用户名: 密码: 验证码:
静电纺丝法制备过渡金属氧化物纳米丝三维电极及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪六、七十年代的石油危机迫使人们去寻找新的替代能源。锂离子电池、燃料电池和贮氢电池作为先进的致密能源正在逐步取代传统的化学电池。其中,锂离子电池因其具有高电压,高容量,大功率,放电平稳等优点受到广泛关注。最近十年,随着集成电路(IC)和微机电系统(MEMS)产业的不断发展,对与之匹配的新型嵌入式电池提出了更高的要求。然而,在传统的块体材料电极如LiCoO_2中,锂离子的脱嵌类似于一维(1D)运动,为了减小锂离子在块体材料中扩散速度过慢引起的能量损失,电池的电极厚度被设计得尽量小。但是这样的设计降低了电池的容量,缩短了电池工作时间,与工业的需求相违背。所以二维电池结构,总是需要在总容量大小与完全释放能量而无内部损失之间做出取舍。
     最近几年,人们发现可以通过将二维电池结构重新构置成三维电池的途径,可大幅提高电池的性能,三维(3D)电池的设计概念被提出并逐步受到关注。基本方法是通过设计电极的结构,缩短的离子扩散距离,进而提高电池的能量密度和充放电容量。单位面积容量较大和高速充放电能力较强是这种三维电池的最主要优点。目前,大量的研究工作集中在三维电池电极材料的制备方法和材料物理化学性能测试上。然而,3D概念的实现还存在许多困难,主要是由于对具有三维结构电池中材料的物理化学性能缺乏深入的认识。
     在三维电池结构中,电极材料的充放电容量、高速充放电能力和循环性能等电池特性由电极的几何形状和长宽尺寸决定,而电池尺寸和形状在很大程度上取决于它们各自的制备方法。目前的报道的模版法和光刻方法能够达到的电极材料长径比在几倍到数十倍之间,与薄膜电池接近不足以凸现电极材料的性能。本论文选择的静电纺丝技术(Electrospin)是一种软化学方法,利用静电纺丝制备可以制备大长径比的有机或无机纳米纤维材料。与模版法、光刻法等技术相比,静电纺丝技术可以制备直径小于100纳米,长度达到数毫米的一维纳米丝材料,同时具有成本低廉,操作简便,沉积速率高,组分结构容易控制等优点。本论文通过自建的静电纺丝装置,结合溶胶凝-胶法制备了一系列金属氧化物纳米丝,包括TiO_2,Li_4Ti_5O_(12),NiO等负极材料和LiCoO_2,MnO_2等正极材料,并将纳米丝构建的三维网状结构电极装配入锂离子电池,进行了电化学性能测试。本论文还研究了三种纳米丝三维电极的改性手段,包括掺杂、固体电解质包覆和碳纳米管增强,并取得理想的效果。
     对于静电纺丝方法制备三维负极材料的研究,我们首先系统地研究了制备性能较好的异丙醇钛(Ti(OiPr)_4)-聚乙烯吡咯烷酮(PVP)体系。通过调整前驱体溶胶浓度和静电纺丝电压等参数成功地制备了含钛的PVP纳米纤维丝,并改进平行收集电极成功构建了纳米丝三维(3D)网状结构。500℃退火后得到的锐钛矿TiO_2纳米纤维丝三维网状电极被完好的保留下来,其中纳米丝长度达到数毫米,直径在200纳米以下。对该三维电极的性能测试显示出大电流密度下的放电行为,首次充放电容量达到153mAh/g,但3D-TiO_2的循环性能较差。SEM观察发现锂离子嵌入三维纳米丝电极后,锐钛矿TiO_2结构发生塌陷是造成容量不可逆的主要因素。
     结构塌陷的原因与锐钛矿TiO_2在嵌锂时的体积膨胀有关,也与纳米丝表面嵌锂不均匀有关。根据三维电极充放电表面电流一致性参数U(U=(r~2/L~2)(μ/σ)(1/C))的关系式,通过增大电极电导率σ的方法对三维电极进行改性。在前驱体中掺入Sn(OiPr)_4异丙醇锡,退火得到SnO_2掺杂的TiO_2纳米丝,由于纺丝条件的限制,Sn的掺入量被限制在5%以下。改性后的三维电极,放电平台由1.2V提高到1.7V,充电平台由2.2V下降到1.9V,电极充放电过电压现象明显减小,但是其循环性能未得到明显改善,主要原因是脱嵌锂时体积膨胀导致的坍塌未能得到改善。
     考虑到三维电极在锂离子脱嵌时的物理结构和界面稳定的重要性,本论文研究了“零应变”尖晶石Li_4Ti_5O_(12)纳米丝构建的三维电极。本论文中含锂氧化物的静电纺丝研究为目前文献中首次报道。由于锂盐改变了前驱体溶胶的性质,制备Li_4Ti_5O_(12)纳米丝需要加入乙酸等添加剂帮助络合,并延长溶胶的陈化时间。我们利用静电纺丝方法首次成功地制备了含Li盐和Ti盐的PVP纳米丝,750℃退火后得到尖晶石结构Li_4Ti_5O_(12)纳米丝三维电极,纳米丝直径减小至100纳米,长度保持在毫米级。由于尖晶石Li_4Ti_5O_(12)在脱嵌锂时体积变化在千分之一左右结构非常稳定,3D-Li_4Ti_5O_(12)电极在大电流密度下显示出良好的三维电极特性,4.5C下首次放电容量达到167mAh/g,每次循环容量损失小于1%,循环性能优于报道的薄膜Li_4Ti_5O_(12)负极材料约27%。XRD和SEM分析显示了3D-Li_4Ti_5O_(12)纳米丝的结构稳定性。综合对结构和性能的研究结果,表明了Li_4Ti_5O_(12)材料构建三维锂离子电池负极材料的可行性。
     静电纺丝制备含锂金属氧化物纳米丝的方法,被进一步应用于研究三维正极材料。LiCoO_2由于其高放电电位,高电导率和良好的循环性能,被作为首选的三维正极材料。静电纺丝对成丝参数极其敏感,由于制备LiCoO_2的前驱体溶胶含有乙酰丙酮锂(Li(CH_3COCHCOCH_3))和醋酸钴(Co(CH_3COO)_2·4H_2O)等物质,当制得的纳米级纤维丝直径小于500nm时,自溶现象十分明显,所以过去静电纺丝制备LiCoO_2纤维的直径都在1微米左右。为了得到长径比更大的LiCoO_2纳米丝,我们更加严格的控制环境温度、湿度和退火条件,对自建的静电纺丝实验装置进行改装,首次成功制备了直径在60-80纳米的层状结构LiCoO_2纳米纤维丝,并构建了三维LiCoO_2纳米丝网状电极。但是其放电容量与循环性能均远远低于薄膜材料。通过SEM观察放电后的纳米丝形貌,发现了LiCoO_2纳米丝三维电极的结构不稳定问题,其原因比较复杂,包括脱嵌锂时的应力导致结构塌陷和较大的电极与电解液表面使得Co元素在电解液中的溶解变得明显。为了避免这些问题,首次使用锂磷氮氧(LiPON)固体电解质包覆LiCoO_2对三维结构进行增强。LiPON包覆之后,层状LiCoO_2三维电极的放电容量达到120.4mAh/g,在0.05mA/cm~2的放电电流下充放电100次,平均每次循环的不可逆容量为0.11%,与未包覆的纳米丝三维电极相比具有更高的放电容量和更好的循环性能。在更大的能量密度下,其循环性能同样良好。研究表明LiPON层包覆对于提高三维LiCoO_2纳米丝电极的电化学性能有很好的效果。
     为了进一步研究其他结构稳定、低毒、低成本的三维正极材料的电化学性能,本文对氧化锰纳米丝展开研究。首次使用静电纺丝制备了Mn(CH_3COO)_2·4H_2O-PVP为前驱体的含Mn-PVP纳米丝,调节酸碱度后纳米丝直径被控制在50-80纳米之间。利用此纳米丝构建三维网状结构电极,应用于锂离子二次电池正极。三维氧化锰纳米丝网状电极放电电位在2.5V以上,在嵌锂和脱锂的过程中表现出良好的结构稳定性。由于其长径比更大,放电容量可以达到160mAh/g,在不同大小的能量密度下,纳米丝三维电极的循环性能均十分优秀,平均每次循环的容量衰减在1%以下,可作为优良的3V左右的三维电池正极材料。
     碳纳米管具有优秀的机械强度和导电能力,采用碳纳米管掺杂的薄膜复合材料,显示出更好的力学和电学性能。过去的研究证明,在静电纺丝前驱体中加入碳纳米管可以得到碳纳米管掺杂的聚合物纳米丝。但是,只有当纳米丝的直径非常小时,才可以实现碳纳米管沿纳米丝轴向排列,从而将碳纳米管的优秀性能传递给纳米丝。
     为了进一步满足三维电极对材料导电率和结构稳定性的要求,本论文将碳纳米管掺杂作为一种新的改性手段应用到三维电极材料上,首次研究了静电纺丝制备碳纳米管(CNTs)增强的纳米丝三维电极。首先通过对静电纺丝电压、喷速等参数的进一步研究,首次成功制备直径在40nm左右的氧化镍(NiO)纳米纤维丝,以此为基础首次电纺了含轴向平行排列的单壁碳纳米管(SWNTs)的NiO纳米丝。研究发现未掺杂的NiO纳米丝首次放电容量较大,其后出现了容量衰减,特别是当放电速率较大时,衰减现象明显。1C下放电后的结构不稳定在SEM下能被清晰的观察到。碳纳米管增强的NiO-CNTs纳米丝能够有效改善三维电极在锂离子嵌入和脱出的过程中产生的结构不稳定问题,提高了高能量密度下的循环性能;在0.1C、0.5C、1C和2C的放电速率下,可逆容量比NiO分别提高1.6%、2.8%、20.6%和43.3%。研究结果表明碳纳米管掺杂是三维NiO纳米丝电极改性的有效途径。
     以上研究对探索三维锂离子电池的制备工艺、正极负极材料物理化学性能及其改性方法都有一定的参考价值和指导意义。
The oil crisis forced people to find new alternative energy sources since 1960s. Lithium-ion battery with the significant advantages of high voltage,large capacity, high energy density and smooth discharge current have received widespread attentions and have been quickly commercialized.In the last decade,the continuing growth of integrated circuit(IC) and micro-electromechanical systems(MEMS) industries had an enormous impact on a higher demand of new embedded batteries. Lithium ion batteries use insertion processes for both the positive and negative electrodes,leading to the term 'rocking chair' battery.The resulting transport of Li ions between the electrodes,usually arranged in a parallel-plate configuration,is 1D in nature.To minimize power losses resulting from slow transport of ions,the thickness of the insertion electrodes,as well as the separation distance between them, is kept as small as possible.This approach may appear counterintuitive in the effort to produce a useful battery,because reducing the thickness of the electrode results in lower energy capacity and shorter operating time.Thus,battery design always trades of between available energy and the ability to release this energy without internal power losses.
