于雷诺方程的多排孔进油动静压径向轴承基本性能计算的解析公式,指出当进油参数较小时,该解析计算可替代三维CFD计算作为工程优化设计手段。
     (3)研究了工作参数和油腔结构参数对高速静压止推轴承油膜流场形态与热动力润滑基本特性的影响规律,指出高速下油流惯性力效应显著导致油膜流场形态复杂,油腔中油膜压力均匀的假设不再成立,惯性力效应对内外封油面压力场和温度场的影响趋势相反。进而提出了高承载刚度和低温升特性约束下轴承工作参数与结构参数的匹配准则,指出转速为30000r/min,供油压力大于4MPa时,供油压力的增加对油膜温升的抑制作用有限;选择适中的进油孔径与较浅的腔深可使轴承具有低功耗、低温升和高刚度的特性。接着建立了考虑油流惯性效应的高速静压止推轴承基本性能的解析理论模型,验证了该模型替代三维CFD计算的有效性。最后在只计油膜离心惯性力效应的油膜压力数学模型与集总参数假设下油膜功耗模型的基础上获得了基于最低油膜温升约束的止推轴承腔深优化公式,指出高速下腔深对轴承性能影响不能忽略,腔深不宜大于0.35mm。
     (4)建立了充分润滑下周期性微结构单元的动力润滑解析理论模型,揭示了微结构单元动力润滑形成机理,指出类阶梯动压效用与流体惯性力效应是微结构单元动力润滑形成的主要机理。接着建立了具有部分微结构的平行滑块轴承的动力润滑解析理论模型,揭示了部分微结构几何参数和分布参数对平行滑块轴承得承载摩擦性能的影响规律,指出要保证部分微结构滑块轴承具有高承载力和低摩擦系数,应在最佳微结构分布长度比的基础上选择较小的微结构单元深度比和适中的微结构单元长度比。最后建立了基于CFD方法的周期性微结构单元的热动力润滑数值理论模型,揭示了微结构几何参数对微结构热动力润滑油膜流场形态与摩擦特性的影响规律,指出微结构单元的速度边界条件、进口压力边界条件、微结构深度及微结构直径对微结构阶梯动压效应与静压效应的影响显著。
     (5)研究了微结构几何参数与分布参数对两类高速液体悬浮轴承流场形态与热动力润滑性能的影响规律,指出微结构通过类阶梯动压效应来补偿因微结构引起的静压效应的削弱,最终油膜流场形态是二者综合作用结果;微结构深度与轴承宏观结构参数的匹配决定轴承的油膜流场分布形态,存在最佳的微结构深度使轴承综合性能最优;利用微结构动压效应能有效补偿因油流惯性力效应导致的止推轴承承载能力和刚度的下降。最后提出了微结构几何参数与分布参数的优化匹配准则,指出同等分布参数下微结构轴向间距对油膜温升的影响较承载能力、刚度及流量更加明显,微结构轴向间距应取较大值;微结构面积比过大将导致承载能力和刚度显著下降以及对油膜温升抑制作用的下降;微结构面积比过小,轴承承载能力、刚度及油膜温升水平均高,存在最佳的微结构面积比使得油膜温升水平最优;承载刚度一定时,选用合适的微结构直径和深度可显著降低油膜温升;微结构几何参数和轴承工作参数一定时,可选择较小的设计间隙和较大的微结构周向分布数来保证轴承的高承载刚度和低温升特性;微结构径向分布数对流量和泵功耗影响极小,应尽可能选择较大的径向分布列数和微结构直径。
     (6)建立了小径高速液体悬浮电主轴试验台并利用振动及动态信号采集分析系统实验研究了轴承工作参数对液体悬浮电主轴的回转精度特性和静动刚度特性的影响规律。结果表明:小径高速液体悬浮电主轴系统综合性能实验原理和方法正确有效;轴承-电机-密封-冷却系统的综合性能以及主轴系统关键零部件制造装配工艺的技术规范科学合理;小径高速液体悬浮电主轴轴承系统热动力润滑承载刚度特性及关键结构参数理论设计与分析具有高效高可靠性;本实验可作为小径高速液体悬浮电主轴系统的理论分析、工程设计和综合性能评价的实验依据。
     本文研究提供了小径高速液体悬浮电主轴轴承系统热动力润滑的理论分析方法与工程设计依据,探索了利用表面微结构效应来实现小径高速液体悬浮电主轴高刚性低温升化的新途径,拓展了经典液体滑动轴承摩擦副界面科学的新领域,有望推动小径高速液体悬浮主轴技术的发展,从而为凹面高效精密磨削装备开发提供有力技术支撑。
Liquid suspension spindles are widely applied in the precision high speed machines due to their high rotation accuracy, high stiffness, high damped vibration, and long maintaining life. For the structural integration of spindle function and motor function, it reduces complex intermediate transmission system and thus develops liquid suspension spindle into a new type of spindle unit featuring merits such as wider speed range, low vibration noise, quick start-up and accurate stop, which can greatly enhance the productivity and improve the machining accuracy and surface quality in parts processing. Meanwhile, although the small diameter and high speed liquid suspension spindle becomes the core function component of the high-efficiency high-precision grinding equipment for the concave cams in modern automobile engines, the small diameter and high speed liquid suspension spindle with both high efficiency and high accuracy are in short at home and abroad. To better meet the need of ultrahigh speed and precision machining, it is urgently need to control bearing temperature rise of due to high-speed and structural integration and improve the spindle stiffness restricted by construction dimension and oil film temperature rise in high speed.
