用户名: 密码: 验证码:
颗粒群平衡模拟的随机模型与燃煤可吸入颗粒物高效脱除的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可吸入颗粒物(空气动力学直径小于10μm的颗粒物,简称为PM或PM10)已经成为大气环境污染的突出问题.由于PM的微观性和其生成、生长和演变所经历的复杂物理化学过程,无论是对其的采样和物理化学特征分析、在燃烧过程中的形成机理和微尺度动力学演变规律,还是在自然条件和外加条件下的非线性和非稳态运动规律、各种高效捕集策略的设计和优化等方面,人们都缺乏足够的认识,特别是缺乏相关的理论描述和定量描述.本文正是在此背景下,为燃煤PM复杂的动力学演变过程(包括碰撞、凝并、破碎、冷凝/蒸发、成核和沉积等动力学事件)构建颗粒群平衡模拟随机模型的完整数值模拟体系结构,并以此为平台对静电除尘器和湿式除尘器的除尘过程、自然环境中PM的干沉降和湿沉降过程进行颗粒群平衡模拟,对这些除尘机理进行深入分析,最终以此为基础对两种高效PM除尘技术(静电增强湿式除尘器和静电布袋混合除尘器)进行可行性分析和运行优化,为其工业化应用提供理论基础和技术指导.本文的研究成果包括:
     (1)零维颗粒群平衡模拟的随机算法
     本文引入“加权虚拟颗粒”概念而发展了一种全新的零维颗粒群平衡模拟随机算法——多重Monte Carlo (Multi-Monte Carlo, MMC)算法.该算法具有时间驱动Monte Carlo (MC)、常数目法和常体积法的特点,由于跟踪数目较少的虚拟颗粒群而具备适用于工程计算的计算代价,由于保持恒定的虚拟颗粒总数目而具有稳定的计算精度,由于保持恒定的计算区域体积和基于时间驱动技术而具有与两相湍流模型无缝耦合的扩展性.特殊工况下MMC算法结果与相应的理论分析解之间的良好吻合,证明该算法能够以较高计算精度和计算效率描述初始单分散性或多分散性颗粒群工况、单动力学事件或复合动力学事件工况等.
     本文首次建立了MC算法对颗粒尺度分布时间演变过程描述精度的定量评判方法.以此为基础,定量比较了时间驱动直接模拟MC、阶梯式常体积法、常数目法和MMC算法对于各种动力学事件的描述精度,并定性分析了各种MC数值误差的来源和计算代价的主要贡献源.针对MMC算法所表现的“常数目误差”,通过建立“异数目权值虚拟颗粒群策略”以及相应的“异数目权值虚拟颗粒凝并准则”、在时间驱动MC中引入接受-拒绝法来数值实现标准Markov过程、发展“常数目方案”和“阶梯式常数目方案”来恢复虚拟颗粒数目等手段,对MMC算法进行改进.多种MC算法之间的定量比较表明,改进的MMC算法已经成为时间驱动MC中计算精度和计算效率最高的算法之一.
     基于事件驱动MC对解藕误差的免疫及高计算精度和效率的认识,本文发展了另外一种全新的零维颗粒群平衡模拟随机算法——事件驱动常体积(EDCV)法.该算法仍然引入“加权虚拟颗粒”的概念和保持常体积特征,并把“等数目权值虚拟颗粒群策略”和“异数目权值虚拟颗粒群策略”、累积概率法和接受-拒绝法、“常数目方案”和“阶梯式常数目方案”以及“重整方案”等技术统一在一个框架下.通过对多种主流MC的定量比较,证明EDCV法成为目前零维颗粒群平衡模拟中计算精度和计算效率最高的随机算法之一.
     (2)多维颗粒群平衡模拟的随机算法
     通过把描述颗粒动力学演变的改进MMC算法与描述两相湍流场的欧拉-拉氏模型的无缝耦合,首次发展了一种多维颗粒群平衡模拟的随机算法——多维MMC算法.该算法引入网格划分技术和设置合适的时间步长,采用随机过程来判断碰撞/凝并等动力学事件的发生、寻找碰撞/凝并伙伴、建立碰撞动力学等.对细微颗粒流和粗重颗粒流中颗粒碰撞和凝并过程进行了数值模拟,模拟结果与直接数值模拟(DNS)结果实现定量上的较好吻合,证明所构建的多维多重Monte Carlo算法为四向耦合的两相湍流模型和多维颗粒群平衡模拟提供一个高精度和高效率的数值描述方案.采用所发展的MC算法考察了轴对称突扩通道有旋气固两相流中颗粒碰撞对于两相流场的影响,发现颗粒之间的相互碰撞使得颗粒速度和雷诺应力重新分配并趋于各向同性,而颗粒湍动能及颗粒-流体脉动速度关联降低.
     (3)传统除尘装置和自然环境对PM的除尘机理研究
     为了理解外加条件对PM动力学特性的作用机理,采用事件驱动常体积法对典型的静电和湿式除尘器进行了颗粒群平衡模拟.发现静电力与惯性力的相互竞争导致0.1~1μm的细微颗粒难以被静电除尘器捕集,而布朗扩散和惯性碰撞机制对0.1~1μm区间颗粒物影响最小也导致其难以被湿式除尘器的液滴所捕集.对300MW燃煤锅炉配备的静电除尘器进口和出口烟尘颗粒进行现场采样,并进行实际静电除尘器的颗粒群平衡模拟,模拟结果和是试验结果达到定量的吻合.
     为了描述从除尘器逃逸出来的PM在自然环境中的沉降过程,并借鉴大自然的自身净化机制,采用多重Monte Carlo算法对自然环境中PM的干沉降和湿沉降过程进行数值模拟.发现大自然对0.3μm附近的中等尺度颗粒物难以自身净化,降雨量的增加有利于各种尺度颗粒物的湿去除,而雨滴几何平均尺度越小、雨滴几何标准偏差越小,越有利于小尺度和中等尺度颗粒物的湿去除,但稍稍不利于大尺度颗粒物的湿去除.
     (4)高效PM除尘技术的可行性分析和运行优化
     通过对自然条件和外加条件下PM动力学演变规律的认识,采用复合外加条件提高PM的除尘效率.对两种高效PM除尘技术(静电增强湿式除尘器和静电布袋混合除尘器)进行了颗粒群平衡模拟,并以此为基础对这些除尘技术进行了可行性分析.模拟结果表明两种除尘技术均可能达到99%以上的整体质量除尘效率和整体数量除尘效率.对静电增强湿式除尘器的优化运行分析表明,增大含尘气流输运速度或减小液滴喷射速度、增大液气比或液滴荷质比、减小液滴几何平均尺度和几何标准偏差(使得喷雾液滴越细和越均匀),可以提高该种除尘器对PM的除尘效率.
Inhalable particles or particulate matter (PM or PM10), whose aerodynamic diameters are less than 10μm, have been the serious problem of air pollution. Because of the micromechanism of PM and the complicated physicochemical process of its formation, growth and evolution, little information relating with theoretical model and quantitative description was reported, not only about its sampling and analysis of the physicochemical characteristic, or its formation mechanism and micro-scale dynamic evolution during coal combustion, but also about its nonlinear and nonsteady evolution in natural environment or the imposed external force and condition, or even the design and optimization of high-efficiency capture strategy. On this condition, the integrated framework of the stochastic model of population balance modeling is constructed for the numerical simulation of dynamic evolution of PM from coal combustion, including particle collision, coagulation, breakage, condensation/evaporation, nucleation and deposition. Besides, the stochastic model of population balance modeling is used to simulate numerically the dust-removal process of electrostatic precipitator and wet scrubber, the dry deposition and wet scavenging of particles in the natural environment. Those removal mechanisms in those industrial or natural processes are analyzed quantificationally. Based on this, two techniques with high PM-removal efficiency, i.e., the gravitational wet scrubbers with electrostatic enhancement and the electrostatic-bag hybrid precipitator, are proposed. Therefore, feasibility analysis and operation optimization are taken against the two techniques, which will provide theoretical basis and technical guide for their industrial application. The main points are as following:
     (1) Stochastic algorithm for zero-dimensional population balance modeling
     The concept of“weighted fictitious particle”is instructed and a new multi-Monte Carlo (MMC) method is developed to realize numerically zero-dimensional population balance modeling. The MMC method has characteristics of time-driven Monte Carlo, constant-number and constant-volume method. It has the receivable computational cost in engineering because the fictitious particle population is tracked, whose number is greatly less than that of real particle population; it exhibits the stable and high computation precision because of the constant number of fictitious particles; it also shows the friend expansibility coupling perfectly with two-phase turbulent models due to its constant-volume characteristic and time-driven frame. The MMC method is used to simulate some special cases including initial monodisperse or polydisperse particle population, independent or simultaneous dynamic events, in which complete or partial analytical solutions exist. The good agreement between MMC solutions and the corresponding analytical solutions proves that MMC method has high and stable computational precision and efficiency.
     For the first time, the accuracy of MC methods has been quantified on basis of standard deviations in calculation of properties of particle size distribution. This approach is be used for accuracy analysis of time-driven direct simulation Monte Carlo, stepwise constant volume, constant number and MMC method. And then the source of numerical error and the contributor of numerical cost are analyzed qualitatively on the basis of quantitative comparison. With respect to the so-called“constant number error”of MMC method, it is improved by some measures including the establishment of the procedure of“differently weighted fictitious particle population”and the corresponding coagulation rule between“differently weighted fictitious particles”; the introduction of the acceptance-rejection method to realize numerically the standard Markov process in the time-driven MC; the development of“constant number scheme”and“stepwise constant number scheme”to restore the number of fictitious particles. The quantitative comparison among some kinds of MCs shows that the improved MMC method has been one of the most high-precision and high-efficiency methods among time-driven MC techniques.
     With the understanding that event-driven MC exhibits the congenital immunity to“uncoupling error”and high precision and efficiency, a new event-driven constant volume (EDCV) method for zero-dimensional population balance modeling is developed. The method still introduces the concept of“weighted fictitious particle”and conserves the characteristic of constant volume. Furthermore, the following different techniques, the procedure of“equally or differently weighted fictitious particle population”, the cumulative probabilities or acceptance-rejection methods,“constant number scheme”or“stepwise constant number scheme”or“resetting scheme”, are unified within the one framework. By the comparison of several popular MCs, it’s concluded that the EDCV method has come into the MC family of the highest precision and efficiency.