     In recent years there has been the realization that improved battery performance can be achieved by reconfiguring the electrode materials currently employed in 2D batteries into 3D architectures.The general strategy of this approach is to design cell structures that maximize power and energy density yet maintain short ion transport distances.A lot of research works on the three-dimensional battery electrode materials and their performance tests.The realization of 3D design is still long way to go, mainly because many are unknown about the materials' physical and chemical properties in the 3D architecture.
     These length scales and geometries will determine the performance characteristics of 3D batteries based on these architectures.At present,only the component arrays of the periodic interdigitated electrode have been fabricated using lithographic or template methods,with aspect ratio about 10 to 100,which was not sufficient to present the advantages of 3D electrode.Another method known as electrospinning was chosen in this thesis to construct 3D electrode with longer and thinner 1D nanofiber.Electrospinning technology is a soft chemical method,which can fabricate large aspect ratio(up to 100000) organic or inorganic nanofibers materials.Comparing with other nanoscale material fabrication technology such as templates method and lithography method,the electrospinning technology is low cost equipped,easy to operate with high deposition rate and has good control of composition.In this paper,a homemade electrostatic spinning combined with sol-gel method was used to fabricate a number of metal oxide nanofibers.The nanofibers were then constructed into three-dimensional(3D) network structure and assembled into a lithium-ion battery as electrode,and their electrochemical performance was tested.Several 3D nanofibers electrode modification method were also investigated including doping,solid electrolyte coating and carbon nanotubes enhancement,some were found effective in improving the electrochemical properties for the 3D battery materials.
     In order to use the electrospinning method to fabricate large aspect ratio 3D electrode materials,Ti(OiPr)_4-PVP system was first investigated for its better preparation properties.The Ti-PVP nanofibers were obtained by properly adjusted the concentration of the precursor and its electrospinning parameters.Three-dimensional network structure composed of the nanofibers was successfully built by a set of paralleled collectors.After annealing at 500℃,PVP was removed and anatase 3D-TiO_2 nanofibers electrode was left with its morphology perfectly reserved,which showed discharge capability under large current density.The capacity was 153mAh/g in the first cycle,but it soon decreased in the following cycles.SEM illustrated that the 3D anatase TiO_2 structure collapsed after lithium-ion intercalation and deintercalation.
     The collapsing is mainly because of the volume expansion induced stress and the poor uniformity of Li~+ intercalation and deintercalation on the nanofibers surface during charge and discharge.A 3D battery design parameter U (U=(r~2/L~2)(μ/σ)(1/C)) was used to estimate the uniformity of Li~+ insertion,the smaller of U the better of uniformity.According to this,a doping method was used to increase the conductance(σ) of 3D-TiO_2.Sn(OiPr)_4 was added into the precursor by 5%.The electronic conductivity of the SnO_2 doped 3D-TiO_2 can be improved with small polarization show in the charge and discharge curves.But its cycle performance is still poor,indicated that the structure stability was not improved by doping method.
     The 'zero strain' spinel Li_4Ti_5O_(12) was investigated considering the physical structure and interface stability of it during charge and discharge process.The lithium salt influenced the properties of precursor;a series of change had to be made by add acetic acid to enhance the complexity and strict control of aging time of the precursor. Based on these changes in precursor,three-dimensional structured nanofibers of Li-Ti-PVP were successfully fabricated for the first time.The nanofibers kept unchanged in length,and reduced to 100nm in diameter after 750℃annealing.The 3D Li_4Ti_5O_(12) electrode showed a good charge and discharge performance under large current density,the first discharge capacity under 4.5C was 167mAh/g,cyclic performance is about 27%better than the thin film Li_4Ti_5O_(12) anode.XRD and SEM images show that the structure of 3D spinel Li_4Ti_5O_(12) network keep constant during charge and discharge processes,which revealed the zero strain characteristics of Li_4Ti_5O_(12) nanofibers.Preliminary results showed that the Li_4Ti_5O_(12) is one of promise candidate anode materials for three-dimensional lithium-ion battery.
     The electrospinning of nanofibers method was used to investigate cathode materials.LiCoO_2 was the first choice for its high discharge voltage,high conductance and good cycle ability.The precursor of LiCoO_2 nanofibers was composed of Li(CH_3COCHCOCH_3) and Co(CH_3COO)_2·4H_2O,which was very sensitive to electrospinning parameter and environment conditions.For this reason,former reported electrospun of LiCoO_2 nanofibers had a large diameter in micrometer or sub micrometer scale.To get a better aspect ratio(lower the r2/12),the setting of the electrospinning equipments was adjusted to raise the temperature and controlled moisture when electrospinning,and proper annealing process was also applied.Thus, for the first time,3D architectures of layered LiCoO_2 nanofibers with the sizes of 60nm to 80nm in diameter was prepared by an electrospinning method for 3D rechargeable lithium ion batteries.But electrochemical measurement showed poor performance compared with thin film LiCoO_2.SEM observation also found structure collapsed after charge and discharge process.In order to resolve the structure instability induced by lithium intercalation and deintercalation,and to protect the electrode interface from the liquid electrolyte,a lithium phosphorous oxynitride(LiPON) layer was coated onto 3D structure.3D electrode of electrospun LiCoO_2 nanofibers with a fully coating LiPON layer exhibited the discharge capacity of 120.4mAh/g with the loss 0.11%per cycle during the 100~(th) cycle at the discharge rate of 0.05mA/cm~2,and had a better rate capability and higher reversibility as compared with electrospun LiCoO_2 nanofibers without LiPON layer.The electrochemical test under 0.10mA/cm~2 and 0.15mA/cm~2 also showed good rate capability.These results indicated that the effectiveness of a coating LiPON layer for application of LiCoO_2 nanofibers in 3D rechargeable lithium-ion batteries.
     Further investigation of 3D cathode was focused on the low toxic and low cost manganese oxide materials.Proper electrospinning parameter like feeding rate and pH value adjust was found for metal acetic acid salt in the precursor,and shrink of nanofibers in diameter was successfully obtained.Three-dimensional architecture manganese oxide nanofibers with 50-70nm in diameter was constructed for the first time.The discharge potential of 3D manganese oxide nanofibers was above 2.5V. Collapsing of nanofibers did not happen during Li~+ ion intercalation and deintercalation,showed good structure stability of the 3D electrode.The discharge capacity of the 3D manganese nanofibers could reach 160mAh/g.The reversible rate of capacity of 3D nanofibers architecture is larger than 99%during 50 cycles under different discharge rates.
     Carbon nanotubes(CNTs) have an excellent mechanical strength and electric conductance.Composites of CNTs and other thin film material showed relatively good mechanical and electrical properties.Former research illustrated that composites nanofibers of CNTs could be obtained by electrospinning with CNTs added in the precursor.However,it is difficult to get the CNTs paralleled placed in the nanofibers, unless the diameter of the nanofibers is in a very small scale.
     To further improve the structure stability and conductance of the 3D electrode materials,CNTs doping was used as a modification method of 3D nanofibers electrode.CNTs enhanced 3D nanofibers electrode was investigated for the first time in this thesis.Nickel oxide(NiO) nanofibers was chosen as the matrix of the nanofibers,because their diameter could be controlled under 40-50 nm with proper electrospinning procedures.Single-walled carbon nanotubes(SWNTs) enhanced NiO nanofibers were successful prepared by electrospinning with CNTs paralleled place inside or outside the nanofibers.Charge and discharge curves showed that undoped 3D-NiO has a large capacity at first discharge,and then it decreased.The capacity loss was more obvious under large discharge rates.Structure instability was clearly observed by SEM under 1C.Carbon nanotubes enhanced NiO-CNTs nanofibers can effectively improve the property of the three-dimensional architecture electrode in battery process by emerge from structural instability problems.At different energy densities such as 0.1 C,0.5C,1C and 2C,the reversible capacity of 3D NiO-CNTs were 1.6%,2.8%,20.6%and 43.3%large than the 3D NiO.The results show that carbon nanotubes doping is an effective way to enhance the three-dimensional electrode NiO.
