用户名: 密码: 验证码:
有机/无机荧光材料的合成、表征及其在光化学传感方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光化学传感器已经被广泛地应用于探测重金属离子。荧光化学传感器具有简单快速,选择性和灵敏度高等优点,而比色化学传感器则可以通过肉眼直接观测。在众多的有机染料探针中,罗丹明衍生物由于具有大的摩尔消光系数,高的量子产率和长的吸收和发射波长等优点而被广泛应用于构筑开/关型的荧光探针。与传统的有机染料和荧光蛋白相比,半导体纳米晶(常被称为量子点,QDs)具有更多迷人的优点,如高的水溶性,更大的摩尔消光系数,更高的荧光量子产率,宽的吸收光谱和窄的发射光谱,根据粒子大小可调控的荧光发射等。
     在本文中,我们设计了一系列基于罗丹明衍生物和量子点的荧光探针,并研究了他们识别重金属离子Hg~(2+)和Cu~(2+)的性能。另外,我们利用静电纺丝技术制备了一系列荧光复合薄膜,为下一步开展基于纺丝薄膜传感材料的制备工作奠定了基础。具体内容如下:
     1.设计合成了新颖的基于罗丹明衍生物的比色、荧光探针R01和RS1。然后,研究和比较了探针分子RO1和RS1对重金属离子的识别能力。利用汞的亲硫特性,通过硫离子的引入,实现了二者识别的金属离子由Cu~(2+)到Hg~(2+)的转变。对比二者对两类重金属离子的识别能力,探针RS1对Hg~(2+)表现出更优异的识别性能。具体的探测原理是基于酰胺螺环结构“开-关”的特征,对Hg~(2+)表现出高灵敏度、高选择性、快速、可逆的识别能力。将探针RS1应用于细胞成像研究,发现探针分子RS1可以探测识别活细胞中的Hg~(2+),证实该探针分子在生物体系中具有实际的应用价值。
     2.设计合成了基于汞诱导脱硫化反应和罗丹明酰胺螺环结构“开-关”特征的化学计量计R02,通过紫外可见吸收光谱和荧光光谱的测试证实了该化学计量计对Hg~(2+)具有高的选择性,快的响应时间和较高的灵敏度。引入双键单元,期望通过双键聚合而形成高分子聚合物,然后利用静电纺丝技术制备荧光薄膜传感材料。通过上述表征证实了该化学计量计的优异识别性能,为下一步工作的开展奠定了基础。
     3.通过溶胶-凝胶法用Si0_2将CdTe QDs和Fe_2O_3 NRs包裹起来,从而形成具有多重功能的CdTe/Fe_2O_3@SiO2核壳复合材料。通过一系列的表征手段充分证实了该核壳复合材料的成功制备。另外利用荧光光谱和超导量子干涉磁力仪观察并且表征了该材料具有荧光和磁性特征。将该材料作为荧光探针可以通过其荧光强度的猝灭来检测水溶液中Hg~(2+)的浓度。我们详细地研究了猝灭过程的机理,发现Hg~(2+)对探针荧光的猝灭是动态猝灭和静态猝灭共同作用的结果,而且其猝灭过程符合改进的Stern-Volmer公式,在1μM-10μM范围内呈现很好的线性关系。
     4.通过联合水热反应和静电自组装技术简单、高效地制备了Fe3O4@C@CdTe复合多层核壳纳米材料。巧妙地选用聚阳离子电解质-聚二烯丙基二甲基胺盐酸盐(PDDA),该聚合物既可以作为负电荷的吸附剂,又能形成壳层有效地避免Fe304和量子点的直接接触,更有利于量子点的荧光。利用了多种表征手段,充分证实了多层核壳纳米材料的形成。通过样品振动磁强计测试了该复合材料的超顺磁性,并且证实了可以通过外加磁场的方式对复合材料实行简单的分离和回收。将制备的可回收复合材料作为荧光探针可以通过其荧光强度的猝灭来检测水溶液中Cu~(2+)的浓度。我们详细地研究了猝灭过程的机理,发现Cu~(2+)对探针荧光的猝灭是动态猝灭和静态猝灭共同作用的结果,而且其猝灭过程符合改进的Stern-Volmer公式,在1μM-10μM范围内呈现很好的线性关系。
     5.利用静电纺丝技术制备罗丹明6G/PAN和稀土配合物/PAN荧光复合纳米纤维。对于罗丹明6G/PAN荧光复合纳米纤维,我们利用UV-Vis吸收光谱和荧光光谱详细地研究了在纺丝薄膜中引入不同浓度的Rh6G分子对其聚集状态的影响。通过与铸造薄膜的光学性质对比发现:由于纺丝纤维膜大的比表面积和纺丝过程中溶剂的快速挥发,导致了纺丝薄膜减弱了Rh6G分子的聚集形式,从而更有利于其J-型二聚体的形成。对于稀土配合物/PAN荧光复合纳米纤维,通过对比复合纳米纤维薄膜与稀土配合物粉末的光学性质,我们发现当稀土配合物被掺杂到PAN纤维中后,PAN介质对其赋予了一定的保护作用。由于聚合物链段的刚性结构和受到所谓笼效应的影响,掺杂到PAN介质中的稀土配合物分子彼此之间相互孤立,不仅减少了聚集体的形成,而且避免了有机配体分子的转动和与周围介质的作用,从而降低了非辐射去活化的过程,最终改善了稀土配合物的热稳定性,光稳定性,延长了其荧光寿命和提高了其荧光量子产率。综上所述,通过研究染料分子和稀土配合物引入前后光学性能的改善,证实了静电纺丝薄膜是一个引入荧光化合物的理想基质。
     6.通过对静电纺丝纤维进行乙二胺改性和利用曼尼希反应成功地将荧光素共价键连接到PAN纳米纤维薄膜表面。经荧光光谱检测获得了较强的荧光信号,避免了由于物理掺杂而发生的泄露现象,充分证明了静电纺丝薄膜表面修饰的可行性,为构筑含有性能优异传感分子的纺丝薄膜传感器奠定了基础。
Fluorescent and colorimetric chemosensors have been developed to be useful tools for sensing heavy metal ions. Fluorescent chemosensors are attractive due to the simplicity and high detection limit. The advantage of colorimetric sensors is their capability to detect analyte by the naked eye. Among numerous indicators, rhodamine-based dyes are a kind of excellent candidate for the construction of an off/on-type fluorescent chemosensor due to their excellent spectroscopic properties of large molar extinction