     This thesis puts forward a method to regulate and control the thermodynamic property of small diameter and high speed liquid suspension spindles by surface microstructure technology, builds a thermo-hydrodynamic lubrication theoretical analysis and design method of liquid suspension spindles based on computational fluid dynamics, explores the influence of bearing working parameters, structure parameters, and geometric and distribution parameters of microstructure to the flow field characteristics of oil film and basic properties of thermo-hydrodynamic lubrication and relevant matching rules in optimization, develops small diameter and high speed liquid suspension motorized spindles with both high bearing stiffness and low temperature rise and carries out comprehensive performance test. The main contents and key conclusions of this thesis include:
     (1) To overcome the weakness of the Reynolds equation-based thermo-hydrodynamic lubrication model of liquid suspension bearing and relevant computational method, a high-speed liquid suspension bearing three-dimensional thermo-hydrodynamic lubrication model and high-efficiency numerical computational method based upon CFD and finite volume method, has been established, and the comparative study on the application of this method and Reynolds Assumptions based one-dimensional and two-dimensional lubrication theory in the classic hydrodynamic lubrication problems has been conducted as well. According to the results, the method, with high accuracy, can be utilized as basic tool in the theoretical research of liquid suspension bearing thermo-hydrodynamic lubrication. Three-dimensional oil film CFD computational grids in accordance with the geometric scale feature of hole inlet hybrid pressure radial bearing, annular recessed hydrostatic thrust bearing and relevant surface microstructure spindles have been established, making advantages of unstructured grid, block division method, and grid size function; selection type and computational parameter optimizing method to liquid suspension bearing thermo-hydrodynamic lubrication boundary factors have been thoroughly discussed; the problem of easy distortion of three-dimensional oil film griding and poor coordination has been solved; and the comprehensive optimization of computational efficiency and accuracy has been ensured as well.
     (2) The influences of working parameters and structure parameters on the flow field and essential thermohydrodynamic characteristics of high speed hybrid journal bearing have been studied. The inlet diameter and the circumferential and radial distribution number have notable impact to matching ratio of dynamic and static pressure effect of high speed hybrid bearings have been pointed out that a bigger diameter can help reduce film temperature rise and even temperature fields, when the inlet circumferential distribution number is above10, its increase has limited influence on temperature control. When considering the load stiffness, film temperature rise, and power consumption, supply pressure of5-6MPa will be appropriate at30000r/min. Choosing a larger oil-sealing factor and a smaller inlet diameter can improve the bearing comprehensive performance, and a smaller L/D ratio can ensure low temperature rise when the load stiffness is met. It is possible to increase the bearing load capacity and stiffness under the same level of film temperature rise by increasing simultaneously L/D ratio, oil-sealing factor, and number of inlet rows. On this basis, the engineering calculation formulas based on Reynolds model for multihole-entry hybrid journal bearings have been derived, which indicates that, with small inlet parameters, this analytical computing can replace three-dimensional CFD computing as the engineering optimization design method.
     (3) The influences of working parameters and recess structure parameters on the flow field and essential thermo-hydrodynamic characteristics of high speed hydrostatic thrust bearing have been studied. The notable hydrostatic effect of high speed oil can complicate the flow field of oil film have been pointed out that the assumption of uniformed oil film pressure in recess no longer exists, and that the influence of static pressure effect has opposite impact on pressure fields of both inner and external sealing land. Meanwhile, the matching rule of bearing working parameters and structure parameters have been provided to ensure the characteristics of high load capacity and low temperature rise is put forward. When the spindle is at the speed of30000r/min and the supply pressure exceeds4MPa, the increasing of the supply pressure has limited effect on temperature rise control. Choosing a moderate inlet diameter and a shallower recess can ensure the characteristics of low power consumption, low temperature rise and high stiffness; the analytical theoretical model of high speed hydrostatic thrust bearing considering fluid inertia effect has been established, testing the feasibility of its replacement of three-dimensional CFD computing, and the optimal formula of the recess depth of hydrostatic thrust bearing based on the mathematical model of oil film pressure with centrifugal inertia only considered and the power consumption model based on the assumption of lumped parameter have been obtained under the restriction of the lowest oil film temperature rise, indicating the influence of recess depth on the bearing performance can't be neglected on the condition of high speed, and the recess depth of hydrostatic thrust bearing is inadvisable to exceed0.35mm.
     (4) The analytical theoretical model of hydrodynamic lubricated sufficiently for periodic microstructure unit has been established, and the steplike hydrodynamic effect and fluid inertia effect are the principle mechanics for the hydrodynamic lubrication building is discovered; the analytical theoretical model of the parallel sliding bearing with partial microstructures has been established, and the influences of geometrical parameter and distribution parameter of partial microstructures on the load capacity and friction performance have been exposed; choosing the combination of smaller microstructure depth ratio and larger length ratio or the combination of smaller microstructure depth ratio and moderate length ratio the based on the optimal partial microstructures distribution length ratio are benefit for obtaining high load capacity and low friction coefficient. At last, the numerical thermo-hydrodynamic lubrication model of the periodical microstructure unit has been established based on CFD method; the influences of geometrical parameter and distribution parameter of partial microstructures on the load capacity and friction performance have been exposed; and the conclusion is reached that the speed and pressure inlet boundary condition, microstructure depth and diameter have major impact on the steplike hydrodynamic effect and hydrostatic effect.