     The above results may have some reference value for the exploration of physical and chemical properties of the cathode and anode materials in three-dimensional lithium-ion battery.
引文
[1]吴宇平,戴晓兵,马军旗等.锂离子电池应用与实践[M].北京:化学工业出版社,2004:3-12.
    [2]Wakihara M.Recent developments in lithium ion batteries[J].Material Science &Engineer Reports,2001,33(4):109-134.
    [3]Tarascon J M,Armand,M.Building better batteries[J].Nature,2008,451(7179):652-657.
    [4]Sadoway D R,Mayes A M.Portable power:Advanced Rechargeable Lithium Batteries[J].MRS Bull.2002,27:590-592.
    [5]Pescovitz D.The Power of Small Tech[J].Small Times,2002,2(1):21-31.
    [6]Mullins J.The Topsy-turvy World of Quantum Computing[J].IEEE Spectrum,2001,38(2):42-49.
    [7]Lin L Y,Wu M C,Sawada R,et al.Guest Editorial Optical MEMS and its Future Trends[J].Lightwave Technol.2003,21:582-583.
    [8]Niarchos D.Magnetic MEMS:Key Issues and Some Applications[J].Sensors Actuators A-Phys.2003,106(1-3):255-262.
    [9]Tilmans H A C,Raedt W D,Beyne E.MEMS for Wireless Communications:'From RF-MEMS Components to RF-MEMS-SiP[J].Micromech.Microeng.2003,13:S139-S163.
    [10]Hartnagel H L,Rodriguez-Girones M.Current Status and Future Prospects of Semiconductor Terahertz Electronics[J].IEICE Trans.Electron.2003,E86C:1911-1915.
    [11]Mehregany M,Zorman C A.Pendeo-epitaxial Growth of Thin Films of Gallium Nitride and Related Materials and Their Characterization[J].MRS Bull.2001,225(2-4):134-140.
    [12]Koeneman P B,Busch-Vishniac I J,Wood K L J.Feasibility of Micro Power Supplies for MEMS[J].Microelectromech.Sys.1997,6(4):355-362.
    [13]Bates J B,Dudney N J,Neudecker B,ea al.Thin-film Lithium and Lithium-ion Batteries[J].Solid State Ionics,2000,135(1-4):33-35.
    [14]Souquet J L,Duclot M.Thin Film Lithium Batteries[J].Solid State Ionics 2002, 148: 375-379.
    [15]Warneke B, Last M, Liebowitz B, et al. Smart Dust: Communicating with a Cubic-millimeter Computer [J]. IEEE Comput. Magazine, 2001, 34(1): 44-51.
    [16]Murata K, Izuchi S, Yoshihisa Y. An Overview of the Research and Development of Solid Polymer Electrolyte Batteries [J]. Electrochim. Acta. 2000, 45(8-9): 1501-1508.
    [17]Meyer W H. Polymer Electrolytes for Lithium-Ion Batteries [J]. Adv. Mater. 1998, 10(6): 439-448.
    [18] Song J Y, Wang Y Y, Wan C C. Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries [J]. Power Sources, 1999, 77(2): 183-197.
    [19]Jones S D, Akridge J R. A Thin-film Solid-state Microbattery [J]. J. Power Sources, 1993,44:505-513.
    [20]Neudecker B J, Zuhr R A, Kwak B S, et al. Li-ion Thin-film Batteries with Tin and Indium Nitride and Subnitride Anodes MeN_x (Me = Sn, In) [J]. Intercalation Compounds for Battery Materials Proceedings, 2000,99(24): 295-304.
    [21] Wang B, Bates J B, Hart F X, et al. Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes [J]. J. Electrochem. Soc. 1996, 143:3203-3213.
    [22] Bates J B, Dudney N J, Lubben D C, et al. Thin-film Rechargeable Lithium Batteries [J]. J. Power Sources, 1995, 54: 58-62.
    [23]Neudecker B J, Dudney N J, Bates J B. "Lithium-Free" Thin-Film Battery with In Situ Plated Li Anode [J]. J. Electrochem. Soc. 2000, 147:517-523.
    [24]Long J W, Dunn B, Rolison D R, et al. Three-Dimensional Battery Architectures [J]. Chem. Rev. 2004, 104: 4463-4492.
    [25]Hart R W, White H S, Dunn B, Rolison D R. 3-D Microbatteries [J]. Electrochem. Commun. 2003, 5(2): 120-123.
    [26]Long J W, Rhodes C P, Young A L, et al. Ultrathin, Protective Coatings of Poly(o-phenylenediamine) as Electrochemical Proton Gates: Making Mesoporous MnO_2 Nanoarchitectures Stable in Acid Electrolytes [J]. Nano Lett. 2003, 3(8): 1155-1161.
    [27]Long J W, Dening B M, Rolison D R. Carbon Aerogels with Ultrathin, Rlectroactive Poly(o-methoxyaniline) Coatings for High-performance Electrochemical Capacitors [J]. Non-Cryst. Solids, 2004, 350:97-106.
    [28] Rhodes C P, Long J W, Doescher M S, et al. Charge Insertion into Hybrid Nanoarchitectures: Mesoporous Manganese Oxide Coated with Ultrathin Poly(phenylene oxide) [J]. Non-Cryst. Solids, 2004(350):73-79.
    [29] Rhodes C P, Long J W, Doescher M S, et al. Nanoscale Polymer Electrolytes: Ultrathin Electrodeposited Poly(phenylene oxide) with Solid-state Ionic Conductivity [J]. Phys. Chem. B, 2004, 108(35): 13079-13087.
    [30] Sing KSW, Everett D H, Haul R A W, et al. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-area and Porosity (Recommendations 1984) [J]. Pure Appl. Chem. 1985, 57:603-619.
    [31]Penner R M, Martin C R. Electronically Conductive Composite Polymer Membranes [J]. J. Electrochem. Soc. 1986, 133:310.
    [32]Martin C R. Membrane-Based Synthesis of Nanomaterials [J]. Chem. Mater. 1996, 8:1739-1746.
    [33]Lakshmi B B, Patrissi C J, Martin C R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures [J]. Chem. Mater. 1997, 9:2544-2550.
    [34] Sides C R, Li N C, Patrissi C J, et al. Nanoscale Materials for Lithium-ion Batteries [J]. Mater. Res. Bull. 2002, 27: 604-607.
    [35]Hulteen J C, Martin C R. A General Template-based Method for the Preparation of Nanomaterials [J]. J. Mater. Chem. 1997, 7:1075-1087.
    [36]Bard A J, Rubinstein I. Electroanalytical Chemistry: A Series of Advances [M]. New York, CRC Press, 1999, 21: 1-74.
    [37]Patrissi C J, Martin C R. Sol-gel-based Template Synthesis and Li-insertion Rate Performance of Nanostructured Vanadium Pentoxide [J]. J. Electrochem. Soc. 1999,146(9): 3176-3180.
    [38]Patrissi C J, Martin C R. Improving the Volumetric Energy Densities of Nanostructured V_2O_5 Electrodes Prepared Using the Template Method [J]. J. Electrochem. Soc. 2001, 148: A1247-A1253.
    [39]Li N C, Patrissi C J, Che G L, et al. Rate Capabilities of Nanostructured LiMn2O4 Electrodes in Aqueous Electrolyte[J]. J. Electrochem. Soc. 2000, 147: 2044-2049.
    [40]Nishizawa M, Mukai K, Kuwabata S, et al. Template Synthesis of Polypyrrole-Coated Spinel LiMn_2O_4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries [J]. J. Electrochem. Soc. 1997, 144,1923-1927.
    [41]Li N C, Martin C R. A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis [J]. J. Electrochem. Soc. 2001, 148:A164-A170.
    [42] Li N C, Martin C R, Scrosati B. A High-rate, High-capacity, Nanostructured Tin Oxide Electrode [J]. J. Electrochem. Solid-State Lett. 2000, 3: 316-318.
    [43]Li N C, Martin C R, Scrosati B. Nanomaterial-based Li-ion Battery Electrodes [J]. J. Power Sources 2001, 97/98:240-243.
    [44] Che G, Jirage, K B Fisher, E R, et al. Chemical-Vapor Deposition-Based Template Synthesis of Microtubular TiS_2 Battery Electrodes [J]. J. Electrochem. Soc. 1997, 144,4296-4302.
    [45] Che G, Lakshmi B B, Martin C R, et al. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method [J]. Chem. Mater. 1998,10:260-267.
    [46]Che G L, Lakshmi B B, Fisher E R, et al. Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production [J]. Nature, 1998, 393:346-349.
    [47] Che G L, Lakshmi B B, Martin C R, et al. Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production [J]. Langmuir 1999, 15(3): 750-758.
    [48] Martin C R. Template Synthesis of Electronically Conductive Polymer Nanostructures [J]. Acc. Chem. Res. 1995, 28(2): 61-68.
    [49] Martin B R, Dermody D J, Reiss B D, Fang M M, Lyon L A, Natan M J, Mallouk T E. Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods [J]. Adv. Mater. 1999, 11: 1021-1025.