     (2) Stochastic algorithm for multi-dimensional population balance modeling
     The multi-dimensional MMC method for multi-dimensional population balance modeling is founded by means of the perfect coupling of the improved MMC method for the particle dynamic evolution and the Euler-Lagrangian model for two-phase turbulent flows. The method introduces the spatially grid-plotting technique and sets the right time-step. Furthermore, the stochastic process is utilized to judge the occurrence of the dynamic events such as collision/coagulation, to search the collision/coagulation partner, and to establish the collision dynamics. Two standard cases, fine particle flows and heavy particle flows, are chosen to validate the multi-dimensional MMC method for the description of particle collision and coagulation. The simulation results of MMC method are in good agreement with those of direct numerical simulation (DNS), which indicates the proposed multi-dimensional MMC method has constructed a high-efficiency and high-precision numerical platform for four-ways coupling two-phase turbulent models and multi-dimensional population balance modeling. In order to investigate the influence of particle collision on the two-phase flows field, the proposed MC method is used to simulate a swirling gas-particle flows which tack place in an axial symmetry and suddenly expanded pipe. The result shows, the velocity and Reynold stress of particle phase are redistributed and is inclined to isotropy; and turbulence kinetic energy of particle phase and fluctuation velocity correction of particle-gas phase are attenuated.
     (3) The research on the PM collection mechanisms in traditional dust control units and natural environment
     In order to understand the dynamic mechanism of PM when imposed by external force and condition, the event-driven constant volume method is adopted to simulate the dynamic process of fly ashes in typical electrostatic precipitator and wet scrubber. The simulation results indicate that, the competition between the inertia force and the electric force of fly ash in electrostatic precipitator results in the low collection efficiency of fine particles with size 0.1~1μm; and fine particles with size 0.1~1μm in wet scrubber are scavenged by drops with low efficiency because not only Brownian diffusion mechanism but also inertial impaction mechanism have a weak effect on those intermediate particles. Moreover, low pressure impactor is used to sample locally the fly ashes of the inlet and outlet of electrostatic precipitator in a 300MW coal-fired boiler, and then the collection process is decribed by population balance modeling. The simulation results agree with the experimental results well.
     In order to describe quantitatively the sedimentation process of PM from the outlet of dust separator, and to learn the self-purification mechanism of nature, the dry deposition and wet removal process of particles are simulated by the multi-Monte Carlo method. The numerical results show that, it’s difficult for nature to settle the intermediate particles of about 0.3μm by its self-purification mechanism; the increase of rainfall intensity will benefit the wet scavenging of particles with any size; the smaller geometric mean diameter or geometric standard deviation of raindrops can help scavenge small and intermediate particles better, though large particles are prevented from being collected in some ways.
     (4) The feasibility analysis and operation optimization of two techniques with high PM-removal efficiency
     Owe to the understanding of the dynamic laws of PM in the natural and imposed condition, the hybrid external conditions or forces are adopted to enhance the collection efficiency of PM. Population balance modeling and then feasibility analysis are taken against two PM-removal techniques with high efficiency, saying, the gravitational wet scrubbers with electrostatic enhancement and the electrostatic-bag hybrid precipitator. The simulation results indicate that overall number and mass efficiency reach to 99% in the two techniques. Operation optimization of the gravitational wet scrubbers with electrostatic enhancement shows that, the faster gas velocity or the slower droplet velocity, and the smaller geometric mean diameter or geometric standard deviation of droplets (that is, the finer or evener droplets), and the bigger liquid-to-gas flow ratio or charge-to-mass ratio of droplets, can help remove PM.
引文
[1]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究.北京:化学工业出版社, 2004
    [2] Linak, W. P., Wendt, J. O. L. Toxic metal emissions from incineration: mechanisms and control. Prog. Engergy Combust. Sci., 1993, 19(2): 145-186
    [3] Dockery, D. W., Pope, C. A. Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 1994, 15: 107-132
    [4]吴忠标.大气污染控制工程.北京:科学出版社, 2002
    [5]吕建燚,李定凯,吕子安.燃烧过程颗粒物的形成及我国燃烧源分析.环境污染治理技术与设备, 2006, 7(5): 43-47
    [6]国家环境保护总局. 2005中国环境状况公报, 2006
    [7]刘建忠,范海燕,周俊虎等.煤粉炉PM10/PM2. 5排放规律的试验研究.中国电机工程学报, 2003, 23(1): 145-149
    [8] Kim, E., Hopke, P. K. Characterization of fine particle sources in the Great Smoky Mountains area. Science of the Total Environment, 2006, 368(2-3): 781-794
    [9]国家环境保护总局. 2004年环境统计年报, 2005
    [10] Wolf, M. E., Hidy, G. M. Aerosols and climate: anthropogenic emissions and trends for 50 years. Journal of Geophysical Research, 1997, 102(D10): 11113-11121
    [11]王玮,张晶,汤大钢.可吸入颗粒物(IP)源解析.北京:中国环境科学研究院, 1999
    [12]王灿星,易林,林建忠.杭州市区大气中PM10的污染特征及其源解析.仪器仪表学报, 2003, 24(4): 535-536
    [13]桑建人,刘玉兰.银川市可吸入颗粒物(PM10)来源解析.气象科学, 2005, 25(1): 40-47
    [14]冯银厂,彭林,吴建会,朱坦等.乌鲁木齐市环境空气中TSP和PM10来源解析.中国环境科学, 2005, 25(Suppl. ): 30-33
    [15]朱振明,闫怀忠.济南市市区大气颗粒物污染来源研究.预防医学文献信息, 2002, 8(6): 646-647
    [16]贾轶然,王寒梅.抚顺市空气环境可吸入颗粒物来源解析.辽宁化工, 2006, 25(3): 184-185
    [17] Vedal, S. Ambient particles and health: lines that divide. Journal of the Air & Waste Management Association, 1997, 47(5): 551-581
    [18]德利克?埃尔森,田学文(编译).烟雾警报.北京:科学出版社, 1999
    [19]魏复盛,胡伟,吴国平,滕恩江等.空气污染与儿童肺功能指标的相关分析.中国环境科学, 2001, 21(5): 385-389
    [20]张文丽.空气细颗粒物(PM2. 5)生物效应指标研究进展.卫生研究, 2001, 30(6): 379-382
    [21]魏复盛,胡伟,滕恩江,吴国平.空气污染对人体健康影响研究的进展.世界科技研究与发展, 2000, 22(3): 14-18
    [22]李红,曾凡刚,邵龙义,时宗波.可吸入颗粒物对人体健康危害的研究进展.环境与健康杂志, 2002, 19(1): 85-87
    [23]何兴舟,兰青,杨儒道,李荣发等.宣威肺癌危险因素研究概述(1979-1993).卫生研究, 1995, 24(4): 203-206
    [24]魏复盛, Chapman, R. S.空气污染对呼吸健康影响研究.北京:中国环境科学出版社, 2001
    [25]国家环境保护总局. 2004中国环境状况公报, 2005
    [26]易帆,徐明厚,于敦喜.燃烧过程中超细颗粒物的研究现状与发展趋势.世界科技研究与发展, 2002, 24(2): 53-59
    [27] Sloss, L. L., Smith, I. M. PM2. 5 and PM10: an international perspective. Fuel Processing Technology, 2000, 65-66: 127-141
    [28]周昊.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究: [博士学位论文].浙江大学, 2004
    [29]樊保国,项光明,祁海鹰,陈昌和等.常温循环流化床烟气脱硫影响脱硫效率的参数及机理.燃烧科学与技术, 2001, 7(3): 228-232
    [30]董勇.烟气脱硫循环流化床内物料分离循环的研究: [博士学位论文].哈尔滨工业大学, 2004
    [31] Zhao, C., Wu, S., Liu, X., Wu, X., et al. Research on flue gas desulphurization with two sorbents by water spray in activated reactor. Journal of Southeast University(English Edition), 2003, 19(4): 355-358
    [32]岳勇,陈雷,姚强,李水清.燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究.中国电机工程学报, 2005, 25(18): 74-79
    [33]郭欣,郑楚光,孙涛.电厂煤飞灰颗粒物的物理化学特征.燃烧科学与技术, 2005, 11(2): 192-195
    [34] Markowski, G. R., Ensor, D. S., Hooper, R. G. A Submicron aerosol mode in flue gas from a pulverized coal utility boiler. Environmental Science & Technology, 1980, 14(11): 1400-1402
    [35] Seames, W. S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Processing Technology, 2003, 81(2): 109-125
    [36] Linak, W. P., Miller, C. A., Wendt, J. O. L. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J. Air Waste Manage. Assoc., 2000, 50(8): 1532-1544
    [37] Baxter, L. L. Char fragmentation and fly ash formation during pulverized coal combustion. Combustion and Flame, 1992, 90(2): 174-184
    [38] Helble, J. J., Sarofim, A. F. Influence of char fragmentation on ash particle size distributions. Combustion and Flame, 1989, 76(2): 183-196
    [39] Liu, G., Wu, H., Gupta, R. P., Lucas, J. A., et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 2000, 79(6): 627-633
    [40]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2. 5及其研究概况.世界环境, 2000, (4): 32-34
    [41] Sommerfeld, M. Validation of a stochastic Lagrangian modelling approach forinter-particle collisions in homogeneous isotropic turbulence International Journal of Multiphase Flow, 2001, 27(10): 1829-1858
    [42] Lockwood, F. C., Yousif, S. A model for the particulate matter enrichment with toxic metals in solid fuel flames. Fuel Processing Technology, 2000, 65-66(1): 439-457
    [43] Corner, J., Pendlebury, E. D. The coagulation and deposition of a stirred aerosol. Proceedings of the Physics Society B, 1951, 64(8): 645-654