     (5) The geometrical parameters and distributional parameters of the microstructure on the thermo-hydrodynamic performance of high speed liquid suspension bearings have been exposed, with the conclusion that the similar step hydrodynamic effect of the microstructure compensate the decline of hydrostatic effect induced by microstructure, as the final flow field is determined by the above two types of effects; the patterns of flow fields are determined by the matching of the microstructure depth and bearing macrostructure parameters, and the optimal microstructure depth exists for optimal bearing comprehensive performance; microstructure hydrodynamic effect can compensate the decreasing of the load capacity and stiffness resulted from the fluid inertia; overlarge area ratio leads to the remarkable decrease of load capacity and stiffness and the decline of suppression of temperature rise; whereas under small area ratio leads to high level of load capacity stiffness and oil film temperature rise, and the optimal microstructure area ratio exists for optimal bearing temperature rise; on condition that the load capacity and stiffness are satisfied, proper microstructure depth and diameter can notably reduce the temperature rise notably, and the bearing performance can be promoted by further optimizing the microstructure geometrical parameters in addition to the optimizing of the bearing macrostructure parameters; for a given microstructure geometrical parameters and bearing working parameters, the high stiffness and low temperature rise characteristics can be ensured by choosing smaller bearing clearance and larger circumferential distribution number; the radial distribution number seldom affects the flow rate and pump power consumption, and the larger radial distribution number should be chosen as large as possible.
     (6) The influences of working parameters on the rotation accuracy and static and dynamic stiffness of the liquid suspension spindle has been carried out via the established small diameter high-speed liquid suspension spindle test rig and vibration and dynamic signal collection and analyzing system. According to the results, the experimental principle and scheme for the comprehensive performance of small diameter high-speed liquid suspension spindle are correct and efficient; the technical specification of the manufacturing and assembling processing of key components and parts in bearing-motor-sealing-cooling system is scientific and rational; the theoretical design and analysis of the loading stiffness and critical structure parameters of small diameter high-speed liquid suspension spindle bearing system is highly efficient and reliable; and this experiment provides thus experimental instructions for the theoretical analysis, engineering design and comprehensive performance evaluation for the small diameter high-speed liquid suspension spindle system.
     The thesis provides theoretical analysis method and engineering design instruction for the thermohydrodynamic performance of small diameter high-speed liquid suspension motorized spindle bearing system, explores a new way of using surface microstructure effect to achieve the small diameter high-speed liquid suspension motorized spindle with high stiffness and low temperature rise, unfolds the new picture of tribological pair interface science for classical liquid sliding bearings, and is expected to promote the small diameter high-speed liquid suspension motorized spindle technology, thereby providing strong technical support for the development of concave grinding equipments.
引文
[1]李海国.现代发动机及关键零部件最新制造技术和应用.制造技术与机床,2006,10:109-113
    [2]Abele E, Altintas Y, Brecher C. Machine tool spindle units. CIRP Annals: Manufacturing Technology,2010,59(2):781-802
    [3]孙恭寿,冯明.液体动静压混合轴承设计.北京:世界图书出版公司出版,1993
    [4]余鸿钧.流体静压主轴.北京:机械工业出版社,1985
    [5]陆卫娟,林彬.水润滑陶瓷滑动轴承的研究进.轴承,2005,3:37-38
    [6]An Hung Tan, Sun Wei Cheng. A novel textured design for hard disk tribology improvement. Tribology International,2006,39:506-511
    [7]Bart Raeymaekers, Izhak Etsinon, Frank E. Talke. Enhancing tribological performance of the magnetic tape/guide interface by laser surface texturing. Tribology Letters,2007,27(1):89-95
    [8]Bart Raeymaekers, Izhak Etsinon, Frank E. Talke. A model for magnetic tape/guide friction reduction by laser surface texturing. Tribology Letters,2007, 28:9-17
    [9]Shuting Lei, Sasikumar Devarajan, Zenghu Chang. A study of micropool lubricated cutting tool in machining of mild steel. Journal of Materials Processing Techonology,2009,209:1612-1620
    [10]Peter Groche, Jorg Stahlmann, Jurgen Hartel, et al. Hydrodynamic effects of macroscopic deterministic surface in cold forging processes. Tribology International,2009,42:1173-1179