    [50]Nicewarner-Pena S R, Freeman R G, Reiss B D, et al. Submicrometer metallic barcodes [J]. Science 2001,294:137.
    [51] Keating C D, Natan M J. Striped Metal Nanowires as Building Blocks and Optical Tags [J]. Adv. Mater. 2003, 15: 451-454.
    [52]Dewan C, Teeters D. Vanadia xerogel nanocathodes used in lithium microbatteries [J]. J. Power Sources 2003,119: 310-315.
    [53]Masuda H, Watanabe M, Yasui K, et al. Fabrication of a Nanostructured Diamond Honeycomb Film [J]. Adv. Mater. 2000, 12: 444-447.
    [54] Li N C, Mitchell D T, Lee K P, Martin C R. A Nanostructured Honeycomb Carbon Anode [J]. J. Electrochem. Soc. 2003, 150: A979-A984.
    [55] Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond [J]. Curr. Opin. Solid State Mater. Sci. 2001, 5: 553-564.
    [56]John S, Busch K. Photonic bandgap formation and tunability in certain self-organizing systems [J]. J. Lightwave Technol. 1999,17(11): 1931-1943.
    [57] Sakamoto J S, Dunn B. Hierarchical battery electrodes based on inverted opal structures [J]. J. Mater. Chem. 2002,12: 2859-2861.
    [58] Stein A. Advances in Microporous and Mesoporous Solids-Highlights of Recent Progress [J]. Adv. Mater. 2003, 15: 763-775.
    [59]Kang S, Yu J S, Kruk M, Jaroniec M. Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties [J]. Chem. Commun. 2002: 1670-1671.
    [60]Gundiah G., Govindaraj A, Rao C N R. Macroporous carbons prepared by templating silica spheres [J]. Mater. Res. Bull. 2001, 36:1751-1757.
    [61]Yoon S B, Kim J Y, Yu J S. Synthesis of Highly Ordered Nanoporous Carbon Molecular Sieves from Silylated MCM-48 Using Divinylbenzene as Precursor [J]. Chem. Commun. 2001: 559-560.
    [62]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science, 1998, 282: 897-901.
    [63]Zakhidov A A, Khayrullin I I, Baughman R H, et al. CVD Synthesis of Carbon-based Metallic Photonic Crystals [J]. Nanostructured Materials 1999, 12(5-8): 1089-1095.
    [64]Linden M, Schacht S, Schuth F, et al. Recent Advances in Nano-and Macroscale Control of Hexagonal, Mesoporous Materials [J]. J. Porous Mater. 1998, 5: 177-193.
    [65]Liu T B, Burger C, Chu B. Nanofabrication in Polymer Matrices [J]. Prog. Polym. Sci. 2003, 28: 5-26.
    [66] Soler-Illia G J de A A, Eduardo L, Crepaldi, Grosso D, et al. Block Copolymer-templated Mesoporous Oxides [J]. Curr. Opin. Coll. Interface Sci. 2003,8:109-126.
    [67]Soler-Illia G J de A A, Sanchez C, Lebeau B, et al. Chemical Strategies to Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures [J]. Chem. Rev. 2002,102: 40934138.
    [68] Schuth F. Non-siliceous Mesostructured and Mesoporous Materials [J]. Chem. Mater. 2001, 13:3184-3195.
    [69] Yang P D, Zhao D Y, Margolese D I, et al. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework [J]. Chem. Mater. 1999, 11: 2813-2826.
    [70]Mann S, Burkett S L, Davis S A, et al. Sol-Gel Synthesis of Organized Matter [J]. Chem. Mater. 1997, 9: 2300-2310.
    [71] Anders E C, Palmqvist. Synthesis of Ordered Mesoporous Materials using Surfactant Liquid Crystals or Micellar Solutions [J]. Curr. Opin. Coll. Interface Sci.2003, 8: 145-155.
    [72]Gin D L, Gu W Q, Pindzola B A, et al. Polymerized Lyotropic Liquid Crystal Assemblies for Materials Applications [J]. Acc. Chem. Res. 2001, 34: 973-980.
    [73] Lin H P, Mou C Y. Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica [J]. Acc. Chem. Res. 2002, 35(11): 927-935.
    [74]Patarin J, Lebeau B, Zana R. Recent Advances in the Formation Mechanisms of Organized Mesoporous Materials [J]. Curr. Opin. Coll. Interface Sci. 2002, 7: 107-115.
    [75] Schiith F. Endo-and Exotemplating to Create High-Surface-Area Inorganic Materials [J]. Angew. Chem. Int. Ed. 2003,42: 3604-3622.
    [76]Ying J Y, Mehnert C P, Wong M S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials [J]. Angew. Chem. Int. Ed. 1999, 38(1-2): 56-77.
    [77]Polarz S, Antonietti M. Porous Materials via Nanocasting Procedures: Innovative Materials and Learning about Soft-matter Organization [J]. Chem. Commun. 2002, 22:2593-2604.
    [78]Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation [J]. J. Phys. Chem. B 1999, 103: 7743-7746.
    [79] Yang P D, Zhao D Y, Margolese D I, et al. Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks [J]. Nature 1998, 396: 152-155.
    [80]Gratzel M. Sol-Gel Processed TiO_2 Films for Photovoltaic Applications [J]. J. sol-Gel Sci. Technol. 2001,22: 7-13.
    [81] Wang Y D, Ma C L, Sun X D, et al. Synthesis and Characterization of Mesoporous TiO_2 with Wormhole-Like Framework Structure [J]. Appl. Catal. A: Gen. 2003, 246: 161-170.
    [82] Wang Y D, Ma C L, Sun X D, et al. Synthesis and Characterization of Amorphous TiO_2 with Wormhole-Like Framework Mesostructure [J]. J. Non-Cryst. Solids 2003, 319: 109-116.
    [83]Kavan L, Rathousky J, Gratzel M, et al. Mesoporous Thin Film TiO_2 Electrodes [J]. Microporous Mesoporous Mater. 2001,44: 653.
    [84]Froba M, Muth O, Reller A. Mesostructured TiO_2: Ligand-Stabilized Synthesis and Characterization [J]. Solid State Ionics 1997, 101:249-253.
    [85]Kluson P, Kacer P, Cajthaml T, et al. Preparation of Titania Mesoporous Materials using a Surfactant-mediated Sol-gel Method [J]. J. Mater. Chem. 2001, 11: 644-651.
    [86]Yun H S, Miyazawa K, Zhou H S, et al. Synthesis of Mesoporous Thin TiO_2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates [J]. Adv. Mater. 2001,13:1377-1380.
    [87] Yoshitake H, Sugihara T, Tatsumi T. Preparation of Wormhole-like Mesoporous TiO_2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition [J]. Chem. Mater. 2002, 14: 1023-1029.
    [88]Zheng J Y, Pang J B, Qiu K Y, et al. Synthesis of Mesoporous Titanium Dioxide Materials by using a Mixture of Organic Compounds as a Non-surfactant Template [J] J. Mater. Chem. 2001, 11(12): 3367-3372.
    [89]Nishimura S, Shishido A, Abrams N, et al. Fabrication Technique for Filling-Factor Tunable Titanium Dioxide Colloidal Crystal Replicas [J].Appl. Phys. Lett. 2002, 81:4532.
    [90]Krtil P, Fattakhova D, Kavan L, et al. Lithium Insertion into Self-Organized Mesoscopic TiO_2 (anatase) Electrodes [J]. Solid State Ionics 2000, 135: 101-106.
    [91]Kavan L, Attia A, Lenzmann F, et al. Lithium Insertion into Zirconia-Stabilized Mesoscopic TiO_2 [J]. J. Electrochem. Soc. 2000, 147: 2897-2902.
    [92]Ozkan E, Lee S H, Liu P, et al. Electrochromic and Optical Properties of Mesoporous Tungsten Oxide Films [J]. Solid State Ionics, 2002, 149: 139-146.
    [93]Cheng W, Baudrin E, Dunn B, et al. Synthesis and Electrochromic Properties of Mesoporous Tungsten Oxide [J]. J. Mater. Chem. 2001,11(1): 92-97.
    [94] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases [J]. Science 1997, 278: 838.
    [95]Nelson P A, Owen J R. A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes [J]. J. Electrochem. Soc. 2003, 150:A1313-A1323.
    [96]Nelson P A, Elliott J M, Attard G S, et al. Mesoporous Nickel/Nickel Oxidesa Nanoarchitectured Electrode [J]. Chem. Mater. 2002, 14: 524-534.
    [97] Liu P, Lee S H, Tracy C E, et al. Preparation and Lithium Insertion Properties of Mesoporous Vanadium Oxide [J]. Adv. Mater. 2002, 14: 27-30.
    [98]Huang L M, Wang Z B, Wang H T, et al. Polyaniline Nanowires by Electropolymerization from Liquid Crystalline Phases [J]. J. Mater. Chem. 2002, 12(2): 388-391.
    [99]Baeck S H, Choi K S, Jaramillo T F, et al. Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO_3 Thin Films [J]. Adv. Mater. 2003, 15: 1269-1273.
    [100] Choi K S, Lichtenegger H C, Stucky G D, et al. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces [J]. J. Am. Chem. Soc. 2002,124: 12402-12403.
    [101] Jun S, Joo S H, Ryoo R, et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J. Am. Chem. Soc. 2000, 122: 10712-10713.