coefficients, high fluorescence quantum yields, and long absorption and emission wavelength elongated to visible region. Compared to traditional organic dyes and fluorescent proteins, semiconductor nanocrystals, often referred to quantum dots (QDs), have several intriguing advantages such as great water-solubility, large extinction coefficients, high photoluminescence efficiency, tunable size-dependent emission, wide absorption spectrum and sharp emission profile.
     In this thesis, a series of new optical chemosensors based on rhodamine and quantum dots were synthesized and investigated for their applications in the detection of heavy metal cations (Hg~(2+), Cu~(2+)). In addition, rhodamine 6G and europium complexes are incorporated into polymer matrixes and electrospun into various composite nanofibers.The details are as follows:
     1. Novel rhodamine-based highly sensitive and selective colorimetric and off-on fluorescent chemosensors (RO1 and RS1) for heavy metal ions is designed and prepared. The photophysical characterization and Hg~(2+)/Cu~(2+)-binding properties of sensor RS1/RO1 are investigated and compared. The sensor RS1 show more excellent sensing ability for Hg~(2+) due to the incorporation of the S atom. The signal change of the chemosensor RS1 is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemise nsor RS1 for Hg~(2+) ions is instantaneous and reversible. Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg~(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.
     2. A rhodamine-based highly sensitive and selective chemodosimeter is designed and prepared. The system, which utilizes an irreversible Hg~(2+)-promoted oxadiazole forming reaction of rhodamine derivative RO2, is monitored by colorimetric and fluorescence intensity changes that respond instantaneously at room temperature. In addition, the C=C is also incorporated into the rhodamine derivative. Next. the polymer through this C=C will be synthesized and electrospun into nanofibers with sensing ability.
     3. Novel multifunctional Hg~(2+) ions sensing nanocomposites were developed by applying SiO2 as the encapsulation agent to package Fe_2O_3 NRs and CdTe QDs. resulting in CdTe/Fe_2O_3@SiO2 core/shell nanostructures. The core/shell structural nanocomposites were confirmed by extensive characterizations. Photoluminescence (PL) spectroscopy and superconducting quantum interference device (SQUID) were used to investigate the optical and magnetic properties of the core/shell structural nanocomposites, respectively. The fluorescence of the obtained nanocomposites could be quenched effectively by Hg~(2+)ions. The quenching mechanism was studied and the results show the existence of both static and dynamic quenching processes.