    [44] Kim, D., Gautam, M., Gera, D. Parametric studies on the formation of diesel particulate matter via nucleation and coagulation modes. J. Aerosol Sci., 2002, 33(12): 1609-1621
    [45]赵海波,郑楚光,徐明厚.离散系统通用动力学方程求解算法的研究进展.力学进展, 2006, 36(1): 125-141
    [46] Kostoglou, M., Karabelas, A. J. Analytical treatment of fragmentation-diffusion population balance. AIChE Journal, 2004, 50(8): 1746-1759
    [47] Hounslow, M. J. Population balance modelling of particulate systems. Chemical Engineering Science, 2002, 57(12): 2123
    [48] Wang, L. P., Wexler, A. S., Zhou, Y. Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 1998, 10 (10): 2647-2651
    [49] Abrahamson, J. Collision rates of small particles in a vigorously turbulent fluid. Chemical Engineering Science, 1975, 30(11): 1371-1379
    [50] William, J. J. E., Crane, R. I. Particle collision rate in turbulent flow. International Journal of Multiphase Flow, 1983, 9(4): 421-435
    [51] Yuu, S. Collision rate of small particles in a homogeneous and isotropic turbulence. AIChE. J., 1984, 30(5): 802-807
    [52] Kruis, F. E., Kusters, K. A. Collision rate of particles in turbulent flow. Chemical Engineering Communications, 1997, 158: 201-230
    [53] Zhou, Y., Wexler, A. S., Wang, L. P. On the collision rate of small particles in isotropic turbulence. II. Finite inertia case. Physics of Fluids, 1998, 10(5): 1206-1216
    [54] Wang, L. P., Wexler, A. S., Zhou, Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech., 2000, 415: 117-153
    [55] Wang, L. P., Wexler, A. S., Zhou, Y. On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case. Phys. Fluids, 1998, 10(1): 266-276
    [56] Sundaram, S., Collins, L. R. Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations.. J. Fluid Mech., 1997, 335: 75-109
    [57] Mei, R., Hu, K. C. On the collision rate of small particles in turbulent flows. J. Fluid Mech., 1999, 391: 67-89
    [58] Alipchenkov, V. M., Zaichik, L. I. Particle collision rate in turbulent flow. Fluid Dynamics, 2001, 36(4): 608-618
    [59] Brunk, B. K., Koch, D. L., Lion, L. W. Hydrodynamic pair diffusion in isotropic random velocity fields with application to turbulent coagulation. Physics of Fluids, 1997, 9(9): 2670-2691
    [60] Jonas, P. R., Goldsmith, P. The collection efficiencies of small droplets fallingthrough a sheared air flow. J. Fluid Mech., 1972, 52: 593-608
    [61] Koziol, A. S., Leighton, H. G. Turbulent particle dispersion: a comparison between Lagrangian and Eulerian modeling approaches. J. Atmos. Sci., 1996, 53: 1910-1920
    [62] Klett, J. D., Davis, M. H. Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci., 1973, 30(1): 107-118
    [63] Delichatsios, M. A. Particle coagulation in steady turbulent flows: application to smoke aging. J. Colloid Interface Sci., 1980, 78(1): 163-174
    [64] Brunk, B. K., Koch, D. L., LW, L. Turbulent coagulation of colloidal particles. J. Fluid Mech., 1998, 364: 81-113
    [65] Brunk, B. K., L, K. D., Lion, L. W. Observations of coagulation in isotropic turbulence. J. Fluid Mech., 1998, 371: 81-107
    [66] Zinchenko, A. Z., Davis, R. H. Collision rates of spherical drops or particles in a shear flow at arbitrary Peclet number. Phys. Fluids, 1995, 7(10): 2310-2327
    [67] Park, S. H., Lee, K. W., Otto, E., Fissan, H. The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range Part I—analytical solution using the harmonic mean coagulation kernel. J. Aerosol Sci., 1999, 30(1): 3-16
    [68] Otto, E., Fissan, H., Park, S. H., Lee, K. W. The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range Part II--analytical solution using Dahneke's coagulation kernel. J. Aerosol Sci., 1999, 30(1): 17-34
    [69] Fuchs, N. A. The Mechanics of Aerosols. New York: Pergamon Press, 1964
    [70] Wright, P. G. On the discontinuity involved in diffusion across an interface (the delta of Fuchs). Disc. Faraday Soc., 1960, 30: 100-112
    [71] Smoluchowski, M. V. Versuch einer mathematischien Theorie der Koagulationskinetik kolloider Losungen. Z. Phys. Chem., 1917, 92: 129-134
    [72] Saffman, P. G., Turner, J. S. On the collision of drops in turbulent clouds. J. Fluid Mech., 1956, 1: 16-30
    [73] Sommerfeld, M. The importance of inter-particle collisions in horizontal gas-solid channel flows. in: Stock et al., D. E., editor. Gas-Particle Flows, ASME, FED. Hilton Head, 1995, 228: 335-345
    [74] Sommerfeld, M. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. International Journal of Multiphase Flow, 2003, 29(4): 675-699
    [75] Sommerfeld, M., Kussin, J. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel. Part II. Integral properties and validation. International Journal of Multiphase Flow, 2003, 29(4): 701-718
    [76] Berlemont, A., Achim, P., Chang, Z. Lagrangian approaches for particle collisions: The colliding particle velocity correlation in the multiple particles tracking method and in the stochastic approach. Phys. Fluids, 2001, 13(10): 2946-2956
    [77] Berlemont, A., Achim, P. On the fluid/particle and particle/particle correlated motion for colliding particles in Lagrangian approach. in: 3rd ASME/JSME Joint Fluids Engineering Conference, 1999, FEDSM99-7859
    [78] Simonin, O., Continuum modelling of dispersed turbulent two-phase flows, Technical Von Karman Institute for Fluid Dynamic: Brussels, 1996
    [79] Fede, P., Simonin, O., Villedieu, P. Monte Carlo simulation of colliding particles in gas- solid turbulent flows from a joint fluid-particle PDF equation. in: Proceedingsof the Fifth International Symposium on Numerical Methods for Multiphase Flows, ASME Fluids Engineering Summer Meeting. Quebec, 2002: 1-8
    [80] Reade, W. C., Collins, L. R. Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 2000, 12(10): 2530-2540
    [81] Chen, M., Kontomaris, K., McLaughlin, J. B. Direct numerical simulation of droplet collisions in a turbulent channel flow. Part II: Collision rates International Journal of Multiphase Flow, 1998, 24(7): 1105-1138
    [82] Franklin, C. N., Vaillancourt, P. A., Yau, M. K., Bartello, P. Collision rates of cloud droplets in turbulent flow. Journal of the Atmospheric Sciences, 2005, 62 (7): 2451-2466
    [83] Chun, J., Koch, D. L., Rani, S. L., Ahluwaliaa, A., et al. Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech., 2005, 536: 219-251
    [84] Zaichik, L. I., Simonin, O., Alipchenkov, V. M. Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Phys. Fluids, 2003, 15(10): 2995-3005
    [85] Zaichik, L. I., Simonin, O., Alipchenkov, V. M. Comparison of two statistical models for the calculation of collisions of particles in isotropic turbulence. High Temperature, 2003, 41(5): 646-656
    [86] Zaichik, L. I., Alipchenkov, V. M. Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids, 2003, 15(6): 1776-1787
    [87]李瑞霞,柳朝晖,贺铸,郑楚光.各向同性湍流内有限惯性颗粒碰撞的直接数值模拟研究.力学学报, 2006, 38(1): 25-32
    [88] Zaichik, L. I., Solov'ev, A. L. Collision and coagulation nuclei under conditions of Brownian and turbulent motion of aerosol particles. High Temperature, 2002, 40(3): 460-465
    [89]陈胤密.均匀湍流内有限惯性颗粒碰撞率的直接模拟.华中科技大学: [硕士学位论文], 2004
    [90]李瑞霞.均匀湍流内湍流-布朗颗粒碰撞的直接模拟研究.华中科技大学: [硕士学位论文], 2006
    [91]马重芳,袁修干,杨春信,吴玉庭.珠状凝结换热的数学物理模型及数值模拟.计算物理, 2001, 18(4): 334-340
    [92] Litster, J. D. Scaleup of wet granulation processes: science not art. Powder Technology, 2003, 130 (1-3): 35- 40
    [93] Friedlander, S. K. Smoke, dust and haze: fundamentals of aerosol behavior. New York: Wiley, 1997
    [94] Seinfeld, J. H., Pandis, S. N. Atmospheric chemistry and physics. New York: Wiley-Interscience, 1998
    [95] Landgrebe, J. D., Pratsinis, S. E. Gas-phase manufacture of particulate: interplay of chemical reaction and aerosol coagulation in the free-molecular regime. Ind. Eng. Chem. Res., 1989, 28(10): 1474-1481
    [96] Yan, L., Gupta, R., Wall, T. Fragmentation behavior of pyrite and calcite during high-temperature processing and mathematical simulation. Energy & Fuels, 2001, 15(2): 389-394
    [97] Ramkrishna, D. Population balances: theory and applications to particulate systemsin engineering. San Diego: Academic Press, 2000
    [98] Lee, K. W. Change of Particle size distribution during Brownian coagulation. J. Colloid Interface Sci., 1983, 92(2): 315-325
    [99] Lee, K. W., Lee, Y. J., Han, D. S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime. J. Colloid Interface Sci., 1997, 188(2): 486-492
    [100] Williams, M. M. R. Some exact and approximate solutions of the nonlinear Boltzmann equation with applicatios to aerosol coagulation. Phys. A: Math. Gen., 1981, 14(8): 2073-2089
    [101] Swift, D. L., Friedlander, S. K. The coagulation of hydrosols by Brownian motion and laminar shear flow. J. Colloid Interface Sci., 1964, 19(7): 621-647
    [102] Hidy, G. M. On the theory of the coagulation of noninteracting particles in Brownian motion. J. Colloid Interface Sci., 1965, 20(2): 123-144