    [102] Ryoo R, Joo S H, Kruk M, et al. Ordered Mesoporous Carbons [J]. Adv. Mater. 2001, 13:677-681.
    [103] Joo S H, Jun S, Ryoo R. Synthesis of Ordered Mesoporous Carbon Molecular Sieves CMK-1 [J]. Microporous Mesoporous Mater. 2001, 44-45: 153-158.
    [104] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes [J]. Chem. Mater. 2003, 15: 2815-2823.
    [105] Kim T W, Park I S, Ryoo R. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls [J]. Angew. Chem. Int. Ed. 2003, 42: 4375-4379.
    [106] Lee J, Yoon S, Oh S M, et al. Development of a New Mesoporous Carbon Using an HMS Aluminosilicate Template [J]. Adv. Mater. 2000,12: 359.
    [107] Fuertes A B, Nevskaia D M. Template Synthesis of Mesoporous Carbons from Mesostructured Silica by Vapor Deposition Polymerisation [J]. J. Mater. Chem. 2003,13(7): 1843-1846.
    [108] Fuertes A B, Nevskaia D M. Control of Mesoporous Structure of Carbons Synthesised Using a Mesostructured Silica as Template [J]. Microporous Mesoporous Mater. 2003, 62:177-190.
    [109] Yu J S, Kang S, Yoon S B, et al. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter [J]. J. Am. Chem. Soc. 2002, 124:9382-9383.
    [110] Lu A H, Schmidt W, Schuth F. Simplified Novel Synthesis of Ordered Mesoporous Carbon with a Bimodal Pore System [J]. New Carbon Mater. 2003, 18(3): 181-185.
    [111] Lu A H, Schmidt W, Spliethoff B, et al. Synthesis of Ordered Mesoporous Carbon with Bimodal Pore System and High Pore Volume [J]. Adv. Mater. 2003, 15(19): 1602-1606.
    [112] Yoon S B, Kim J Y, Yu J S. A Direct Template Synthesis of Nanoporous Carbons with High Mechanical Stability Using As-synthesized MCM-48 Hosts [J]. Chem. Commun. 2002, 14: 1536-1537.
    [113] Yang H F, Shi Q H, Liu X Y, et al. Synthesis of Ordered Mesoporous Carbon Monoliths with Bicontinuous Cubic Pore Structure of Ia3d Symmetry [J]. Chem. Commun. 2002, 23: 2842-2843.
    [114] Kim S S, Pinnavaia T J. A Low Cost Route to Hexagonal Mesostructured Carbon Molecular Sieves [J]. Chem. Commun. 2001, 23: 2418-2419.
    [115] Vix-Guterl C, Boulard S, Parmentier J, et al. Formation of Ordered Mesoporous Carbon Material from a Silica Template by a One-step Chemical Vapour Infiltration Process [J]. Chem. Lett. 2002, 10: 1062-1063.
    [116] Han B H, Zhou W Z, Sayari A. Direct Preparation of Nanoporous Carbon by Nanocasting [J]. J. Am. Chem. Soc. 2003, 125(12): 3444-3445.
    [117] Taguchi A, Smatt J H, Linden M. Carbon Monoliths Possessing a Hierarchical, Fully Interconnected Porosity [J]. Adv. Mater. 2003, 15(14): 1209-1215.
    [118] Yoon S, Lee J W, Hyeon T, et al. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon [J]. J. Electrochem. Soc. 2000, 147(7): 2507-2512.
    [119] Lee J, Yoon S, Hyeon T, et al. Synthesis of a New Mesoporous Carbon and its Application to Electrochemical Double-layer Capacitors [J]. Chem. Commun. 1999,21:2177-2178.
    [120] Zhou H S, Zhu S M, Hibino M, et al. Electrochemical Capacitance of Self-ordered Mesoporous Carbon [J]. J. Power Sources, 2003,122(2): 219-223.
    [121] Soten I, Ozin G A. New directions in self-assembly: materials synthesis over 'all' length scales [J]. Curr. Opin. Coll. Interface Sci. 1999, 4(5): 325-337.
    [122] Yang P D, Deng T, Zhao D Y, et al. Hierarchically Ordered Oxides [J]. Science 1998, 282(5397): 2244-2246.
    [123] Rolison D R, Dunn B. Electrically Conductive Oxide Aerogels: New Materials in Electrochemistry [J]. J. Mater. Chem. 2001, 11(4): 963-980.
    [124] Kistler S S. Coherent Expanded Aerogels and Jellies [J]. Nature, 1931, 127: 741-741.
    [125] Husing N, Schubert U. Aerogels Airy Materials: Chemistry, Structure, and Properties [J].Angew. Chem., Int. Ed. Engl. 1998, 37(1-2): 23-45.
    [126] Pierre A C, Pajonk G M. Chemistry of Aerogels and Their Applications [J]. Chem. Rev. 2002, 102(11): 4243-4265.
    [127] Harreld J, Wong H P, Dave B C, et al. Synthesis and Properties of Polypyrrole-vanadium Oxide Hybrid Aerogels [J]. J. Non-Cryst. Solids, 1998, 225(1): 319-324.
    [128] Coustier F, Lee J M, Passerini S, et al. V_2O_5 Aerogel-like Lithium Intercalation Host [J]. Solid State Ionics, 1999, 116(3-4): 279-291.
    [129] Long J W, Swider-Lyons K E, Stroud R M, et al. Design of Pore and Matter Architectures in Manganese Oxide Charge-Storage Materials [J]. Electrochem. Solid-State Lett. 2000, 3(10): 453-456.
    [130] Long J W, Stroud R M, Rolison D R. Controlling the Pore-solid Architecture of Mesoporous, High Surface Area Manganese Oxides with the Birnessite Structure [J]. J. Non-Cryst. Solids, 2001, 285(1-3): 288-294.
    [131] Long J W, Qadir L R, Stroud R M, et al. Spectroelectrochemical Investigations of Cation-Insertion Reactions at Sol-Gel-Derived Nanostructured, Mesoporous Thin Films of Manganese Oxide [J]. J. Phys. Chem. B 2001, 105(37): 8712-8717.
    [132] Yamamoto T, Nishimura T, Suzuki T, et al. Effect of Drying Conditions on Mesoporosity of Carbon Precursors Prepared by Sol-gel Polycondensation and Freeze Drying [J]. Carbon, 2001, 39(15): 2374-2376.
    [133] Xu J J,, Yang J S. Electrocatalytic Oxidation of Sugars on Silver-UPD Single Crystal Gold Electrodes in Alkaline Solutions [J]. Electrochem. Commun. 2003, 5(3): 230-235.
    [134] Yang J S, Xu J J. Influence of Synthesis Conditions on the Electrochemical Properties of Nanostructured Amorphous Manganese Oxide Cryogels [J]. J. Power Sources, 2003,122(2): 181-187.
    [135] Tamon H, Ishizaka H, Yamamoto T, et al. Freeze Drying for Preparation of Aerogel-like Carbon [J]. Drying Technol. 2001, 19(2): 313-324.
    [136] Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of Mesoporous Carbon by Freeze Drying [J]. Carbon, 1999, 37(12): 2049-2055.
    [137] Rolison D R. Catalytic Nanoarchitectures-the Importance of Nothing and the Unimportance of Periodicity [J]. Science, 2003, 299(5613): 1698-1701.
    [138] Passerini S, Ressler J J, Le D B, et al. High Rate Electrodes of V_2O_5 Aerogel [J]. Electrochim. Acta. 1999,44(13): 2209-2217.
    [139] Salloux K, Chaput F, Wong H P, et al. Lithium Intercalation in Vanadium Pentoxide Aerogels [J]. J. Electrochem. Soc. 1995, 142(10): L191-L192.
    [140] Zhang F, Passerini S, Owens B B, et al. Nanocomposites of V_2O_5 Aerogel and RuO_2 as Cathode Materials for Lithium Intercalation [J]. Electrochem. Solid-State Lett. 2001, 4(12): A221-A223.
    [141] Chaput F, Dunn B, Fuqua P, et al. Synthesis and Characterization of Vanadium Oxide Aerogels [i].J. Non-Cryst. Solids, 1995, 188(1-2): 11-18.
    [142] Coustier F, Passerini S, Smyrl W H. A 400 mAh/g Aerogel-like V_2O_5 Cathode for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc. 1998, 145(5): L73-L74.
    [143] Dong W, Rolison D R, Dunn B. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels [J]. Electrochem. Solid-State Lett. 2000, 3(10): 457-459.
    [144]Harreld J H,Dong W,Dunn B.Ambient Pressure Synthesis of Aerogel-like Vanadium Oxide and Molybdenum Oxide[J].MRS Bull.1998,33(4):561-567.
    [145]Le D B,Passerini S,Guo J,et al.High Surface Area V_2O_5 Aerogel Intercalation Electrodes[J].J.Electrochem.Soc.1996,143(7):2099-2104.
    [146]Passerini S,Coustier F,Giorgetti M,et al.Li-Mn-O Aerogels[J].Electrochem.Solid-State Lett.1999,2(10):483-485.
    [147]Dong W,Dunn B.Sol-gel Synthesis and Characterization of Molybdenum Oxide Gels[J].J.Non-Cryst.Solids,1998,225(1):135-140.
    [148]Dong W,Dunn B.Sol-gel Synthesis of Monolithic Molybdenum Oxide Aerogels and Xerogels[J].J.Mater.Chem.1998,8(3):665-670.