     4. A novel multifunctional microsphere with a fluorescent CdTe quantum dots (QDs) shell and a magnetic core (Fe3O4) has been successfully developed and prepared by a combination of the hydrothermal method and layer-by-layer (LBL) self-assembly technique. The resulting fluorescent Fe3O4@C@CdTe core/shell microspheres are utilized as a chemosensor for ultrasensitive Cu~(2+)ions detection. The fluorescence of the obtained chemosensor could be quenched effectively by Cu~(2+)ions. The quenching mechanism was studied and the results showed the existence of both static and dynamic quenching processes. The modified Stern-Volmer equation showed a good linear response (R2=0.9957) in the range of 1 to 10μM with a quenching constant (Ksv) of 4.9×104 M-1. Most importantly, magnetic measurements showed that the Fe3O4@C@CdTe core/shell microspheres were superparamagnetic and they could be separated and collected easily using a commercial magnet in 10s。
     5. Novel fluorescent composite nanofibrous films of rhodamine 6G/PAN and europium complexes/PAN are prepared by electrospinning. The optical properties of electruspun nanofibrous films are studied. For the rhodamine 6G/PAN fluorescent composite nanofibrous films, we have used casting films as reference material to compare the aggregation states of incorporation of Rh6G in electrospun nanofibrous films and casting films. The large specific surface area of the nanofibers and fast evaporation of the solvents in the electrospinning process reduced the aggregation of Rh6G. For the europium complexes/PAN fluorescent composite nanofibrous films, the thermal-stability, photo-stability and photoluminescence properties of these composite nanofibers are studied in comparison to that of the pure europium complexes in detail. The results indicate that, the PAN can provide a rigid environment for the europium complexes, so the thermal-stability and photo- stability of composite nanofibers are considerably improved. Most importantly, the luminescent quantum efficiency and luminescence lifetime of the composite nanofibers are of great improvement. The results demonstrate that the electrospun films are an ideal material for incorporation of fluorescent dyes and europium complexes.
     6. The Mannich reaction was successfully used in modification of the electrospun films surfaces. Further modification of electrospun films with fluorescent molecules presents the possibility of practical sensing applications of the electrospun films.
引文
[1]何立芳,林丹丽,李耀群。同步荧光分析法的应用及其新进展化学进展,2004,16,879-885.
    [2]SADAMOTO R, NITKURA K, SEARS P S, et al. Cell-wall engineering of living bacteria [J]. J. Am. Chem. Soc.,2002,124,9018-9019.
    [3]PEARCE D A, JOTTERAND N, CARRICO I S, et al. Derivatives of 8-Hydroxy-2-methyl quinoline are powerful prototypes for zinc sensors in biological systems [J]. J. Am. Chem. Soc.,2001,123,5160-5161.
    [4]WEBER G. Fluorescence in biophysics:accomplishments and deficiencies [J]. Methods enzymol,1997,278,1-15.
    [5]SIGMUND H, PFLEIDERER W. A new type of labeling of nucleosides and nucleotides [J]. Helv Chim Acta,2003,86,2299-2334.
    [6]WALKUP G K, BURDETTE S C, LIPPARD S J, et al. A new cell-permeable fluorescent probe for Zn2+[J]. J. Am. Chem. Soc.,2000,122,5644-5645.
    [7]ADAMCYK M, CHAN C, FINO J, et al. Synthesis of 5-and 6-hydroxymethyl fluoresce in phosphoramidites [J]. J. Org. Chem.,2000,65,596-601.
    [8]LEHN J M. Supramolecular chemistry:concepts and perspectives [M]. VCH, Weinheim,1995.
    [9]VALUE B. Molecular fluorescence:principles and applications [M]. Wiley, New York,200.
    [10]HAUGHLAND R P. Handbook of fluorescent probes and research chemicals [M]. 6th ed.1996, Molecular Probes:Eugene.
    [11]张华山,赵媛媛.分子探针与检测技术[M].科学出版社,2002,326.
    [12]VALEUR B. Molecular Fluorescence:Principles and applications [M]. Wiley-VCH, Verlag GmbH 2001.