    [103] Friedlander, S. K., Wang, C. S. The self-preserving particle size distribution for coagulation by Brownian motion. J. Colloid Interface Sci., 1966, 22(2): 126-132
    [104] Frenklach, M., Harris, S. J. Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci., 1987, 118 (1): 252-261
    [105] Hidy, G. M., Lilly, D. K. Solutions to the equations for the kinetics of coagulation. J. Colloid Interface Sci., 1965, 20(8): 867-874
    [106] Vemury, S., Kusters, K. A., Pratsinis, S. E. Time-lag for attainment of the self-preserving particle size distribution by coagulation. J. Colloid Interface Sci., 1994, 165(1): 53-59
    [107] Park, S. H., Xiang, R., Lee, K. W. Brownian coagulation of fractal agglomerates: analytical solution using the log-Normal size distribution assumption. J. Colloid Interface Sci., 2000, 231(1): 129-135
    [108] Park, S. H., W, L. K. Asymptotic particle size distributions attained during coagulation processes. J. Colloid Interface Sci., 2001, 233(1): 117-123
    [109] Park, S. H., Lee, K. W. Change in particle size distribution of fractal agglomerates during Brownian coagulation in the free-molecule regime. J. Colloid Interface Sci., 2002, 246(1): 85-91
    [110] Kim, D. S., H, P. S., Song, Y. M., Kim, D. H., et al. Brownian coagulation of polydisperse aerosols in the transition regime. J. Aerosol Sci., 2003, 34(7): 859-868
    [111] Park, S. H., Lee, K. W. Analytical solution to change in size distribution of polydisperse particles in closed chamber due to diffusion and sedimentation. Atmospheric Environment, 2002, 36(35): 5459-5467
    [112] Jung, C. H., Kim, Y. P., Lee, K. W. A moment model for simulating raindrop scavenging of aerosols. J. Aerosol Sci., 2003, 34(9): 1217-1233
    [113] Jung, C. H., Kim, Y. P., Lee, K. W. Analytic solution for polydispersed aerosol dynamics by a wet removal process. Journal of Aerosol Science, 2002, 33(5): 753-767
    [114] Park, S. H., Lee, K. W., Shimada, M., Okuyama, K. Alternative analytical solution to condensational growth of polydisperse aerosols in the continuum regime. J. Aerosol Sci., 2001, 32(2): 187-197
    [115] Park, S. H., Lee, K. W., Shimada, M., Okuyama, K. Change in particle size distribution of aerosol undergoing condensational growth: alternative analytical solution for the low Knudsen number regime. J. Aerosol Sci., 2002, 33(9):1297-1307
    [116] Kim, S. H., Park, H. S., Lee, K. W. Theoretical model of electrostatic precipitator performance for collecting polydisperse particles. Journal of Electrostatics, 2001, 50(3): 177-190
    [117] Frenklach, M. Method of moments with interpolative closure. Chemical Engineering Science, 2002, 57(12): 2229-2239
    [118] McGraw, R. Description of aerosol dynamic by the quadrature method of moments. Aerosol Science and Technology, 1997, 27: 255-265
    [119] Marchisio, D. L., Fox, R. O. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 2005, 36(1): 43-73
    [120] Gelbard, F., Tambour, Y., Seinfeld, J. H. Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci., 1980, 76(2): 541-556
    [121] Landgrebe, J. D., Pratsinis, S. E. A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci., 1990, 139(1): 63-86
    [122] Litster, J. D., Smit, D. J., Hounslow, M. J. Adjustable discretized population balance for growth and aggregation. AIChE Journal, 1995, 41(3): 591-603
    [123] Hounslow, M. J., Ryall, R. L., Marshall, V. R. A discretized population balance for nucleation, growth, and aggregation. AICHE Journal, 1988, 34(11): 1821-1832
    [124] Xiong, Y., Pratsinis, S. E. Formation of agglomerate particles by coagulation and sintering: Part 1: A Two-dimensional solution of the population balance equation. J. Aerosol Sci., 1993, 24(3): 283-300
    [125] Xiong, Y., Akhtar, M. K., Pratsinis, S. E. Formation of agglomerate particles by coagulation and sintering: Part 2: The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. J. Aerosol Sci., 1993, 24(3): 301-313
    [126] Jeong, J. I., Choi, M. A sectional method for the analysis of growth of polydisperse non-spherical particles undergoing coagulation and coalescence. J. Aerosol Sci., 2001, 32(5): 565-582
    [127] Butuirat, F., Kielkiewicz, M. On additivity of coagulation kernels. Ann. Nucl. Energy, 1996, 23(13): 1091-1096
    [128] Butuirat, F., Kielkiewicz, M. Comparison of two approximate methods of aerosol dynamics. Ann. Nucl. Energy, 1995, 22(7): 497-501
    [129] Wu, J. J., Flagan, R. C. A discrete-sectional solution to the aerosol dynamic equation. J. Colloid Interface Sci., 1988, 123(2): 339-352
    [130] Yu, S., Kennedy, I. M. An approximate method to calculate the collision rate of a discrete-sectional model. Aerosol Science and Technology, 1997, 27(2): 266-273
    [131] Yu, S., Yoon, Y., Muller-Roosen, M., Kennedy, I. M. Two-dimensional discrete-sectional model for metal aerosol dynamics in a flame. Aerosol Science and Technology, 1998, 28(3): 185-196
    [132]于溯源,吕雪峰,杨龙.铬在氢氧扩散火焰中燃烧的颗粒行为.工程热物理学报, 2002, 23(supp. ): 221-224
    [133]于溯源,华宏亮. HTR-10氦气流中石墨颗粒尺寸的估计.核动力工程, 2001, 22(5): 410-413
    [134] Bird, G. A. Direct simulation and the Boltzmann equation. Physics of Fluids, 1970,13(11): 2676-2681
    [135] Wagner, W. A. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys., 1992, 66(3-4): 1011-1044
    [136]沈青.稀薄气体动力学.北京:国防工业出版社, 2003
    [137] Fichthorn, K. A., Weinberg, W. H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys., 1991, 95 (2): 1090-1096
    [138] Tandon, P., Rosner, D. E. Monte Carlo simulation of particle aggregation and simultaneous restructuring. J. Colloid Interface Sci., 1999, 213(2): 273-286
    [139] Rosner, D. E., Yu, S. MC simulation of aerosol aggregation and simultaneous spheroidization. AICHE Journal, 2001, 47(3): 545-561
    [140] van Peborgh Gooch, J. R., Hounslow, M. J. Monte Carlo simulation of size-enlargement mechanisms in crystallization. AIChE Journal, 1996, 42(7): 1864-1874
    [141] Efendiev, Y., Zachariah, M. R. Hybrid Monte Carlo method for simulation of two-component aerosol coagulation and phase segregation. J. Colloid Interface Sci., 2002, 249(1): 30-43
    [142] Kruis, F. E., Maisels, A., Fissan, H. Direct simulation Monte Carlo method for particle coagulation and aggregation. AICHE Journal, 2000, 46(9): 1735-1742
    [143] Garcia, A. L., van den Broek, C., Aertsens, M., Serneels, R. A Monte Carlo simulation of coagulation. Physica A: Statistical and Theoretical Physics, 1987, 143(3): 535-546
    [144] Liffman, K. A direct simulation Monte-Carlo method for cluster coagulation. J. Comp. Phys., 1992, 100(1): 116-127
    [145] Smith, M., Matsoukas, T. Constant-number Monte Carlo simulation of population balances. Chemical Engineering Science, 1998, 53(9): 1777-1786
    [146] Lee, K., Matsoukas, T. Simultaneous coagulation and break-up using constant-N Monte Carlo. Powder Technology, 2000, 110(1-2): 82-89
    [147] Lin, Y., Lee, K., Matsoukas, T. Solution of the population balance equation using constant-number Monte Carlo. Chemical Engineering Science, 2002, 57(12): 2241-2252
    [148] Maisels, A., Kruis, F. E., Fissan, H. Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems. Chem. Eng. Sci., 2004, 59(11): 2231-2239
    [149] Debry, E., Sportisse, B., Jourdain, B. A stochastic approach for the numerical simulation of the general dynamics equation for aerosols. Journal of Computational Physics, 2003, 184(2): 649-669
    [150] Eibeck, A., Wagner, W. Stochastic particle approximations for Smoluchowski's coagulation equation. Annals of Applied Probability, 2001, 11(4): 1137-1165
    [151] Jourdain, B. Nonlinear processes associated with the discrete Smoluchowski coagulation fragmentation equation. Markov Processes and Related Fields, 2003, 9(1): 103-130
    [152] Sabelfeld, K. K., Rogansinsky, S. V., Kolodko, A. A., Levykin, A. I. Stochastic algorithms for solving Smoluchovsky coagulation equation and applications to aerosol growth simulation. Monte Carlo Methods and Applications, 1996, 2(1): 41-87
    [153] Eibeck, A., Wagner, W. Approximative solution of the coagulation-fragmentation equation by stochastic particle systems. Stochastic Analysis and Applications, 2000, 18(6): 921-948
    [154] Eibeck, A., Wagner, W. An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena. SIAM Journal on Scientific Computing, 2000, 22(3): 802-821
    [155] Goodson, M., Kraft, M. Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid-liquid extraction. Chemical Engineering Science, 2004, 59(18): 3865-3881
    [156] Balthasar, M., Kraft, M. A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames. Combustion and Flame., 2003, 133(3): 289-298
    [157] Alopaeus, V., Laakkonen, M., Aittamaa, J. Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes. Chemical Engineering Science, 2006, 61(20): 6732-6752