    [11]Wagner K, Putz A, Engel U. Improvement of tool life in cold forging by locally optimized surfaces. Journal of Materials Processing Technology,2006,177: 206-209
    [12]Borghi A, Gualtieri E, Marhetto D, et al. Tribolgical effects of surface texturing on nitriding steel for high-performance engine applications. Wear, 2008,265:1046-1051
    [13]Etsion I, Halperin G, Becker E. The effect of various surface treatments on piston pin scuffing resistance. Wear,2006,261:758-791
    [14]Volchok A, Halperin G, Etsion I. The effect of surface regular microtopography on fretting fatigue life. Wear,2002,253:509-515
    [15]ROWE W B. Hydrostatic and hybrid bearing design. Butterworths,1983
    [16]DEE C W, SHIRES G L. The Current of the art of fluid bearings with discrete slot inlets. Journal Lubrication Technology,1971,93(2):441-450
    [17]ROWE W B. Hydrostatic and hybrid bearing design. Butterworths,1983
    [18]DEE C W, SHIRES G L. The Current of the art of fluid bearings with discrete slot inlets. Journal Lubrication Technology,1971,93(2):441-450
    [19]ROWE W B, KOSHAL D, STOUT K J. Slot-entry bearings for hybrid hydrodynamic and hydrostatic operation. J Mech Eng Sci,1976,18(2):73-78
    [20]ROWE W B, KOSHAL D, STOUT K J. Investigation of recessed hydrostatic & slot-entry, journal bearings for hybrid hydrodynamic and hydrostatic operation. Wear,1977,43:55-69
    [21]ROWE W B, KOSHAL D. A new basis for the optimization of hybrid journal bearings. Wear,1980,64(1):115-131
    [22]KOSHAL D, ROWE W B. Fluid film journal bearings operating in a hybrid mode, part1-theoretical analysis and design. Journal Lubrication Technology, 1981,103:558-568
    [23]KOSHAL D, ROWE W B. Fluid film journal bearings operating in a hybrid mode, part2-experimental investigation. Journal Lubrication Technology,1981, 103:566-572
    [24]ROWE W B, XU S X, CHONG F S, et al. Hybrid Journal Bearings with particular reference to hole-entry configurations. Tribology International,1982, 15(6):339-348
    [25]ROWE W B, CHONG F S. Computation of dynamic force coefficients for hybrid (hydrostatic/hydrodynamic) journal bearings by the finite disturbance and perturbation techniques. Tribology international,1986,19(5):260-271
    [26]SO H, CHEN C R. Chracteristics of a hybrid journal bearing with one recess part1:dynamic considerations. Tribology International,1986,18(6):331-339
    [27]SO H, CHANG T S. Chracteristics of a hybrid journal bearing with one recess part2:thermal analysis. Tribology International,1986,19(1):11-18
    [28]GHOSH M K, GUHA S K, MAJUMDAR B C. Rotordynamic coefficients of multirecess hybrid journal bearings part1. Wear,1989,129:245-259
    [29]GUHA S K, GHOSH M K, MAJUMDAR B C. Rotordynamic coefficients of multirecess hybrid journal bearings part2:fluid inertia effect. Wear,1989,129: 261-272
    [30]SAN ANDRES L. Turbulent hybrid bearings with fluid inertia effects. Journal of Tribology,1990,112:699-707
    [31]SAN ANDRES L. Effect of eccentricity on the force responsive of a hybrid bearing. Tribology Transation,1991,34(4):537-544
    [32]IVES D, ROWE W B. The performance of hybrid journal bearings in the superlaminar flow regimes. Tribology Transaction,1992,35(4):627-634
    [33]SHARMA S C, SINHASAN R, JAIN S C. An elastohydrostatic study of hole-entry hybrid flexible journal bearings with capillary restrictors. Tribology International,1993,26(2):93-106
    [34]SHARM S C, JAIN S C, SINHASAN R, et al. Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearing. Tribology International,1995,28(8):531-539
    [35]丁振乾.我国机床液体静压技术的发展历史与现状.精密制造与自动化,2003,(3):19-21.
    [36]许尚贤.液体静压和动静压滑动轴承设计.南京:东南大学出版社,1989
    [37]孙恭寿.设计多阶梯腔轴承的新方法.设备管理与维修,1988,5:16-25
    [38]武弘毅,冯明.WMB型动静压混合轴承.设备管理与维修,1991,6:14-16
    [39]LU C H, AI X, LI J F. Analysis and research on spiral oil wedge hydrodynamic bearing for precise machine tool spindles. International Journal of Machine Tools and Manufacturing,1998,38(3):197-203
    [40]CHEN S J, LU C H, LI L. Fluid flow separation on novel hybrid journal bearing. Chinese Journal of Mechanical Engineering,2006,19(4):540-543.
    [41]路长厚.两种机床螺旋滑动轴承的工作机理与特性分析.制造技术与机床,2003,2:45-46
    [42]陈淑江,路长厚,马金奎.螺旋油腔动静压轴承各向异性研究.润滑与密封,2007,32(6):9-12
    [43]王云飞,常谦.螺旋槽动静压油轴承.轴承,1995,2:2-8
    [44]YOSHIMOTO S, ANNO Y, TAMURA M, et al. Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves (on the case of rigid surface bearings). Journal of Tribology,1996,118:893-899
    [45]岑少起,郭红,张少林,等.多种节流形式的动静压轴承有限元一优化分析.机械科学与技术,2002,21(2):237-239
    [46]SINGH N, SHARMA S C, JAIN S C, et al. Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes. Tribology International,2004,37:11-24
    [47]CHEN C H, KANG Y, CHANG Y P, et al. Influence of restrictor on the stability of the rigid rotor-hybrid bearing system. Journal of Sound and Vibration,2006, 297:635-648
    [48]KUMAR V, SHARMA S C, JAIN S C. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients. Tribology International,2006,39:356-368