    [149]Dong W,Mansour A N,Dunn B.Structural and Electrochemical Properties of Amorphous and Crystalline Molybdenum Oxide Aerogels[J].Solid State lonics,2001,144(1-2):31-40.
    [150]Harreld J H,Sakamoto J,Dunn B.Non-hydrolytic Sol-gel Synthesis and Electrochemical Characterization of Tin-based Oxide Aerogels[J].J.Power Sources,2003,115(I):19-26.
    [151]Owens B B,Passerini S,Smyrl W H.Lithium Ion Insertion in Porous Metal Oxides[J].Electrochim.Acta,1999,45(1-2):215-224.
    [152]Kim J,Song X,Kinoshita K,et al.Electrochemical Studies of Carbon Films from Pyrolyzed Photoresist[J].J.Electrochem.Soc.1998,145(7):2314-2319.
    [153]Kostecki R,Song X Y,Kinoshita K.Influence of Geometry on the Electrochemical Response of Carbon Interdigitated Microelectrodes[J].J.Electrochem.Soc.2000,147(5):1878-1881.
    [154]Ranganathan S,McCreery R,Majji S M,et al.Theory of Filling of High-Aspect Ratio Trenches and Vias in Presence of Additives[J].J.Electrochem.Soc.2000,147(1):277-282.
    [155]Kostecki R,Song X Y,Kinoshita K.Fabrication of Interdigitated Carbon Structures by Laser Pyrolysis of Photoresist[J].Electrochem.Solid-State Lett.2002,5(6):E29-E31.
    [156]Wang C,Taherabadi L,Jia G,et al.C-MEMS for the Manufacture of 3D Microbatteries[J].Electrtochem.Solid-State Lett.2004,7(11):A435-A438.
    [157]Bauer G,Kwon C W,Lee G G,et al.Fabrication of 3D Half-Cell Electrode Arrays[A].In:Micropower and Micro devices[C].Pennington:Electrochemical Society,2002:36-43.
    [158]严爱明.静电纺丝制备LiCoO_2纳米丝其电化学性能研究[D].上海:复旦大学,2007:3-13.
    [159]Fang X,Reneker D H.DNA Fibers by Electrospinning[J].J.Macromol.Sci.Phys.1997,B36(2):169-173.
    [160]Kim J S,Reneker D H.Polybenzimidazole Nanofibers Produced By Electrospinning[J].Polym.Eng.Sci.1999,39(5):849-854.
    [161]Fong H,Chun I,Reneker D H.Beaded Nanofibers Formed During Electrospinning[J].Polymer.1999,40(11):4582-4592.
    [162]Fong H,Reneker D H.Elastomeric Nanofibers of Styrene-Butadiene-Styrene Triblock Copolymer[J].J.Polymer Sci.B:Polymer Phys.2000,37(1):3488-3493.
    [163]Fong H,Liu W,Wang C S,et al.Generation of Electrospun Fiber Sofnylon 6-montmorilloniteite Nanocomposite[J].Polymer.2002,43(3):775-780.
    [164]Reneker D H,Chen I.Nanometer Diameter Fiber of Polymer,Produced by Electrospinning[J].Nanotechnology.1996,7(2):216-223.
    [165]Buer A,Ugbolue S C,Warner S B,et al.Electrospinning and Properties of Some Nanofibers[J].Textile Research Journal.2001,71(4):323-328.
    [166]Spivak A F,Dzenis Y A,Reneker D H.A Model of Steady State Jet In the Electrospinning Process[J].Mechanics Research Communication.2000,27(1):37-42.
    [167]Yarin A L,Koombhongse S,Reneker D H,et al.Taylor Cone and Jeting from Liuid Dropletsin Electrospinning[J].J.Appli.Phys.2001,90(10):4836-4846.
    [168]Yarin A L,Koombhongse S,Reneker D H,et al.Bending Instability in Electrospinning of Nanofibers[J].J.Appl.Phys.2001,89(9):3018-3026.
    [169]Hohman M M,Shin M,Rutledge G C,et al Electrospinning and Electrically Forced Jets.Ⅰ.Stability theory[J].Physics of Fluids.2001,13(8):2201-2220.
    [170]Hohman M M,Shin M,Rutledge G C,et al.Electrospinning and Electrically Forced Jets.Ⅱ.Stability Theory[J].Physics of Fluids.2001,13(8):2221-2236.
    [171] Shin Y M, Holmran M M, Brenner M P, et al. Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities [J]. Polymer. 2001, 42:9955-9967.
    [172] Boland E D, Wnek G E, Simpson D G, et al. Tailoring Tissue Engineering Scafolds Using Electrostatic Processing Techniques: A Study of Poly(GlycolicAcid) Electrospinning [J]. J. Macromol. Sci. Pure Appl. Chem. 2001, A38(12): 1231-1243.
    [173] Deitzel J M, Kleinmeyer J D, Harris D, et al. The Effect of Processing Variable on the Morphology of Electrospun Nanofibers and Textiles [J]. Polymer. 2000 42(1): 261-272.
    [174] Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled Deposition of Eletrospun Poly(ethyleneoxide) Fibers [J]. Polymer. 2001, 42(19): 8163-8170.
    [175] Ko F K. Textile Composites for The New Millennium [J]. Textile Asia. 2001, 32(11): 25-28.
    [176] Ross S E. Electrospinning: The Quest for Nanofibers [J]. Intenrational Fiber Journal, 2001, 16(5): 50-53.
    [177] Fong H, Chun I, Reneker D H. Beaded Nanofibers Formed During Electrospinning Polymer [J]. 1999, 40(16): 4585 - 4592.
    [178] Liu H Q, Heieh Y L. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate [J]. J. Polymer Sci. Part B: Polymer Physics [J]. 2002,40(18): 2119-2129.
    [179] Bergshoef M M, Vancso G J. Transparent Nanocomposites with Ultrathin, Rlectrospun Nylon-4, 6 Fiber Reinforcement [J]. Adv. Mater. 1999, 11(16): 1362 -1365.
    [180] Deitzel J M, Kleinmeyer J , Harris D, et al. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles [J]. Polymer, 2001, 42(1): 261-272.
    [181] Koombhongse S, Liu W X, Reneker D H. Flat Polymer Ribbons and Other Shapes by Electrospinning [J]. J. Polymer Sci: Part B: Polymer Physics, 2001, 39(21): 2598-2606.
    [182] Reneker D H, Yarin A L, Fong H, et al. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning [J]. J. Appl. Phys. 2000, 87(9): 4531-4547.
    [183] Yarin A L, Koombhongse S, Reneker D H. Bending Instability in Electrospinning of Nanofibers [J]. J. Appl. Phys. 2001, 89(5): 3018-3026.
    [184] Yarin A L, Koombhongse S, Reneker D H. Bending Instability in Electrospinning of Nanofibers [J]. J. Appl. Phys. 2001, 89(9): 4836-4846.
    [185] Shin Y M, Hohman M M, Brenner M P, et al. Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers [J]. Appl. Phys. Lett. 2001, 78(8): 1149-1151.
    [186] Hohman M M, Shin M, Rutledge G, et al. Electrospinning and Electrically Forced Jets. I. Stability Theory [J]. Physics of Fluids. 2001,13(8): 2201-2220.
    [187] Hohman M M, Shin M, Rutledge G, et al. Electrospinning and Electrically Forced Jets. II. Applications [J]. Physics of Fluids. 2001,13(8): 2221-2236.
    [188] Larrondo L, Manley R S. Electrostatic Fiber Spinning From Polymer Melts .2. Examination of the Flow Field in an Electrically Driven Jet [J]. J. Polymer Science, Polymer Physics Edu. 1981, 19(6): 921-932.
    [189] Fong H, Chun I, Reneker D H. Beaded Nanofibers Formed During Electrospinning [J]. Polymer, 1999,40(116): 4585-4592.
    [190] Baumgarten P K. Electrostatic Spinning of a Crylic Microfibers [J]. J. Colloid and Interface Science, 1971, 36(1): 71-79.
    [191] Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of Polyurethane Fibers [J]. Polymer, 2002,43(11): 3303-3309.
    [192] Fong H, Reneker D H. Elastomeric Nanofibers of Styrene-butadiene-styrene Triblock Copolymer [J]. J. Polymer Sci.: Part B Polymer Phys. 1999, 37(24): 3488-3493.
    [193] Doshi J, Reneker D H. Electrospinning Progess and Applications of Electrospun Fibers [J]. Journal of Electrostatics. 1995, 35(2-3): 151 -160.
    [194] Zong X, Kim K, Fang D, et al. Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes [J]. Polymer, 2002, 43(16): 4403-4412.
    [195] Gibson P W, Gibson H L, Riven D. Electrospun Fiber Mats: Transport Properties [J]. AIChE, 1999, 45(1): 190-195.
    [196] Buchko C J, Chen L C, Shen Y, et al. Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films [J]. Polymer 1999, 40(26): 7397-7407.
    [197] Jin H J, Fridrikh S, Rutledge G C, et al. Electrospinning Bombyx Mori Silk with Poly(ethylene oxide) [J]. Biomacromolecules, 2002, 3:1233-1239.
    [198] Matthews J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers [J]. Biomacromolecules, 2002, 3(2): 232-238.
    [199] Theron A, Zussman E, Yarin A L. Electrostatic Field-assisted Alignment of Electrospun Nanofibres [J]. Nanotechnology, 2001, 12: 384-390.