    [13]DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T. Signaling recognition events with fluorescent sensors and switches [J]. Chem. Rev.,1997, 97,1515-1566.
    [14]MARTINEZ-MAFIEZ R, SANENON F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev.,2003,103.4419-4476.
    [15]樊美公等.光化学基本原理与光子学材料科学[M].科学出版社,2001.
    [16]FOX M A. CHANON M. Photoinduced electron transfer [M]. Amsterdam: Elsevier Science Publishers B. V.1988. Part A-Part D.
    [17]FABBRIZZI L. LICCHELLI M. PALLAVICINI P. et al. A zinc (Ⅱ)-driven intramolecular photoinduced electron transfer [J]. Inorg. Chem.,1996,35, 1733-1736.
    [18]KUBO K, SAKURAI T. Synthesis and properties of N, N'-bis (1-pyrenylmethyl)-1,4,10,13-tetraoxa-7,16-diaza-cy-clooctadecane. Metal ion-induced monomer and excimer emission enhancement [J]. Chem. Lett.,1996, 11.959-960.
    [19]GOLCHINI K. MACHOVIC-BASIC M, GHARIB S A, et al. Synthesis and characterization of a new fluorescent probe for measuring potassium [J]. Am. J. Physiol. Renal. Physiol.,1990,258, F443-F438.
    [20]DE SILVA S A, ZAVALETA A, BARON D E, et al. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch [J]. Tetrahedron Lett.,1997,38,2237-2240.
    [21]NOVAIRA M, BIASUTTI M A. SILBER J J, et al. New insights on the photophysical behavior of PRODAN in anionic and cationic reverse micelles: From which state or states does it emit? [J]. J. Phys. Chem. B,2007,111,748-759.
    [22]CITTERIO D, TAKEDA J. KOSUGI M, et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing [J]. Anal. Chem.,2007,79, 1237-1242.
    [23]WANG J B, QIAN X H. QIAN J H, et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors [J]. Chem.-Eur. J.,2007,13,7543-7552.
    [24]PENG X J, DU J J. FAN J L, et al. A selective fluorescent sensor for imaging Cd2+ in living cells [J]. J. Am. Chem. Soc.,2007,129,1500-1501.
    [25]COSNARD F. WINTGENS V. A new fluoroionophore derived from 4-amino-N-methyl- 1,8-naphthalimide [J]. Tetrahedron Lett.,1998,39, 2751-2754.
    [26]KOLIMANNSBERGER M, RURACK K, RESCH-GENGER U, et al. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation:a new design concept for highly sensitive fluorescent probes [J]. J. Phys. Chem. A,1998,102,10211-10220.
    [27]KOMATSU K, URANO Y, KOJIMA H, et al. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc [J]. J. Am. Chem. Soc.,2007,19,13457-13454.
    [28]BALLESTEROS E, MORENO D, Gomez T, et al. A new selective chromogenic and turn-on fluorogenic probe for copper (Ⅱ) in water-acetonitrile 1:1 solution [J]. Org. Lett.,2009,11,1269-1272.
    [29]-ZHAO Y G, LIN Z H, LIAO H P, et al. A highly selective fluorescent chemosensor for Al3+ derivate from 8-hydroxyquinoline [J]. Inorg. Chem. Commun.,2006,9,966-968.
    [30]KIM J S, CHOI M G, SONG K C, et al. Ratiometric determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide [J]. Org. Lett.,2007,9,1129-1132.
    [31]BOUAS-LAURENT H, CASTELLAN A, DANEY M, et al. Cation-directed photochemistry of an anthraceno-crown ether [J]. J. Am. Chem. Soc.,1986,102, 315-317.
    [32]Park D, Willams J A G. Luminescence behabivour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores [J]. J. Chem. Soc. Perkin. Trans.,1995,1305-1314.
    [33]PARK S Y,YOON J H, HONG C S, et al. A pyrenyl-appended triazole-based calix [4] arene as a fluorescent sensor for Cd2+ and Zn2+[J]. J. Org. Chem.2008, 73,8212-8218.
    [34]LAKOWICZ J R. Principles of fluorescence spectroscopy [M]. Kluwer Academic/Plenum. New York,1999.
    [35]OTHMAN B A, LEE J W, WU J S, et al. Calix [4] arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor [J]. J. Org. Chem.,2007,72,7634-7640.