    [49]SANTOS L F, WATANABE F Y. Compensation of cross-coupling stiffness and increase of direct damping in multirecess journal bearings using active hybrid lubrication:part1-theory. Jounal of Tribology,2004,126:146-155
    [50]张锡圣,池长青,冯明.阶梯腔式动静压混合轴承发展概况.机床与液压,1992,1:10-17
    [51]夏恒青.内部节流静压、动静压支承中节流腔新结构及其不同位置时的支承性能.郑州工学院学报,1989,10(2):97-102
    [52]KOTILAINEN M S, SLOCUM A.H. Manufacturing of cast monolithic hydrostatic journal bearings. Precision Engineering,2001,25:235-244
    [53]KANE N R, SIHLER J, SLOCUM A H. A hydrostatic rotary bearing with angled surface self-compensation. Precision Engineering,2003,27:125-139
    [54]周良宝.偏斜状态下动静压轴承性能分析.磨床与磨削,1997,(1):57-62
    [55]范饮满,陈云飞.偏斜状态下动静压轴承的静动态特性分析.机械研究与应用,1999,12(4):14-17
    [56]BOU-SAID B, NICOLAS D. Effects of misalignment on static and dynamic characteristics of hybrid bearings. Tribology Transactions,1992,35(2): 325-331
    [57]JAIN S C, SHARMA S C, NAGARAJU T. Misaligned journal effects in liquid hydrostatic non-recessed journal bearings. Wear.1997,1(210):67-75
    [58]SHARMA S C, JAIN S C, NAGARAJU T. Combined influence of journal misalignment and surface roughness on the performance of an orifice compensated non-recessed hybrid journal bearing. Tribology Transactions. 2002,45(4):457-463
    [59]SHARMA S C, JAIN S C, REDDY N M M. Influence of elastic effects on the performance of slot-entry journal bearings. Tribology International,1999,32: 537-551
    [60]SHARMA S C, JAIN S C, REDDY N M M. A study of non-recessed hybrid flexible journal bearing with different restrictors. Tribology Transaction,2001, 44(2):310-317
    [61]SAN ANDRES L. Turbulent hybrid bearings with inertia effects. Journal of Tribology,1990,1(112):699-707
    [62]NAGARAJU T, SHARMA S C, JAIN S C. Influence of surface roughness effects on the performance of non-recessed hybrid journal bearings. Tribology International,2002,35:467-487
    [63]NAGARAJU T, SHARMA S C, JAIN S C. The stability margin of a roughened hole-entry hybrid journal bearing system. Tribology Transaction,2005,48: 140-146
    [64]NAGARAJU T, SHARMA S C, JAIN S C. Study of orifice compensated hole-entry hybrid journal bearing considering surface roughness and flexibility effects. Tribology International,2006,39:715-725
    [65]NAGARAJU T, SHARMA S C, JAIN S C. Influence of surface roughness on non-newtonian thermohydrostatic performance of a hole-entry hybrid journal bearing. Journal of Tribology,2007,129:595-602
    [66]CHRISTENSEN H, TONDER K. Stochastic models for hydrodynamic lubrication of rough surface. International Journal of Mechanical Engineers, 1970,104:1022-1033
    [67]PATIR N, CHENG H S. An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication. Journal of Lubriction Technology,1978,100:12-17
    [68]PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces. Journal of Lubriction Technology,1979,101: 220-229
    [69]TRIPPLE J H. Surface roughness effects in hydrodynamic lubrication:the flow factor method. Journal of Lubriction Technology,1983,105:458-465
    [70]BAYADA G, CHAMBAT M. New models in the theory of the hydrodynamic lubrication of rough surface. Journal of Tribology,1988,110:402-407
    [71]BAYADA G, FAURE J B. A double scale analysis approach of the Reynolds roughness:comments and application to the journal bearing. Journal of Tribology,1989,111:323-330
    [72]PRAT M, PLOURABOUE F, LETALLEUR N. Averaged Reynolds equarion for flows between rough surfaces in sliding motion. Transport in Porous Media, 2002, (48):291-313
    [73]ALMQVIST A, LUKKASSEN D, MEIDELL A. New concepts of homogenization applied in rough surface hydrodynamic lubrication. International of Engineering Science,2007,45(1):139-154
    [74]HELLER S. Static and dynamic performance of externally pressurized fluid film bearings in turbulent regime. Journal of Lubrication Technology,1974, 381-9
    [75]DEGUERCE B, NICHOLAS D. Turbulent externally pressurized bearings-analytical and experimental results. Proc. IMechE,1975,228-33
    [76]ARTILES A, WALOWIT J, SHAPIRO W. Analysis of hybrid journal bearings with turbulence and inertial effects. Advances in Computer Aided Bearing Design,1982,25-52
    [77]GUHA S K, GHOSH M K, MAJUMDAR B C. Rotordynamic coefficients of multirecess hybrid journal bearing:II. Fluid inertia effect. Wear,1989,129: 261-272
    [78]IVES D, ROWE W B. The performance of hybrid journal bearings in the superlaminar flow regimes. Tribology Transactions,1992,35(4):627-634
    [79]SAN ANDRES L. Approximate analysis of turbulent hybrid journal bearings. Static and dynamic performance for centered operation. Journal of Tribology, 1990,112:692-698
    [80]SAN ANDRES L. Analysis of turbulent hydrostatic bearings with barotropic cryogenic fluid. Journal of Tribology,1992,114:755-763