    [158] Bove, S., Solberg, T., Hjertager, B. H. A novel algorithm for solving population balance equations: the parallel parent and daughter classes. Derivation, analysis and testing. Chemical Engineering Science, 2005, 60(5): 1449-1464
    [159] Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., et al. Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique. Chemical Engineering Science, 2006, 61(10): 3327-3342
    [160] Mantzaris, N. V., Daoutidis, P., Srienc, F. Numerical solution of multi-variable cell population balance models. II. Spectral methods. Computers and Chemical Engineering, 2001, 25(11-12): 1441-1462
    [161] Dorao, C. A., Jakobsen, H. A. Application of the least-squares method for solving population balance problems in Rd+1. Chemical Engineering Science, 2006, 61: 5070-5081
    [162] Roussos, A. I., Alexopoulos, A. H., Kiparissides, C. Part III: Dynamic evolution of the particle size distribution in batch and continuous particulate processes: A Galerkin on finite elements approach. Chemical Engineering Science, 2005, 60(24): 6998-7010
    [163] Mantzaris, N. V., Daoutidis, P., Srienc, F. Numerical solution of multi-variable cell population balance models. III. Finite element methods. Computers and Chemical Engineering, 2001, 25(11-12): 1463-1481
    [164] Sandu, A., Borden, C. A framework for the numerical treatment of aerosol dynamics. Applied Numerical Mathematics, 2003, 45(4): 475-497
    [165] Qamar, S., Warnecke, G. Solving population balance equations for two-component aggregation by a finite volume scheme. Chemical Engineering Science, 2007, 62(3): 679-693
    [166] Lim, Y. I., Lann, J. -M. L., Meyer, X. M., Joulia, X., et al. On the solution of population balance equations (PBE) with accurate front tracking methods in practical crystallization processes. Chemical Engineering Science, 2002, 57(17): 3715-3732
    [167] Mantzaris, N. V., Daoutidis, P., Srienc, F. Numerical solution of multi-variable cell population balance models: I. Finite difference methods. Computers and Chemical Engineering, 2001, 25(11-12): 1411-1440
    [168] Otwinowski, H. Energy and population balances in comminution process modelling based on the informational entropy. Powder Technology, 2006, 167(1): 33-44
    [169] Liu, Y., Cameron, I. T. A new wavelet-based method for the solution of the population balance equation. Chemical Engineering Science, 2001, 56(18): 5283-5294
    [170] Liu, Y., Cameron, I. T. A new wavelet-based adaptive method for solving population balance equations. Powder Technology, 2003, 130(1-3): 181-188
    [171] Maggioris, D., Goulas, A., Alexopoulos, A. H., Chatzi, E. G., et al. Use of CFD in prediction of particle size distribution in suspension polymer reactors. Computers Chem. Engng., 1998, 22(Supplement 1): S315-S322
    [172] Pyyk?nen, J., Jokiniemi, J. Computational fluid dynamics based sectional aerosol modelling schemes. J. Aerosol Sci., 2000, 31(5): 531-550
    [173] Marchisio, D. L., Vigil, R. D., Fox, R. O. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chemical Engineering Science, 2003, 58(15): 3337-3351
    [174]赵海波,郑楚光,柳朝晖,陈胤密.燃煤锅炉PM微尺度流体力学研究模型初探.华中科技大学学报(自然科学版), 2003, 31(11): 72-75
    [175] Settumba, N., Garrick, S. C. A comparison of diffusive transport in a moment method for nanoparticle coagulation. Journal of Aerosol Science, 2004, 35(1): 93-101
    [176] Wen, Z., Yun, S., Thomson, M. J., Lightstone, M. F. Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combustion and Flame., 2003, 135(3): 323-340
    [177] Kalani, A., Christofides, P. D. Nonlinear control of spatially inhomogenous aerosol processes. Chemical Engineering Science, 1999, 54(13-14): 2669-2678
    [178] Kalani, A., Christofides, P. D. Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation. Computers and Chemical Engineering, 2002, 26(7-8): 1153-1169
    [179] Kazakov, A., Frenklach, M. Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combustion and Flame, 1998, 114(3-4): 484-501
    [180] Balthasar, M., Mauss, F., Knobel, A., Kraft, M. Detailed modeling of soot formation in a partially stirred plug flow reactor. Combustion and Flame, 2002, 128(4): 395-409
    [181] Balthasar, M., Mauss, F., Wang, H. A computational study of the thermal ionization of soot particles and its effect on their growth in laminar premixed flames. Combustion and Flame, 2002, 129(1-2): 204-216
    [182] Balthasar, M., Frenklach, M. Detailed kinetic modeling of soot aggregate formation in laminar premixed flames. Combustion and Flame, 2005, 140(1-2): 130-145
    [183] Falk, L., Schaer, E. A PDF modelling of precipitation reactors. Chemical Engineering Science, 2001, 56(7): 2445-2457
    [184] Zucca, A., Marchisio, D. L., Barresi, A. A., Fox, R. O. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chemical Engineering Science, 2006, 61(1): 87-95
    [185] Campos, F. B., Lage, P. L. C. A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation. Chemical Engineering Science, 2003, 58(12): 2725-2744
    [186] Qamar, S., Ashfaq, A., Warnecke, G., Angelov, I., et al. Adaptive high-resolution schemes for multidimensional population balances in crystallization processes. Computers and Chemical Engineering, 2006, doi: 10.1016/j.compchemeng.2006.1010.1014
    [187] Jeong, J. I., Choi, M. Analysis of non-spherical polydisperse particle growth in a two-dimensional tubular reactor. Journal of Aerosol Science, 2003, 34(6): 713-732
    [188] Kim, D. H., Gautam, M., Gera, D. Modeling nucleation and coagulation modes in the formation of particulate matter inside a turbulent exhaust plume of a diesel engine. Journal of Colloid and Interface Science, 2002, 249(1): 96-103
    [189] Wen, J. Z., Thomson, M. J., Park, S. H., Rogak, S. N., et al. Study of soot growth in a plug flow reactor using a moving sectional model. Proceedings of the Combustion Institute, 2005, 30(1): 1477-1484
    [190] Nere, N. K., Ramkrishna, D. Solution of population balance equation with pure aggregation in a fully developed turbulent pipe flow. Chemical Engineering Science, 2006, 61(1): 96-103
    [191] Garrick, S. C., Lehtinen, K. E. J., Zachariah, M. R. Nanoparticle coagulation via a Navier-Stokes/nodal methodology: Evolution of the particle field. Journal of Aerosol Science, 2006, 37(5): 555-576
    [192] Lu, S. Y., Lin, H. C., Lin, C. H. Modeling particle growth and deposition in a tubular CVD reactor. Journal of Crystal Growth, 1999, 200(3-4): 527-542
    [193] Dorao, C. A., Jakobsen, H. A. Time-space-property least squares spectral method for population balance problems. Chemical Engineering Science, 2006: doi: 10. 1016/j. ces., 2006. 1011. 1016
    [194] Hollander, E. D., Derksen, J. J., Bruinsma, O. S. L., van den Akker, H. E. A., et al. A numerical study on the coupling of hydrodynamics and orthokinetic agglomeration. Chemical Engineering Science, 2001, 56(7): 2531-2541
    [195] Kolodko, A., Sabelfeld, K., Wagner, W. A stochastic method for solving Smoluchowski's coagulation equation. Mathematics and Computers in Simulation, 1999, 49(1-2): 57-79
    [196] Sabelfeld, K., Kolodko, A. Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation. Mathematics and Computers in Simulation, 2003, 61(2): 115-137
    [197] Singh, J., Balthasar, M., Kraft, M., Wagner, W. Stochastic modeling of soot particle size and age distributions in laminar premixed flames. Proceedings of the Combustion Institute, 2005, 30 (1): 1457-1465
    [198] Zhao, B., Yang, Z. W., Johnston, M. V., Wang, H., et al. Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethyleneoxygen-argon flame. Combustion and Flame, 2003, 133(1-2): 173-188
    [199] Schwarzer, H. -C., Schwertfirm, F., Manhart, M., Schmid, H. -J., et al. Predictive simulation of nanoparticle precipitation based on the population balance equation. Chemical Engineering Science, 2006, 61(1): 167-181
    [200] Yeoh, G. H., Tu, J. Y. Two-fluid and population balance models for subcooled boiling flow. Applied Mathematical Modelling, 2006, 30(11): 1370-1391
    [201]周力行.多相湍流反应流体力学.北京:国防工业出版社, 2002
    [202]陈斌,郭烈锦,杨晓刚.管束间复杂区域流场的离散涡数值模拟.自然科学进展, 2003, 13(1): 74-78
    [203]张兆顺.湍流.北京:国防工业出版社, 2002
    [204]是勋刚.湍流.天津:天津大学出版社, 1994
    [205]任凯锋,张会强,王希麟.获得空间发展槽道流动大涡模拟入口条件的最不稳定波方法.清华大学学报(自然科学版), 2006, 46(8): 1470-1472
    [206]刘欢鹏,王淑彦,陆慧林,刘文铁等. DSMC-LES方法研究循环流化床内颗粒团聚物的流动特性.化工学报, 2005, 56(7): 1197-1205
    [207]张健,何国威,陆利蓬,王银春.大涡模拟中条件滤波耗散和扩散的统计特性.力学学报, 2006, 38(4): 433-437
    [208] Fan, J. R., Luo, K., Ha, M. Y., Cen, K. F. Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E, 2004, 70 (2): 026303
    [209]贺铸.非等温气固两相各向同性湍流的直接数值模拟.华中科技大学: [博士学位论文], 2006
    [210]郭照立,郑楚光,李青,王能超.流体动力学的格子Boltzmann方法.武汉:湖北科学技术出版社, 2002
    [211]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社, 1994
    [212]樊建人,岑可法.工程气固多相流动的理论及计算.杭州:浙江大学出版社, 1990
    [213]李静海,欧阳洁,高士秋,葛蔚等.颗粒流体复杂系统的多尺度模拟.北京:科学出版社, 2005