    [200] Huang Z M, Zhang Y Z, Kotakic M, et al. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites [J]. Composites Science and Technology, 2003, 63(15): 2223-2253.
    [201] Li D, Wang Y L, Xia Y N. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays [J]. Nano Lett. 2003, 3(8): 1167-1171.
    [202] Larsen G, Velarde-Ortiz R, Minchow K, et al. A Method for Making Inorganic and Hybrid (organic/inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-gel Chemistry and Electrically Forced Liquid Jets [J]. J. Am. Chem. Soc. 2003, 125(5):1154-1155.
    [203] Wang Y, Furlan R, Ramos I, et al. Synthesis and Characterization of Micro/nanoscopic Pb(Zr_(0.52)Ti_(0.48))O_3 Fibers by Electrospinning [J]. Appl. Phys. A 2004, 78(7): 1043-1047.
    [204] Choi S S, Lee S G, Im S S, et al. Silica nanofibers from electrospinning/sol-gel process [J]. J. Mater. Sci. Lett. 2003,22(12):891- 893.
    [205] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and Morphology of Niobium Oxide Fibres by Electrospinning [J]. Chem. Phys. Lett. 2003, 374(1-2):79-84.
    
    [206] Shao C, Kim H Y, Gong J, et al. Fiber Mats of Poly(vinyl alcohol)/silica Composite via Electrospinning [J]. Mater. Lett. 2003, 57(9-10):1579-1584.
    [207] Hou H, Jun Z, Reuning A, et al. Poly(p-xylylene) Nanotubes by Coating and Removal of Ultrathin Polymer Template Fibers [J]. Macromolecules, 2002, 35(7): 2429-2431.
    [208] Hao X, Reneker D H. Carbon Nanotubes on Carbon Nanofibers: A Novel Structure Based on Electrospun Polymer Nanofibers. [J]. Adv. Mater. 2004, 16: 69-73.
    [209] Seoul C, Kim Y T, Baek C K, et al. Electrospinning of Poly(vinylidene fluoride)/dimethylformamide Solutions with Carbon Nanotubes [J]. J. Polym. Sci., Polym.Phys.Ed.2003,41(13):1572-1577.
    [210]Ko F,Gogotis Y,Ali A,et al.Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns[J].Adv.Mater.2003,15(14):1161-1166.
    [211]Ye H,Lam H,Titchenal N,et al.Reinforcement and Rupture Behavior of Carbon Nanotubes-polymer Nanofibers[J].Appl.Phys.Lett.2004,85(10):1775-1777.
    [212]Sen R,Zhao B,Perea D,et al.Preparation of Single-walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning[J].Nano Lett.2004,4(3):459-464.
    [213]Luu Y K,Kim K,Hsiao B S,et al.Development of a Nanostructured DNA Delivery Scaffold via Electrospinning of PLGA and PLA-PEG Block Copolymers.[J].J.Controlled Release,2003,89(2):341-353.
    [214]Gu Y,Chen D,Jiao X.Synthesis and Electrochemical Properties of Nanostructured LiCoO_2 Fibers as Cathode Materials for Lithium-ion Batteries[J].J.Phy.Chem.B 2005,109(38):17901-17908.
    [215]Fan Q,Whittingham M S.Electrospun Manganese Oxide Nanofibers as Anodes for Lithium-Ion Batteries[J].Electrochem.Solid-State Lett.2005,10:A48-A50.
    [216]马俊.静电喷雾沉积法制备锂离子电池正极薄膜材料及其电化学性能研究[D].上海:复旦大学,2005:17-23.
    [217]David R S.Structure Formation in Polymeric[M].Cincinnati:Hanser Publishers,2000:225-246.
    [218]吴大诚,杜仲良,高绪珊纳米纤维[M].北京:化学工业出版社,2003:68
    [219]亚别斯基等著,施祖培等译.高速纺丝-科学与工程[M].北京:中国石化出版社,1991:79-83.
    [220]Baumgarten P K.Electrostatic Spinning of Acrylic Microfibers.[J].Journal of Colloid & Interface Science,1971,36(1):71-79.
    [221]Yarin A L,Koombhongse S,Reneker D H.Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers.[J].J.Appl.Phys.2001,90(9):4836-4846.
    [222]Reneker D H,Yarin A L,Fong H,et al.Bending Instability of Electrically Charged Jets of Polymer Solutions in Electrospinning[J].J.Appl.Phys.2000, 87(9):4531-4547.
    [223]Yarin A L,Koombhongse S,Reneker D H.Bending Instability in Electrospinning of Nanofibers[J].J.Appl.Phys.2001,89(5):3018-3026.
    [224]Feng L,Li S,Li H,et al.Super-hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers[J].Angew.Chem.Int.Ed.2002,41(7):1221-1223.
    [225]江素华.等离子体浸没注入对Ta薄膜的改性及Cu/Ta/SiO_2体系失效机理的研究[D].上海:复旦大学,2004:24-31.
    [226]陆海纬,陈忠浩,王蓓等.聚焦离子束溅射刻蚀与增强刻蚀的性能研究[J].固体电子学研究与进展,2006,26(2):279-284.
    [227]王蓓,陈忠浩,陆海纬.聚焦离子束无掩膜注入单晶硅离子浓度深度分布的研究[J].复旦学报(自然科学版),2007,46(1):96-100.
    [228]宋云,陆海纬,王振雄.聚焦离子束在精细加工中引起损伤的分析[J].复旦学报(自然科学版),2007,46(1):118-123.
    [229]Sokolov S,Stein A.Preparation and Characterization of Macroporous γ-LiAlO_2[J].Materials Letters 2003,57(52):3593-3597.
    [230]Lytle J C,Yan H W,Ergang N S,et al.Structural and Electrochemical Properties of Three-dimensionally Ordered Macroporous Tin(Ⅳ) Oxide Films[J].J.Mater.Chem.2004,14:1616-1622.
    [231]Yan H,Sokolov S,Lytel J C,et al.Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries[J].J.Electrochem.Soc.2003,150(8):A1102-A1107.
    [232]Li D,Xia Y.Fabrication of Titania Nanofibers by Electrospinning[J].Nano Letters 2003,3(4):555-560.
    [233]Li D,Gong O Y,Jesse T,et al.Collecting Electrospun Nanofibers with Patterned Electrodes[J].Nano Letters 2005,5(5):913-916.
    [234]Li D,Wang Y L,Xia Y N.Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J].Nano Letters 2003,3(8):1167-1171.
    [235]Yuan Z Y,Su B L.Titanium Oxide Nanotubes,Nanofibers and Nanowires[J].Colloids and Surfaces A:Physicochem.Eng.Aspects 2004,241(1-3):173-183.
    [236]Lindstorm H,Sodergren S,Solbrand A,et al.Li~+ Ion Insertion in TiO_2(Anatase).2.Voltammetry on Nanoporous Films[J].J.Phy.Chem.B 1997,101(39):7710-7716.
    [237]Deitzel J M,Kleinmeyer J D,Hirvonen J K,et al.Controlled Deposition of Electrospun Poly(ethylene oxide) Fibers[J].Polymer 2001,42(19):8163-8170.
    [238]Son W K,Youk J H,Lee T S,et al.Effect of pH on electrospinning of poly (vinyl alcohol)[J].Materials Letters 2005,59(24):1571-1575.
    [239]Zhang B,Yuan Y,Fu Z W,et al.Electrochemical Characterization of a Three Dimensionally Ordered Macroporous Anatase TiO_2 Electrode Electrochem [J].Electrochem.Solid-State Lett.2006,9(3):A101-A104.
    [240]Wagemaker M,Kearley G J,Well A A,et al.Multiple Li Positions inside Oxygen Octahedra in Lithiated TiO_2 Anatase[J].J.Am.Chem.Soc.2003,125(3):840-848.
    [241]Aldon L,Kubiak P,Picard A,et al.Size Particle Effects on Lithium Insertion into Sn-doped TiO_2 Anatase[J].Chem.Mater.2006,18(6):1401-1406.
    [242]Rho H Y,Kanamura K.Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties[J].J.Electrochem.Soc.2004,151(1):A106-A110.
    [243]Wang C L,Liao Y C,Hsu F C,et al.Preparation and Characterization of Thin Film Li_4Ti_5O_(12) Electrodes by Magnetron Sputtering[J].J.Electrochem.Soc.2005,152(4):A653-A657.
    [244]Kanamura K,Umegaki T,Naito H,et al.Structural and Electrochemical Characteristics of Li_(4/3)Ti_(5/3)O_4 as an Anode Material for Rechargeable Lithium Batteries[J].J.Appl.Electrochem.2001,31:73-78.
    [245]陆海纬,周永宁,曾群.三维尖晶石Li_4Ti_5O_(12)纳米丝网状电极的构置与电化学性能[J].无机化学学报,2006,22(10):1802-1806.
    [246]Lu H W,Zeng W,Li Y S,et al.Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO_2 and spinel Li_4Ti_5O_(12)nanofibers[J].J.Power Sources,2007,164:874-879.
    [247]Amatucci G G,Badway F,Pasquier A D,et al.An Asymmetric Hybrid Nonaqueous Energy Storage Cell[J].J.Electrochem.Soc.2001,148(8):A930-A939.