    [81]FRACHEK N M, CHILDS D W, SAN ANDRES L. Theoretical and experimental comparisons for rotordynamic coefficients of a high-speed, high-pressure, orfice-compensated hybrid bearing. Journal of Tribology,1995, 117:285-290
    [82]SAN ANDRES L, CHILDS D W. Anglcd injection-hydrostatic bearings analysis and comparison to test results. Journal of Tribology,1997, (119): 179-89
    [83]FAYOLLE P, CHILDS D W. Rotordynamic evaluation of roughened-land hybrid bearings. Journal of Tribology,1999, (121):133-138
    [84]苏荭,工小静,张直明.动载工况下滑动轴承油膜边界历史迁移问题.机械工程学报,2006,42(4):8-12
    [85]孙恭寿,王中阳,芦伟健.动静压混合轴承的温度场研究.机械工程学报,1992,28(6):74-81
    [86]张建斌,池长青.浅腔阶梯液体动静压混合轴承温度场分析.北京航空航天大学学报,1997,23(3):390-394
    [87]富彦丽,朱均.动静力混合润滑轴承三维温度场的研究.润滑与密封,2006, (2):115-117
    [88]SHARMA S C, KUMAR V, JAIN S C, et al. Thermo-hydrostatic analysis of slot-entry hybrid journal bearing. Tribology International,2002, (35):561-577
    [89]SHARMA S C, KUMAR V, JAIN S C, et al. Study of hole-entry hybrid journal bearing system considering combined influence of thermal and elastic effects. Tribology International,2003,36:903-920
    [90]KUMAR V, SHARMA S C, JAIN S C. Stability margin of hybrid journal bearing:influence of thermal and elastic effects. Journal of Tribology,2004, 160:630-634
    [91]Yu G. Schneider. Formation of surfaces with uniform micropatterns on precision machine and instrument parts. Precision Engineering,1984,6(4): 219-225
    [92]Aaron Greco, Steven Raphaelson, Kornel Ehman, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method. Journal of Manufacturing Science and Engineering,2009,131(061005):1-8
    [93]Jae-Mo Lee, Won-Hyuk Jin, Dae-Eun Kim. Application of single asperity abrasion process for surface micro-machining. Wear,2001,1133-1143
    [94]Piotr Stephien. Regular surface texture generated by special grinding process. Journal of Manufacturing Science and Engineering,2009,131(011015):1-7
    [95]Manabu Wakuda, Yukihiko Yanauchi, Shuzo Kanzaki, et al. Effect of texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear,2003,254:356-363
    [96]Vieu C, Carcenar F, Pepin A, et al. Electron beam lithography:resolution limits and application. Applied Surface Science,2000,164(1-4):111-117
    [97]Stephens L S, Siripuram R, Haydren M, et al. Deterministic Micro asperities on bearings and seals using a modified LIGA process. Journal of Engineering for Gas Turbines and Power,2004,126:147-154
    [98]Etsion I. State of the art in laser surface texturing. Journal of Tribology,2005, 127:248-253
    [99]Da-ping, Hong-bin Liu, Yu-ming Wang, et al. CO2 laser beam modulating for surface texturing machining. Optics & Laser Technology,2008, (40):309-314
    [100]Vilhena L M, Sedlacek M, Podgornik B, et al. Surface texturing by pulsed Nd: YAG laser. Troblogical International,2009, (42):1496-1504
    [101]Upettersson, Jacobson S. Tribological texturing of steed surfaces with a novel diamond embossing tool technique,2006,39:695-700
    [102]Seong Min Son, HanSeok Lim, Kumar A S, et al. Influences of pulsed power condition on the machining properties in micro EDM. Journal of Materials Processing Technology,2007,190:73-76
    [103]Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by microirregularities. J. Basic Eng,1966,88:177-185
    [104]Kristian Tonder. Inlet roughness tribodevices:dynamic coefficients and leakage. Tribology International,2004,34:847-852
    [105]Kristian Tonder. Hydrodynamic effects of tailored inlet roughness:extended theory. International Tribology,2004,37:137-142
    [106]Kristian Tonder. Effects of striated texturing on pivoted gas sliders. Tribology International,2008,41:896-900
    [107]Etsion I. Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters,2004,17(4):733-737
    [108]Etsion I, Bursten L. A model for mechanical seals with regular microsurfaces structure. Tribology Transactions,1996,39(3):677-683
    [109]Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces,1999,42(3):511-516
    [110]Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocationg automotive components,2001,44(3):359-366
    [111]Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface for reciprocating automotive components. Tribology Transaction,2002,45(4): 444-449
    [112]Etsion I, Halperin G. A laser surface textured hydrostatic mechanical seal. Tribology Transactions,2002,45(3):430-434
    [113]Brizmer V, Kilgerman Y, Etsion I. A laser surface textured parallel thrust bearing. Tribology Transaction,2003,46(3):397-403
    [114]Etsion I, Halperin G, Brizmer V, et al. Experimental investigation of laser surface textured parallel thrust bearings. Tribology Letters,2004,17(2): 295-300
    [115]Kligerman Y, Etsion I, Shinkarenko A. Improving tribological performance of piston rings by partial surface texturing. Journal of Tribology,2005,127: 632-637
    [116]Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction. Wear,2006,261:792-796