    [214] Sinclair, J. L., Jackson, R. Gas-particle flow in a vertical pipe with particle-particle intercation. AIChE Journal, 1989, 35(5): 1473-1486
    [215] Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Boston: Academic Press, 1994
    [216] Nieuwland, J. J., Annaland, M. V., Kuipers, J. A. M., van Swaaij, W. P. M. Hydrodynamic modeling of gas/particle flows in riser reactors. AIChE Journal, 1996, 42(6): 1569-1582
    [217]周芳,祁海鹰,由长福,徐旭常.有限空间风沙流动数值模拟及边界条件问题.清华大学学报(自然科学版), 2004, 44(8): 1079-1082
    [218]万晓涛,郑雨,魏飞,金涌.循环流化床提升管气固湍流的计算流体力学模拟—k-ε-kp-εp-Θ5参数双流体模型.化工学报, 2002, 53(5): 461-468
    [219] Balzer, G. Gas-solid flow modelling based on the kinetic theory of granular media: validation, applications and limitations. Powder Technology, 2000, 113(3): 299-309
    [220]曾卓雄,周力行,张健.用颗粒相双尺度二阶矩湍流模型模拟突扩两相流动.西安交通大学学报, 2006, 40(1): 97-100
    [221] Zhang, X., Zhou, L. A second-order moment particle-wall collision model accounting for the wall roughness. Powder Technology, 2005, 159(2): 111-120
    [222]柳朝晖.湍流气粒两相流的SOM-PDF输运方程模型和PDPA实验研究.华中科技大学: [博士学位论文], 2002
    [223] Reade, W. C., Collins, L. R. A numerical study of the particle size distribution of anaerosol undergoing turbulent coagulation. J. Fluid Mech., 2000, 415: 45-64
    [224] Tsuji, Y., Tanaka, T., Yonemura, S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder technology, 1998, 95(3): 254-264
    [225]樊建人,姚军,张新育,岑可法.气固两相流中颗粒-颗粒随机碰撞新模型.工程热物理学报, 2001, 22(5): 629-632
    [226]张鑑,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟.工程热物理学报, 1998, 19(2): 256-260
    [227]刘敏,张会强,郭印诚,王希麟等.稠密气固流动中的格子-确定性轨道模型.清华大学学报(自然科学版), 2003, 43(2): 246-249
    [228] Pai, S. I. Fundamental equations of a mixture of a gas and small spherical solid particles from simple kinetic theory. Rev. Roum. Sci., Tech. Mech. Appl., 1974, 19: 605-621
    [229] Kitron, A., Elperin, T., Tamir, A. Monte Carlo simulation of gas-solids suspension flows in impinging streams reactors. International Journal of Multiphase Flow, 1990, 16(1): 1-17
    [230] Lun, C. K. K. Numerical simulation of dilute turbulent gas-solid flows. International Journal of Multiphase Flow, 2000, 26(10): 1707-1736
    [231] Tsuji, Y. Activities in discrete particle simulation in Japan. Powder Technology, 2000, 113(3): 278-286
    [232] Ho, C. A., Sommerfeld, M. Modelling of micro-particle agglomeration in turbulent flows. Chemical Engineering Science, 2002, 57(15): 3073-3084
    [233]隋建才.燃煤过程中亚微米颗粒形成与排放的研究.华中科技大学: [博士学位论文], 2006
    [234]程俊峰.燃煤锅炉痕量元素释放、分布与排放的研究.华中科技大学: [博士学位论文], 2002
    [235]魏凤.燃煤亚微米颗粒的形成和团聚机制的研究.华中科技大学: [博士学位论文], 2005
    [236]郭欣.煤燃烧过程中汞、砷、硒的排放与控制研究.华中科技大学: [博士学位论文], 2005
    [237] Raask, E. The mode of occurrence and concentration of trace elements in coal. Prog. Energy Combust. Sci., 1985, 11(2): 97-118
    [238] Swaine, D. J. Trace Elements in Coal. London: Butterworth, 1990
    [239]欧阳中华.煤燃烧中重金属对环境污染的研究.华中科技大学: [硕士学位论文], 1995
    [240] Luttrell, G. H., Kohmuench, J. N., Yoon, R. -H. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Processing Technology, 2000, 65-66: 407-422
    [241] Solveig, G., Wei, T. Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China? Energy Policy, 2005, 33 (4): 525-542
    [242] Scott, D., Nilsson, P. Competitiveness of future coal-fired units in different coutries. London: IEA Coal Research, 1999
    [243] Zeng, T., Sarofim, A., Senior, C. L. Vaporization of arsenic, selenium and antimony during coal combustion. Combustion and Flame, 2001, 126(3): 1714-1724
    [244] Quann, R. J., Sarofim, A. F. Vaporization of refractory oxides during pulverized coal combustion. Proceedings of the Combustion Institute, 1982, 9(1): 1429-1440
    [245] Quann, R. J., Neville, M., Sarofim, A. F. A laboratory study of the effect of coal selection on the amount and composition of combustion generated submicron particles. Combustion Science and Technology, 1990, 74(11): 245-265
    [246] Ninomiya, Y., Zhang, L., Sato, A., Dong, Z. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Processing Technology, 2004, 85(8-10): 1065-1088
    [247] Zhang, L., Ninomiya, Y. Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties. Fuel, 2006, 85(2): 194-203
    [248]张军营,魏凤,赵永椿,王春梅等. PM2. 5和PM10排放的一维炉煤燃烧实验研究.工程热物理学报, 2005, 26(Suppl. ): 257-260
    [249]吕建燚,李定凯.不同粒径煤粉燃烧后一次颗粒物的特性研究.热能动力工程, 2005, 20(5): 513-516
    [250]陶叶,徐明厚,于敦喜,刘小伟等.煤粉粒径及燃烧工况对PM10排放特性的影响.煤炭转化, 2006, 29(1): 53-57
    [251] Biswas, P., Wu, C. Y. Control of toxic metal emissions from combustors using sorbents: a review. J. Air & Waste Manage. Assoc., 1998, 48(2): 113-127
    [252] Owens, T., M, Biswas, P. Vapor phase sorbent precursors for toxic metal emissions control from combustors. Ind. Eng. Chem. Res., 1996, 35(3): 792-798
    [253]王春梅,张军营,周英彪,郑楚光等.煤燃烧超细微颗粒物生成和控制的实验研究.工程热物理学报, 2004, 25(6): 1053-1056
    [254] Saito, M., Sato, M., Sawada, K. Variation of flame shape and soot emission by applying electric field. Journal of Electrostatics, 1997, 39(4): 305-311
    [255] Saito, M., Arai, T., Arai, M. Control of soot emitted from acetylene diffusion flames by applying an electric field. Combustion and Flame, 1999, 119(3): 356-366
    [256]王宇,姚强.电场控制火焰中细颗粒生成及分布的研究进展.煤炭转化, 2005, 28(4): 86-92
    [257]郝吉明,马广大.大气污染控制工程(第二版).北京:高等教育出版社, 2002
    [258]魏凤,张军营,王春梅,郑楚光.煤燃烧超细颗粒物团聚促进技术的研究进展.煤炭转化, 2003, 26(3): 27-31
    [259]向晓东,陈旺生,幸福堂,张国权等.交变电场中电凝并收尘理论与实验研究.环境科学学报, 2000, 20(2): 187-191
    [260] Watanabe, T., Tochikubo, F., Koizumi, Y., Tsuchida, T. Submicron particle agglomeration by an electrostatic agglomerator. J. Electrostatics, 1995, 34: 367-383
    [261] Kildes, J., Bhatia, V. K., Lind, L., Johnson, E. An experimental investigation for agglomeration of aerosols in alternating electric fields. Aerosol Sci., and Tech., 1995, 23: 603-610
    [262] Lehtinen, K. E. J., Jokiniemi, J. K., Kauppinen, E. I. Kinematic coagulation of charged droplets in an alternating electric field. Aerosol Sci. and Tech., 1995, 23(3): 422-430
    [263] Tiwary, R., Reethof, G. Numerical simulation of acoustic agglomeration and experimental verification. Journal of Vibration, Acoustics, Stress, and Reliability inDesign, 1987, 109(22): 185-191
    [264] Rodríguez-Maroto, J. J., Gomez-Moreno, F. J., Martín-Espigares, M., Bahillo, A., et al. Acoustic agglomeration for electrostatic retention of fly-ashes at pilot scale: influence of intensity of sound field at different conditions. Journal of Aerosol Science, 1996, 27(suppl. 1): S621-S622
    [265]姚刚,盛昌栋,杨林军,沈湘林.燃烧超细颗粒声波团聚的谱分布数值模拟.燃烧科学与技术, 2005, 11(3): 273-277
    [266]姚刚,沈湘林.基于分形的超细颗粒声波团聚数值模拟.东南大学学报(自然科学版), 2005, 35(1): 145-148
    [267]袁竹林,凡凤仙,姚刚,赵兵等.声波对悬浮PM2. 5作用的数值模拟与实验研究.燃烧科学与技术, 2005, 11(4): 298-302
    [268]袁竹林,李伟力,魏星,凡凤仙等.细微颗粒在行波和驻波声场中运动特性数值实验.东南大学学报(自然科学版), 2005, 35(1): 140-144
    [269]袁竹林,李伟力,魏星,凡凤仙.声波对悬浮PM2. 5作用的数值研究.中国电机工程学报, 2005, 25(8): 121-125
    [270]凡凤仙,袁竹林.外加声场对增加PM2. 5碰撞几率的数值模拟研究.中国电机工程学报, 2006, 26(11): 12-16
    [271]郑世琴,刘淑艳,黄虹宾,阎为革.用分形理论处理煤飞灰微粒在声场中的团聚现象.燃烧科学与技术, 1999, 5(2): 168-174
    [272] Ezekoye, O. A., Wibowo, Y. W. Simulation of acoustic agglomeration processes using a sectional algorithm. J. Aerosol Sci., 1999, 30(9): 1117-1138
    [273] Prakash, K., Pratim, B. Analytical expressions of the collision frequency function for aggregation of magnetic particles. Journal of Aerosol Science, 2005, 36(4): 455-469
    [274] Yiacoumi, S., Rountree, D. A., Tsouris, C. Mechanism of particle flocculation by magnetic seeding. Journal of Colloid and Interface Science, 1996, 184(4): 477-488
    [275] Tsouris, C., Scott, T. C. Flocculation of paramagnetic particles in a magnetic field. Journal of Colloid and Interface Science, 1995, 171(2): 319-330
    [276]韩松,赵长遂,吴新,鲁端峰等.燃煤飞灰中可吸入颗粒物在磁场中聚并收尘试验研究.锅炉技术, 2006, 37(增刊): 12-15
    [277]许世森.细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究.动力工程, 1999, 19(4): 309-313
    [278]陈俊,张军营,魏凤,黄充等.燃煤超细颗粒物喷雾团聚的模型.煤炭学报, 2005, 30(5): 632-636
    [279] Wei, F., Zhang, J., Zheng, C. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion. Journal of Environmental Sciences, 2005, 17(2): 335-339
    [280]陈俊.煤燃烧超细颗粒物喷雾团聚的实验研究.华中科技大学: [硕士学位论文], 2005
    [281]杨林军,颜金培,沈湘林.蒸汽相变促进燃烧源PM2. 5凝并长大的研究现状及展望.现代化工, 2005, 25(11): 22-24
    [282] Bologa, A., Paur, H. -R., W?scher, T. Electrostatic charging of aerosol as a mechanism of gas cleaning from submicron particles. Filtration & Separation, 2001,38(10): 26-30
    [283]黄斌,姚强,李水清.静电增强脱除PM2. 5研究进展.电站系统工程, 2003, 19(6): 44-46
    [284]钱付平,张吉光,张竹茜.静电旋风分离器的研究现状与进展.过滤与分离, 2003, 13(1): 22-25
    [285]魏名山,马朝臣.利用静电旋风除尘器捕集亚微米粒子的研究.环境工程, 1999, 17(6): 36-38
    [286]魏章斌,曾德金,李济吾,蔡伟建.用脉冲电旋风除尘器处理催化剂厂分子筛尾气.化工环保, 2004, 24(5): 344-346
    [287]许世森.移动颗粒层过滤高温除尘过程结构和参数优化实验研究.中国电机工程学报, 1999, 19(5): 13-17
    [288]涂虬,向晓东.静电增强颗粒层除尘器除尘效率的理论与实验研究.武汉工程职业技术学院学报, 2001, 13(4): 1-6
    [289]刘功智,邓云峰,荣伟东,李传贵.双极不对称预荷电静电增强过滤除尘技术的应用.中国安全科学学报, 2001, 11(6): 62-65