    [248]Wang Q,Zakeeruddin S M,Exnar I,et al.3-Methoxypropionitrile-Based Novel Electrolytes for High-Power Li-Ion Batteries with Nanocrystalline Li_4Ti_5O_(12) Anode[J].J.Electrochem.Soc.2004,151(10):A1598-A1603.
    [249]Aldon L,Kubiak P,Womes M,et al.Chemical and Electrochemical Li-insertion into the Li_4Ti_5O_(12) Spinel [J]. Chem. Mater. 2004, 16(26): 5721-5725.
    [250] Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries [J]. Nature, 2001,414(15): 359-367.
    [251] Yoon W S, Kim K B. Synthesis of LiCoO_2 Using Acrylic Acid and its Electrochemical Properties for Li Secondary Batteries [J]. J. Power Sources 1999, 81-82:517-523.
    [252] Ohzuku T, Ueda A. Solid-State Redox Reactions of LiNi_(1/2)Co_(1/2)O_2 (R3m) for 4 Volt Secondary Lithium Cells [J]. J. Electrochem. Soc. 1994,141(8): 2010-2014.
    [253] Wang Z X, Wu C, Liu L J, et al. Electrochemical Evaluation and Structural Characterization of Commercial LiCoO_2 Surfaces Modified with MgO for Lithium-Ion Batteries [J]. J. Electrochem. Soc. 2002, 149(4): A466-A471.
    [254] Kim Y J, Kim T J, Shin J W, et al. The Effect of Al_2O_3 Coating on the Cycle Life Performance in Thin-Film LiCoO_2 Cathodes [J]. J. Electrochem. Soc. 2002, 149(10): A1337-A1341.
    [255] Bai Y, Shi H J, Wang Z X. Performance Improvement of LiCoO_2 by Molten Salt Surface Modification [J]. J. Power Sources 2007, 167(2): 504-509.
    [256] Yu Y, Shui J L, Jin Y, et al. Electrochemical Performance of Nano-SiO_2 Modified LiCoO_2 Thin Films Fabricated by Electrostatic Spray Deposition (ESD) [J]. Electrochimica Acta 2006, 51(16): 3292-3296.
    [257] Bates J B, Dudney N J, et al. Thin-film and Lithium-ion Batteries [J]. Solid State Ionics. 2000,135:33-45.
    [258] Iriyama Y, Kurita M, Yamada I, et al. Effects of Surface Modification by MgO on Interfacial Reactions of Lithium Cobalt Oxide Thin Film Electrode [J]. J. Power Sources. 2004, 137(1): 111-116.
    [259] Rho Y H, Kanamura K, Umegaki T. Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties [J]. J. Electrochem. Soc. 2003,150(1): A107-A111.
    [260] Alcantara R, Lavela P, Tirado J L, et al. Recent Advances in the Study of Layered Lithium Transition Metal Oxides and Their Application as Intercalation Electrodes [J]. J. Solid State Electrochem. 1999, 3: 121-134.
    [261] Fu ZW, Ma J, Qin Q Z. Nanostructured LiCoO_2 and LiMn_2O_4 Fibers Fabricated by a High Frequency Electrospinning [J]. Solid State Ionics 2005, 176(17-18): 1635-1640.
    [262]Yu X H,Bates J B,Jellison G E,et al.A Stable Thin-Film Lithium Electrolyte:Lithium Phosphorus Oxynitride[J].J.Electrochem.Soc.1997,144(2):524-532.
    [263]李驰麟,刘文元,傅正文.基于LiCo_(0.8)M_(0.2)O_2(M=Ni,Zr)薄膜的全固态薄膜锂电池[J].化学物理学报.2006,19(6):493-498.
    [264]周浩生,冼福生,高良润.双流体式静电喷头特性的试验研究[J].江苏理工大学学报.1996,17(3):1-4.
    [265]吴大诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003:68-72.
    [266]Liu W Y,Fu Z W,Li C L,et al.Lithium Phosphorus Oxynitride Thin Film Fabricated by a Nitrogen Plasma-Assisted Deposition of E-beam Reaction Evaporation[J].J.Electrochem.Soc.2004,7(9):36-40.
    [267]Chiu K F.Lithium Cobalt Oxide Thin Films Deposited at Low Temperature by Ionized Magnetron Sputtering[J].Thin Solid Films 2007,515(11):4614- 4618.
    [268]Das R S,Majumder S B,Katiyar R S.Kinetic Analysis of the Li~+ Ion Intercalation Behavior of Solution Derived Nano-crystalline Lithium Manganate Thin Films[J].J.Power Sources,2005,139(1-2):261-268.
    [269]Nakamura K,Ohno H,Okamura K.On the Diffusion of Li~+ Defects in LiCoO_2and LiNiO_2[J].Solid State Ionics.2000,135(1-4):143-147.
    [270]Johnson C S.Development and Utility of Manganese Oxides as Cathodes in Lithium Batteries[J].J.Power Sources,2007,165(2):559-565.
    [271]Johnson C S,Mansuetto M F,Thackeray M M.A New MnO_x Cathode Material for Rechargeable Lithium Batteries[J].J.Electrochem.Soc.1997,144(7):2279-2283.
    [272]马淳安,楼颖伟,赵峰鸣等.Synthesis and Characterization of Nano-size Manganese Dioxide[J].中国有色金属学报 2004,14(10):1736-1740.
    [273]门传玲,夏熙.纳米级电极材料制备与电化学性质研究(Ⅰ)——溶胶凝胶法制备纳米级MnO_2的性能[J].电池,1997,27,No.5:205-208.
    [274]Thackeray M M.Manganese Oxides for Lithium Batteries[J].Prog.Solid St.Chem.1997,25(1-2):1-71.
    [275]Thackeray M M,David W,Goodenough J B.Structural Characterization of the Lithiated Iron Oxides LixFe_3P_4 and Li_xFe_2O_3(0<x<2)[J].Mat.Res.Bull.1982,17(6):785-793.
    [276]Thackeray M M,David W,Bruce P G,et al.Lithium Insertion into Manganese Spinels[J].Mat.Res.Bull.18(4):461-472.
    [277]Johnson C S,Dees D W,Mansuetto M F.Structural and Electrochemical Studies of α-manganese Dioxide(α-MnO_2)[J].J.Power Sources,1997,68(2):570-577.
    [278]S.R.Das,S.B.Majumder,R.S.Katiyar.Kinetic Analysis of the Li+ ion Intercalation Behavior of Solution Derived Nano-crystalline Lithium Manganate Thin Films[J].J.Power Sources,2005,139(1-2):261-268.
    [279]夏熙.二氧化锰结构参数与嵌Li~+和H~+的行为[J].电池,2005,35(4):276-280
    [280]Poizot P,Laruelle S,Grugeon S,et al.Nano-sized Transition-metaloxides as Negative-electrode Materials for Lithium-ion Batteries[J].Nature(London),2000,407(6803):496-499.
    [281]Grugeon S,Laruelle S,Herrera-Urbina R,et al.Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium[J].J.Electrochem.Soc.2001,148,A285.
    [282]Poizot P,Laruelle S,Grugeon S,et al.Searching for New Anode Materials for the Li-ion Technology:Time to Deviate from the Usual Path[J].J.Power Sources,2001,97-98:235-239.
    [283]Jiao Z,Wu M,Qin Z,et al.The Electrochromic Characteristics of Sol-gel-prepared NiO Thin Film[J].Nanotechnology,2003,14(4):458-461.
    [284]Yang Q,Sha J,Ma X,et al.Synthesis of NiO Nanowires by a Sol-gel Process [J].Mater.Lett.2005 59(14-15):1967-1970.
    [285]Lenggoro I W,Itoh Y,Okuyama K,et al.Nanoparticles of a Doped Oxide Phosphor Prepared by Direct-spray Pyrolysis[J].J.MATERIALS RESEARCH,2004,19(12):3534-3539.
    [286]M.Kitao,K.Izawa,K.Urabe,et al.Preparation and Electrochrochromic Properties of RF-sputtered Niox Films Prepared in Ar/O_2/H_2 Atmosphere[J].Jpn.J.Appl.Phys.,Part 1,1994,33:6656-6662.
    [287]Wang Y,Qin Q Z.A Nanocrystalline NiO Thin-Film Electrode Prepared by Pulsed Laser Ablation for Li-Ion Batteries[J].J.Electrochem.Soc.2002,149(7):A873-A878.
    [288]Yuan L,Guo Z P,Konstantinov K,et al.Spherical Clusters of NiO Nanoshafts for Lithium-Ion Battery Anodes [J]. Electrochem. Solid-state Lett. 2006, 9: A524-A528.
    [289] Huang X H, Tu J P, Zhang C Q, et al. Net-structured NiO-C nanocomposite as Li-intercalation Electrode Material [J]. Electrochem. Commun. 2007, 9(5): 1180-1184.
    [290] Huang X H, Tu J P, Zhang B, et al. Electrochemical Properties of NiO-Ni Nanocomposite as Anode Material for Lithium Ion Batteries [J]. J. Power Sources, 2006, 161(1): 541-544.
    [291] Chiang I, Brinson B E, Huang A Y, et al. Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) [J]. J. Phys. Chem. B, 2001, 105(35): 8297-8301.
    [292] Dror Y, Slalha W, Khalfin R L, et al. Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning [J]. Langmuir, 2003, 19(8):7012-7020.
    [293] Gao X P, Bao J L, Pan G L, et al. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery [J]. J. Phys. Chem. B 2004, 108(18): 5547-5551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700