    [117]Kligerman Y, Etsion I. Analysis of the hydrodynamic effects in a surface textured circumferential gas seal,2001,44(3):472-478
    [118]Feldman Y, Kligerm Y, Etsion I. A Hydrostatic laser surface textured gas seal. Tribology Letters,2006,22(1):21-28
    [119]Feldeman Y, Kligerman Y, Etsion I. Stiffness and efficiency optimization of a hydrostatic laser surface textured gas seal. Journal of Tribology,2007,129: 407-410
    [120]Shinkarenko A, Kligerman Y, Etsion I. The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribology International,2009,42(2): 284-292
    [121]Fower M, Clver A V, Gosman A D, et al. Entrainment and inlet suction:two mechanisms of hydrodynamic lubrication in textured bearings. Journal of Tribology,2007,129:336-347
    [122]Samuel Cupillard, Michel J. Cervantes, Sergei Glavatskih. Pressure buildup mechanism in a textured inlet of a hydrodynamic contact. Journal of Tribology, 2008,130(021701):1-10
    [123]Ravinder B. Siripurm, Lyndon S. Stephens. Effect of deterministic asperity geometry on hydrodynamic lubrication. Journal of Tribology,2003,126: 527-544
    [124]Frederic Billy, Mihai Arghir, Gerard. Navier-stokes analysis of a regular two-dimensional roughness pattern under turbulent flow regime. Journal of Tribology,2006,128:122-130
    [125]Qiu Y, Khonsari M M. On the prediction of cavitation in dimples using a mass-conservative algorithm. Juornal of Tribology,2009,131(041702):1-11
    [126]Ausas R, Buscaglia G, Leiva J, et al. The impact of the cavitation model in the analysis of micro-textured lubricated journal bearings. Journal of Tribology, 2007,129:868-875
    [127]Almqvist T, Larson R. Somremarks on the validity of reynolds equation in the modeling of lubricant film flows on the surface roughness scale. Journal of Tribology,2004,126:703-710
    [128]Feldman Y, Kligerman Y, Estion I, et al. The validity of the reynolds equation in modeling hydrostatic effects in gas lubricated textured parallel surfaces. Journal of Tribology,2006,128:345-350
    [129]Dobrica M B, Fillon M. About the validity of reynolds equation and inertia effects in textured sliders of infinite width. Proc. IMechE Part J:J. Engineering Tribology,2008,222:69-78
    [130]Mihai Arghir, Nicolas Roucou, Mathieu Helence, et al. Theoretical analysis of the incompressible laminar flow in a macro-roughness cell. Journal of Tribology,2003,125:309-318
    [131]Fredrik Sahlin, Sergei B. Glavatskih, Torbjorn Almqvist, et al. Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication. Journal of Triblology,2005,127:96-102
    [132]Marian V G, Killian M, Scholz W. Theoretical and experimental analysis of a partially textured thrust bearing with square dimples. Proc. IMechE Part J:J. Engineering Tribology,2007,771-778
    [133]Pascovici M D, Cicone T, Fillon M, et al. Analytical investigation of a partially textured parallel slider. Proc. IMechE Part J:J. Engineering Tribology,2008, 222:151-158
    [134]Samuel Cupillard, Sergei Glavatskih, Cervates M J.3D thermohydrodynamic analysis of a texutured slider. Tribology International,2009,42(10):1487-1495
    [135]Samuel Cupillard, Sergei Glavatskih, Cervates M J. Computational fluid dynamics analysis of a journal bearing with surface texturing. Proc. IMechE Part J:J. Engineering Tribology,2008,222:97-107
    [136]Alex de Kraker, Ron A J. van Ostayen, A. van Beek, et al. A multiscale method modeling surface texture effects. Journal of Tribology,2007,129:221-230
    [137]Xiaolei Wang, Koji Kato, Koshi Adachi, et al. The effect of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribology International,2001,34:703-711
    [138]Xiaolei Wang, Koji Kato, Koshi Adachi, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribology International,2003,36:189-197
    [139]Xiaolei Wang, Koji Kato, Koshi Adachi. The critical condition for the transition from HL to ML in water-lubricated SiC. Tribology Letters,2004, 16(4):253-258
    [140]Xiaolei Wang, Koshi Adachi, Katsunori Otsuka, et al. Optimization of the surface texture for silicon carbide sliding in water. Applied Surface Science, 2006,253:1282-1286
    [141]Krupka I, Hartl M. The effect of surface texturing on the EHD lubrication films. Tribology International,2007,40:1100-1110
    [142]Krupka I, Poliscuk R, Hartl M. Effect of surface texturing on mixed lubricated no-conformal contacts. Tribology International,2008,41:1063-1073
    [143]Krupka I, Svoboda P, Hartl M. Effect of surface topography on mixed lubrication film formation during start up under rolling/sliding conditions. Tribology International,2010,43:1035-1042
    [144]Krupka I, Poliscuk R, Hartl M. Behavior of thin viscous boundary films in lubricated contacts between micro-textured surfaces. Tribology International, 2009,42:535-541