    [290]赵钟鸣.静电增强纤维除尘数学模型与应用的研究.东北大学: [博士学位论文], 1992
    [291]荣伟东,张国权,刘功智,田东胜.静电增强纤维层过滤技术的研究.中国安全科学学报, 1998, 8(1): 32-37
    [292] Laitinen, A., Hautanen, J., Keskinen, J. Effect of the space charge precipitation on wet scrubber fine particle removal efficiency. Journal of Aerosol Science, 1997, 28(Suppl. 1): S287-S288
    [293] Metzler, P., Wei?, P., Büttner, H., Ebert, F. Electrostatic enhancement of dust separation in a nozzle scrubber. Journal of Electrostatics, 1997, 42 (1-2): 123-141
    [294] Melcher, J. R., Sachar, K. S., Warren, E. P. Overview of electrostatic devices for control of submicrometer particles. Proceedings of the IEEE, 1977, 65(12): 1659-1672
    [295]王银生,王英敏.静电喷雾除尘适于微细粉尘的理论分析.东北大学学报(自然科学版), 1996, 17(3): 301-304
    [296]李德文.预荷电喷雾降尘技术的研究.煤炭工程师, 1994, 21(6): 8-13
    [297]周佳.小型静电水雾除尘器的研究与分析.北京科技大学: [硕士学位论文], 2001
    [298]陈鹏.湿式静电除尘器除尘机理的研究.辽宁工程技术大学: [硕士学位论文], 2002
    [299]王静英.小型静电除尘器的研究与应用.中国矿业, 1995, 4(6): 56-60
    [300]冯森林.振弦栅除尘器在煤矿中的应用.矿业安全与环保, 2002, 29(增刊): 28-29
    [301]苑春苗.复合除尘器的实验研究与设计.东北大学: [硕士学位论文], 2002
    [302]刘鲲.湿式振动栅除尘性能的研究.东北大学: [硕士学位论文], 2002
    [303]孙熙,苑春苗.旋风-湿式纤维栅除尘器.工业安全与环保, 2005, 31(1): 23-24
    [304]吴琨.荷电水雾振弦栅除尘机理与性能研究.北京化工大学: [硕士学位论文], 2004
    [305]吴琨,王京刚,毛益平,陈宜华等.荷电水雾振弦栅除尘技术机理研究.金属矿山, 2004(8): 59-62
    [306]吴琨,王京刚,毛益平,陈宜华等.荷电水雾振弦除尘器的性能研究.有色金属(矿山部分), 2004, 56(5): 46-48
    [307]袁颖,王京刚,吴琨.荷电水雾除尘器捕尘效率的实验研究.环境污染与防治, 2005, 27(1): 12-14
    [308] Chang, R. COHPAC compacts emission equipment into smaller, denser unit. Power Engineering, 1996, 100(77): 22-25
    [309] Miller, C. A., Srivastava, R. K., Sedman, C. B. Advances in control of PM2. 5 and PM2. 5 precursors generated by the combustion of pulverised coal. International Journal of Environment and Pollution, 2002, 17(1-2): 143-156
    [310]黄斌,徐海卫,姚强.可压缩性颗粒层过滤实验研究.工程热物理学报, 2005, 26(5): 891-893
    [311] Huang, B., Yao, Q., Li, S., Zhao, H., et al. Experimental investigation on the particle capture by a single fiber using microscopic image technique. Powder Technology, 2006, 163(3): 125-133
    [312]王显龙,何立波,贾明生,陈恩鉴.静电除尘器的新应用及其发展方向.工业安全与环保, 2003, 29(11): 3-6
    [313]顾中铸.无电晕式高温高压静电除尘器应用基础研究.东南大学: [博士学位论文], 2001
    [314] Dors, M., Mizeraczyk, J., Czech, T., Rea, M. Removal of NOx by DC and pulsed corona discharges in a wet electrostatic precipitator model. Journal of Electrostatics, 1998, 45 (1): 25-36
    [315] Altman, R., Offen, G., Buckley, W., Ray, I. Wet electrostatic precipitation: demonstrating promise for fine particulate control-part I. Jounal of Power Engineering, 2001, 105(1): 37-39
    [316] Altman, R., Buckley, W., Ray, I. Wet electrostatic precipitation: demonstrating promise for fine particulate control-part II. Journal of Power Engineering, 2001, 105(1): 42-44
    [317] David, J., Bayless, M., Khairul, A., Roger, R., et al. Membrane-based wet electrostatic precipitation. Fuel Processing Technology, 2004, 85(6-7): 781-798
    [318] Lanzerstorfer, C. Solid/liquid-gas separation with wet scrubbers and wet electrostatic precipitators: a review. Filtration & Separation, 2000, 37(5): 30-34
    [319]李峰.湿式电除尘器洗净水回用工艺研究.华东科技大学: [硕士学位论文], 2002
    [320] Fan, X., Schultz, T., Muschelknautz, E. Experimental results from a plate-column wet scrubber with gas-atomized spray. Chemical Engineering and Technology, 1988, 11(1): 73-79
    [321]周涛,杨瑞昌.应用微通道热泳脱除可吸入颗粒物的可行性研究.环境科学学报, 2004, 24(6): 1079-1083
    [322]周涛,杨瑞昌,赵磊.层流环形通道热泳脱除可吸入颗粒物技术研究.环境工程, 2005, 23(1): 33-35
    [323]周涛,杨瑞昌,赵磊.湍流环形通道热泳脱除可吸入颗粒物技术研究.环境污染治理技术与设备, 2006, 7(3): 134-137
    [324]陈松明,颜幼平,蓝惠霞.高梯度磁分离除尘实验研究.环境污染治理技术与设备, 2002, 3(6): 57-61
    [325]颜幼平,陈凡植,吴昭俏,康新宇等.高梯度磁除尘的实验研究.电力环境保护, 2000, 16(1): 7-9
    [326]杨林军,颜金培,沈湘林.光催化防治燃烧源可吸入颗粒物研究展望.环境与可持续发展, 2006, 2006(3): 32-34
    [327]杨林军,沈湘林,盛昌栋.光催化防治燃烧源可吸入颗粒物可行性及存在问题分析.现代化工, 2005, 25(增刊): 5-8
    [328]马千里,姚强.超细颗粒在单个上升气泡内的沉积过程模拟.环境科学学报, 2005, 25(6): 727-733
    [329]韩雪冬,谭井坤,席化林,李东武等.选煤粉尘治理的优选技术-蒸汽除尘.云南化工, 2002, 29(6): 41-42
    [330] Hu, K. C., Mei, R. Particle collision rate in fluid flows. Physics of Fluids, 1998, 10(4): 1028-1030
    [331] Nanbu, K. Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn., 1980, 49(5): 2042-2049
    [332] Blatz, P. J., Tobolsky, A. V. Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem., 1945, 49 (2): 77-79
    [333] Diemer, R. B., Olson, J. H. A moment methodology for coagulation and breakage problems: Part 1-analytical solution of the steady-state population balance. Chemical Engineering Science, 2002, 57(12): 2193-2209
    [334] Patil, D. P., Andrews, J. R. G. An analytical solution to continuous population balance model describing floc coalescence and breakage-a special case. Chemical Engineering Science, 1998, 53(3): 599-601
    [335] Leyvraz, F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Physics Reports, 2003, 383(2-3): 95-212
    [336] Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution. New York: Wiley, 1986
    [337] Williams, M. M. R., Loyalka, S. K. Aerosol Science: Theory and Practice. New York: Pergamon Press, 1991
    [338] Fernandez-Diaz, J. M., Muniz, C. G. P., Brana, M. A. R., Garca, B. A. A modified semi-implicit method to obtain the evolution of an aerosol by coagulation. Atmospheric Environment, 2000, 34(25): 4301-4314
    [339] Kostoglou, M., Karabelas, A. J. An assessment of low-order methods for solving the breakage equation. Powder Technol., 2002, 127(2): 116-127
    [340] Kostoglou, M. Exact self-similar solutions to the fragmentation equation with homogeneous discrete kernel. Physica A: Statistical and Theoretical Physics, 2003, 320: 84-96
    [341] Ziff, R. M. New Solutions for the fragmentation equation. J. Phys. A: Math. Gen., 1991, 24(12): 2821-2828
    [342] Ramabhadran, T. E., Peterson, T. W., Seinfeld, J. H. Dynamics of aerosol coagulation and condensation. AIChE Journal, 1976, 22(5): 840-851
    [343] Park, S. H., Lee, K. W. Condensation growth of polydisperse aerosol for the entire particle size range. Aerosol Science Technology, 2000, 33(3): 222-227
    [344] Diemer, R. B. Moment Methods for Coagulation, Breakage and Coalescence Problems: [PhD thesis]. University Delaware, 1999
    [345] Shah, B. H., Ramkrishna, D., Borwanker, J. D. Simulation of particulate systems using the concept of the interval of quiescence. AIChE Journal, 1977, 23(6): 897-904
    [346] Ramkrishna, D., Mahoney, A. W. Population balance modeling. Promise for the future. Chemical Engineering Science, 2002, 57(4): 595-606
    [347]赵海波.湍流两相流的速度联合PDF输运方程模型及其数值模拟.华中科技大学: [硕士学位论文], 2002
    [348] Gibson, M. M., Launder, B. E. Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 1987, 86(3): 491-511
    [349] Craft, T., Launder, B. E. New wall-reflection model applied to the turbulent impinging jet. AIAA J., 1992, 30(12): 2970-2972
    [350] Crespo, A., Andres, A., Granados, L., Garcia, J. Modeling of turbulence dissipation for gas-particle flows. in: Proc. 4th International Conference on Multiphase Flow. New Orleans: CD-ROM, 2001
    [351] Simonin, O., Deutsch, E., Minier, J. P. Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci., Res., 1993, 51: 275-283
    [352]赵海波,柳朝晖,郑楚光.颗粒扩散的三个效应的分析及其数值模拟.热科学与技术, 2003, 2(4): 347-351
    [353] Crowe, C. T., Sharma, M. P., Stock, D. E. The particle source in cell (PSI-CELL) model for gas droplet flows. ASME J. Fluid Eng., 1977, 99(2): 325-331
    [354]陶文铨.数字传热学(第2版).西安:西安交通大学出版社, 2001
    [355]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000
    [356] Nanbu, K., Yonemura, S. Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle. Journal of Computational Physics, 1998, 145(2): 639-654
    [357]陈胤密,柳朝晖,郑楚光.颗粒碰撞的直接模拟算法.计算物理, 2004, 21(5): 421-426
    [358]刘敏,张会强,郭印诚,王希麟等.稠密气固流动中颗粒聚集的定量评价.工程热物理学报, 2004, 25(5): 804-806
    [359]蔡毅,赵海亮,由长福,祁海鹰等.颗粒碰撞率的实验研究.工程热物理学报, 2004, 25(6): 974-976
    [360]昌泽舟, Berlemont, A., Gouesbet, G.考虑颗粒间碰撞的气固两相流拉格朗日模拟.计算力学学报, 2001, 18(4): 388-392
    [361] Park, S. J., Kim, S. S. Effects of particle space charge and turbulent diffusion on performance of plate-plate electrostatic precipitators. J. Electrostat., 1998, 45(2): 121-137
    [362] Park, J. H., Chun, C. H. An improved modelling for prediction of grade efficiency of electrostatic precipitators with negative corona. J. Aerosol Sci., 2002, 33(4): 673-694
    [363] Soldati, A., Andreussi, P., Banerjee, S. Direct simulation of turbulent particletransport in electrostatic precipitators. AIChE J., 1993, 39(12): 1910-1919
    [364] Soldati, A., Casal, M., Andreussi, P., Banerjee, S. Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. AIChE J., 1997, 43(6): 1403-1413
    [365] Soldati, A. On the effects of electrohydrodynamic flows and turbulence aerosol transport and collection in wire-plate electrostatic precipitators. J. Aerosol Sci., 2000, 31(3): 293-305
    [366] Choi, B. S., Fletcher, C. A. J. Computation of particle transport in an electrostatic precipitator. J. Electrostat., 1997, 40-41: 413-418