    [145]Lidia Galda, Pawel Pawlus, Jaroslaw Sep. Dimples shape and distribution effect on characteristics of Stribeck curve. Tribology International,2009,42: 1501-1512
    [146]Fanming Meng, Rui Zhou, Tiffany Davis, et al. Study on effect of dimples on friction of parallel surfaces under different sliding conditions. Applied Surface Science,2010,256(9):2863-2875
    [147]Ulrika Petterson, Staffan Jacobson. Influence of surface texture on boundary lubricated sliding contacts. Tribology International,2003,36:857-864
    [148]Ulrika Peterson, Staffan Jacobson. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribology International,2007,40:355-359
    [149]Andriy Kovalchenko, Oyelayo Ajayi, Ali Erdemir, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding. Tribology International,2005,38:219-225
    [150]Mourier L, Mazuyer D, Lubrecht A A, et al. Transient increase of film thickness in micro-textured EHL contacts. Tribology International,2006,39: 1745-1756
    [151]Mourier L, Mazuyer D, Lubrecht A A, et al. Action of a femtosecond laser generated micro-cavity passing through a circular EHL contact. Wear,2008, 264:450-456
    [152]Zum Gahr K H, Mathieu M, Brylka B. Friction control by surface engineering of ceramic sliding pairs in water. Wear,2007,263:920-929
    [153]Toshikazu Nanbu, Ning Ren, Yoshiteru Yasuda, et al. Micro-texutures in concentrated conformal-contact lubrication:effects of texture bottom shape and surface relative motion. Tribology Letters,2008,29(3):241-252
    [154]彭旭东,杜东波,李纪云.不同型面微孔对激光加工多孔机械密封性能的影响.摩擦学报,2006,26(4):367-371
    [155]彭旭东,杜东波,盛颂恩等.端面微型体对液体润滑机械密封性能的影响.摩擦学报,2007,27(4):352-356
    [156]赵中,彭旭东,盛颂恩等.多孔扇形分布端面机械密封性能的数值模拟.化工学报,2009,60(4):965-971
    [157]刘鑫,彭旭东,孟祥铠等.斜排微孔端面机械密封富集效应的理论研究.化工学报,2010,61(2):444-449
    [158]秦浩,彭旭东,白少先等.激光加工多孔气体端面密封的静压性能研究.摩擦学报,2009,29(3):205-209
    [159]白少先,彭旭东,孟祥铠.激光多孔端面气体密封非接触机械密封稳定性分析.摩擦学报,2010,30(6):521-525
    [160]汪家道,陈大融,孔宪梅等.面接触规则凹坑表面流体润滑计算.清华大学学报(自然科学版),2001,41(2):42-45
    [161]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究.摩擦学报,2003,23(1):52-55
    [162]陈皓生,李永健,陈大融等.规则形貌作用下非牛顿流体润滑的数值分析.机械工程学报,2007,43(8):48-52
    [163]Jiang Li, Haoseng Chen. Evaluation on applicability of Reynolds equation for squared transverse roughness compared to CFD. Journal of tribology,2007, 129:963-963-967
    [164]刘红彬,孟永钢.基于区域分解法的纹理表面润滑分析一纹理分布模式的影响.摩擦学报,2007,27(6):555-561
    [165]韩中领,汪家道,陈大融.凹坑表而形貌在面接触润滑状态下的减阻研究.摩擦学报,2009,29(1):10-16
    [166]汤丽萍,刘莹.表面微织构对重载齿轮传动摩擦性能的影响.清华大学学报(自然科学版),2010,50(7):1009-1017
    [167]刘莹,陈大融,杨文言.轧辊表而微凸体形貌激光毛化技术的试验研究.机械工程学报,2003,39(7):107-110
    [168]孟永钢,王东华.通过激光纹理加工改善湿式摩擦离合器的摩擦特性.中国机械工程,2008,19(8):883-913
    [169]Haifeng WANG, Shuyan YANG, Feng GUO. Modeling of a grooved parallel bearing with a mass-conserving cavitation algorithm. Tribology Transaction, 2011,54:227-236
    [170]Peiran Yang, Jinlei Cui, Motohiro Kaneta, et al. Influence of a surface bump groove on the lubricating performance and dimple phenomena in simple sliding point EHL contacts. Journal of Tribology,2004,126:466-472
    [171]Leiming Gao, Peiran Yang, Ian Dymond, et al. Effect of surface texturing on the elastohydrodynamic lubrication of metal-on-metal hip implants. Tribology International,2010,43:1851-1860
    [172]Wan Yi, Xiong Dang-sheng. The effect of laser surface texturing on frictional performance of face seal. Journal of Materials Processing Technology,2008, 197:96-100
    [173]万轶,熊党生.激光表面微织构改善摩擦学性能的研究.摩擦学报,2006,26(6):603-607
    [174]刘一静,袁明超,王晓雷.表面织构对发动机活塞/缸套摩擦性能的影响.中国矿业大学学报,2009,38(6):866-871
    [175]姜亮,马国亮,王晓雷.PDMS表面织构润滑特性的研究.摩擦学报,2010,30(3):262-267
    [176]朱永伟,王占和,范仲俊等.摩擦副表面微结构及其超声复合电加工技术研究.中国机械工程,2008,19(24):2965-29
    [177]张云电.蜂窝状微坑设计和制造技术.北京:科学出版社,2004
    [178]Yu X Q, He S. Frictional characteristics of mechanical seals with a laser-textured seal face. Journal of Materials Processing Technology,2002,129: 463-466
    [179]于新奇,陈钟祥,蔡仁良.激光加工多孔端面机械密封的参数研究.机械设计与制造,2005,83-85
    [180]符永宏,叶云霞,张永康等.用于显著改善摩擦润滑状态的激光珩磨技术机械工程学报,2002,38(8):115-117
    [181]华希俊,符永宏,袁润等.激光表面微造型工艺试验与应用.农业机械学报,2007,38(12):177-211
    [182]李人宪.有限体积法基础.北京:国防工业出版社,2005
    [183]陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001
    [184]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用.北京:科学出版社,2008
    [185]Constantinescu V N, Glatetuse S. On the possibilities of improving the accuracy of the evaluation of the inertia forces in laminar and turbulent films. Trans. ASME, J. Lubric. Technol.,1974,96(1):69-77
    [186]Constantinescu V N, Glatetuse S. Pressure drop due to inertia forces in step bearings. Trans. ASME, J. Lubric. Technol,1976,98(1):69-77
    [187]Tipei N. Flow characteristics and pressure head build up at the inlet of narrow passages. Trans. ASME, J. Lubric. Technol.,1978,100(1):47-55
    [188]Helckelman D D, Ettles C M M. Viscous and inertia pressure effects at the inlet to a bearing film. STLE Trans,1988,31(1):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700