    [367] Gallimberti, I. Recent advancements in the physical modelling of electrostatic precipitators. J. Electrostat., 1998, 43(4): 219-247
    [368]袁颖,王京刚.荷电水雾除尘过程中颗粒运动轨迹的数值模拟.北京化工大学学报, 2005, 32(1): 28-32
    [369] Bai, H., Lu, C., Chang, C. L. A model to predict the system performance of an electrostatic precipitator for collecting polydisperse particles. J. Air Waste Management Assoc., 1995, 45(11): 908-916
    [370] Kim, H. T., Jung, C. H., Oh, S. N., Lee, K. W. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction. Environmental Engineering Science, 2001, 18(2): 125-136
    [371] Deutsch, W. Bewegung und Ladung der Elektrizitatstrager im Zylinderkondensator. Ann. Phys., 1922, 68: 335-344
    [372] Cooperman, G. A unified efficiency theory for electrostatic precipitators. J. Atmos. Environ., 1984, 18(2): 277-285
    [373] Leonard, G., Mitchner, M., Self, S. A. Particle transport in electrostatic precipitators. J. Atmos. Environ., 1980, 14(11): 1289-1299
    [374] Zhao, Z., Zhang, G. New model of electrostatic precipitation efficiency accounting for turbulent mixing. J. Aerosol Sci., 1992, 23(2): 115-121
    [375]向晓东.几种典型除尘器收集效率的扩散模型研究.环境科学学报, 2003, 23(5): 657-661
    [376] Zhang, X. R., Wang, L. Z., Zhu, K. Q. An analysis of a wire-plate electrostatic precipitator. J. Aerosol Sci., 2002, 33(11): 1595-1600
    [377] Nóbrega, S. W., Falaguasta, M. C. R., Coury, J. R. A Study of a wire-plate electrostatic precipitator operating in the removal of polydispersed particles. Brazilian Journal of Chemical Engineering, 2004, 21(2): 275-284
    [378] Kallio, G. A., Stock, D. E. Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators. J. Fluid Mech., 1992, 240: 133-166
    [379] Kim, S. H., Lee, K. W. Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models. J. Electrostat., 1999, 48(1): 3-25
    [380] Blanchard, D., Dumitran, L. M., Atten, P. Effect of electro-aero-dynamically induced secondary flow on transport of fine particles in an electrostatic precipitator. J. Electrostat., 2001, 51-52: 212-217
    [381] Salcedo, R., Munz, R. J. The effect of particle shape on the collection efficiency of laboratory-scale precipitators. in: Proceedings of the Third International Conference on Electrostatic Precipitation. Abano-Padova, Italy, 1987: 343-359
    [382] Yoo, K. H., Lee, J. S., Oh, M. D. Charging and collection of submicron particles in two-stage parallel plate electrostatic precipitators. Aerosol Sci. & Tech., 1997, 27: 308-323
    [383] Mizuno, A. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 615-624
    [384] Cochet, R., Lois charge des fines particules (Submicroniques) Etudes théoriques-Controles récents spectre de particules, Technical Centre National de la Recherche Scientifique: Paris, 1961: 331-338
    [385]张殿印,王纯.除尘器手册.北京:化学工业出版社, 2005
    [386]孔华,高翔,吕同波,骆仲泱等.湍流式湿法除尘脱硫装置试验研究及工业性应用.燃烧科学与技术, 2001, 7(4): 261-263
    [387]蒋仲安.湿式除尘器分级效率的计算和分析.安全, 1995, 16(3): 1-6
    [388]候凌云,候晓春.喷嘴技术手册.北京:中国石化出版社, 2002
    [389] Crump, J. G., Seinfeld, J. H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 1981, 12(5): 405-415
    [390] Benes, M., Holub, R. F. Aerosol wall deposition in enclosures investigatedby means of a stagnant layer. Environment International, 1996, 22(Suppl. ): S883-S889
    [391] Park, S. H., Lee, K. W. Lognormal size distribution theory for deposition of polydisperse aerosol particles. Nuclear Science Engineering, 2000, 135: 288-295
    [392] Mircea, M., Stefan, S. A theoretical study of the microphysical parameterization of the scavenging coefficient as a function of precipitation type and rate. Atmospheric Environment, 1998, 32(17): 2931-2938
    [393] Mircea, M., Stefan, S, Fuzzi, S. Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmospheric Environment, 2000, 34(30): 5169-5174
    [394]彭红,秦瑜.降水对气溶胶粒子清除的参数化.大气科学, 1992, 16(5): 622-630
    [395] Chate, D. M., Pranesha, T. S. Field studies of scavenging of aerosols by rain events. Journal of Aerosol Science, 2004, 35(6): 695-706
    [396] Loosmore, G. A., Cederwall, R. T. Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmospheric Environment, 2004, 38(7): 993-1003
    [397]盛裴轩,毛节太,李建国,张霭琛等.大气物理学.北京:北京大学出版社, 2003
    [398] Slinn, W. G. N. Precipitation scavenging. in: Raderson, D., editor. Atmospheric Sciences and Power Production. Washington DC: Division of Biomedical Environmental Research, US Department of Energy, 1983
    [399] Greenfield, S. Rain scavenging of radioactive particulate matter from the atmosphere. Journal of Meteorology, 1957, 14(2): 115-125
    [400] Feingold, G., Levin, Z. The lognormal fit to raindrop spectra from frontal convective clouds in Israel. Journal of Climate and Applied Meteorology, 1986, 25(10): 1346-1364
    [401] Garcia Nieto, P. J., Arganza Garcia, B., Fernandez Diaz, J. M., Rodriguez Brana, M. A. Parametric study of selective removal of atmospheric aerosol by below-cloud scavenging. Atmospheric Environment, 1994, 28(14): 2335-2342
    [402] Ackerman, A. S., Hobbs, P. V., Toon, O. B. A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. Journal of Atmospheric Sciences, 1995, 52(8): 1204-1236
    [403] Zhang, L. M., Michelangeli, D. V., Taylor, P. A. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmospheric Environment, 2004, 38(28): 4653-4665
    [404] Chate, D. M., Kamra, A. K. Collection efficiencies of large water drops collecting aerosol particles of various densities. Atmospheric Environment, 1997, 31(11): 1631-1635
    [405] Chate, D. M., Rao, P. S. P., Naik, M. S., Momin, G. A., et al. Scavenging of aerosols and their chemical species by rain. Atmospheric Environment, 2003, 37(18): 2477-2484
    [406]徐玲,秦瑜.云下气体清除过程参数化.环境化学, 1992, 11(1): 1-11
    [407]王明康,刘小红,任传森.积云的清除作用与其酸化的数值模拟.大气科学, 1994, 18(2): 224-232
    [408]秦瑜.华南地区春季降水对污染物的清除及其酸化的数值模拟.环境科学学报, 1992, 12(1): 68-77
    [409] Andronache, C. Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles. Journal of Aerosol Science, 2004, 35(12): 1467-1482
    [410] Tinsley, B. A., Rohrbaugh, R. P., Hei, M. Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmospheric Research, 2001, 59-60(1): 115-135
    [411] Davenport, H. M., Peters, L. K. Field studies of atmospheric particulate concentration changes during precipitation. Atmospheric Environment, 1978, 12(5): 997-1008
    [412]余战桥,吴学文,蒋国仁,虞正平.用荷电水雾控制敞开空间粉尘污染.工业安全与防尘, 1997, 23(2): 1-3
    [413]原永涛,林国鑫,宣伟桥,卢泽锋.火力发电厂电除尘技术.北京:化学工业出版社, 2004
    [414] Lee, K. W., Liu, B. Y. Theoretical study of filtration by fibrous filters. Aerosol Science and Technology, 1982, 1: 147-161
    [415] Payet, S., Boulaud, D., Madelaine, G., Renoux, A. Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. Journal of Aerosol Science, 1992, 23(7): 723-735
    [416] Landahl, H. D., Herrmann, R. G. Sampling of liquid aerosols by wires, cylinders and slides and the efficiency of impaction of the droplets. Journal of Colloid Science, 1949, 4(2): 103-136
    [417] Tardos, G., Pfeffer, R. Interceptional and gravitational deposition of inertialess particles on a single sphere and in a granular bed. AIChE Journal, 1980, 26(4): 698 - 701
    [418] Zhao, Z. M., Tardos, G. I., Pfeffer, R. Separation of airborne dust in electrostatically enhanced fibrous filters. Chem. Eng. Commun., 1991, 108(1/2): 307-332
    [419] Zhao, Z. M., Tardos, G. I., Pfeffer, R. Separation of aerosol in electrostaticallyenhanced fibrous filters. in: Proceedings of the Second World Congress on Particle Technology. Kyoto Japan, 1990: 12-24
    [420] Tien, C. Granular Filtration of Aerosols and Hydrosols. Boston: Butterworth Publishers, 1989
    [421] Thomas, D., Penicot, P., Contal, P., Leclerc, D., et al. Clogging of fibrous filters by solid aerosol particles experimental and modelling study. Chemical Engineering Science, 2001, 56(11): 3549-3561
    [422] Thomas, D., Contal, P., Renaudin, V., Penicot, P., et al. Modelling pressure drop in HEPA filters during dynamic filtration. Journal of Aerosol Science, 1999, 30(2): 235-246
    [423] Vendel, J., Mulcey, P., Letourneau, P. Aerosol penetration inside HEPA filtration media. in: 21st DOE/NRC Nucleur Air Cleuning Conf.. San Diego, 1990: 799-808
    [424] Davies, C. N. Air filtration. London and New York: Academic Press, 1973
    [425] Bergman, W., Taylor, R. D., Miller, H. H., Biermann, A. H., et al. Enhanced filtration program at LLNL. in: 15th DOE Nuclear Air Cleaning Conf., Boston, 1978. CONF-780819
    [426] Walsh, D. C. Recent advances in the understanding of fibrous filter behaviour under solid particle load. Filtration & Separation, 1996, 33(6): 501-506
    [427] Walsh, D. C., Stenhouse, J. I. T. Clogging of an electrically active fibrous filter material: experimental results and two-dimensional simulations. Powder Technology, 1997, 93(1): 63-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700