    [36]LEE M H, QUANG D T. JUNG H S, et al. Ion-induced FRET on-off in fluorescent calix [4] arene [J]. J. Org. Chem.,2007.72,4242-4245.
    [37]LEE M H, KIM H J, YOON S, et al. Metal ion induced FRET off-on in tren/dansyl-appended rhodamine [J]. Org. Lett.,2008.10,213-216.
    [38]ZHOU Z G, YU M X. YANG H. et al. FRET- based sensor for imaging chromium (III) in living cells [J]. Chem. Commun.,2008.3387-3389.
    [39]DUJOLS- V, FORD F, CZARNIK A W. A long-wavelength fluorescent chemodosimeter selective for Cu (Ⅱ) ion in water [J]. J. Am. Chem. Soc.,1997. 119,7386-7387.
    [40]ZHENG H, QIAN Z H, XU L, et al. Switching the recognition preference of rhodami ne B spirolactam by replacing one atom:design of rhodamine B thiohydr azide for recognition of Hg (Ⅱ) in aqueous solution [J]. Org. Lett.,2006,8,859-861.
    [41]ZHAN X Q, QIAN Z H, ZHENG H, et al. Rhodamine thiospirolactone. Highly selecti ye and sensitive reversible sensing of Hg (Ⅱ) [J]. Chem. Commun.,2008,1859-1861.
    [42]CHEN X Q. NAM S W, JOU M J, et al. Hg2+ selective fluorescent and colorimetric sensor:its crystal structure and application to bioimaging [J]. Org. Lett.,2008,10,5235-5238.
    [43]HUANG J H, XU Y F. QIAN X H. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution:a NS2-containing receptor [J]. J. Org. Chem.,2009,74,2167-2170.
    [44]YANG Y K, YOOK K J, TAE J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media [J]. J. Am. Chem. Soc.,2005,127,16760-16761.
    [45]KO S K, YANG Y K, TAE J, et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe [J]. J. Am. Chem. Soc.,2006.128.14150-14155.
    [46]ZHANG X L, XIAO Y, QIAN X H. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells [J]. Angew. Chem. Int. Ed.,2008,47. 8025-8029.
    [47]DU J J, FAN J L, PENG X J, et al. A new fluorescent chemodosimeter for Hg2+ selectivity, sensitivity, and resistance to Cys and GSH [J]. Org. Lett.,2010.12, 476-479.
    [48]YANG H, ZHOU Z G, HUANG K W, et al. Multisignaling optical-electro chemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit [J]. Org. Lett.,2007,9,4729-4732.
    [49]WU D Y, HUANG W, DUAN C Y, et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media [J]. Inorg. Chem.,2007,46, 1538-1540.
    [50]SURESH M, SHRIVASTAV A, MISHRA S, et al. A rhodamine-based chemosensor that works in the biological system [J]. Org. Lett.,2008,10. 3013-3016.
    [51]HU Z Q, LIN C S, WANG X M, et al. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate [J]. Chem. Commun.,2010,46,3765-3767.
    [52]XIANG Y, TONG A J, JIN P Y, et al. New fluorescent rhodamine hydrazone chem. osensor for Cu (II) with high selectivity and sensitivity [J]. Org. Lett.,2006. 8,2863-866.
    [53]YU F B, ZHANG W S, LI P, et al. Cu2+-selective naked-eye and fluorescent probe:its crystal structure and application in bioimaging [J]. Analyst,2009,134, 1826-1833.
    [54]ZHOU Y, WANG F, KIM Y, et al. Cu2+-selective ratiometric and "off-on" sensor based on the rhodamine derivative bearing pyrene group [J]. Org. Lett.,2009,11, 4442-4445.
    [55]ZHAO Y, ZHANG X B, HAN Z X, et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells [J]. Anal. Chem.,2009,81,7022-7030.
    [56]ZHANG J F, ZHOU Y, YOON J. et al. Naphthalimide modified rhodamine derivative:ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches [J]. Org. Lett.,2010,12,3852-3855.
    [57]GUO Z Q, ZHU W H, TIAN H. Hydrophilic copolymer bearing dicyanomethylene-4H-pyran moiety as fluorescent film sensor for Cu2+ and pyrophosphate anion [J]. Macromolecules.2010,43,739-744.
    [58]HU J, LI C, LIU S. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance [J]. Langmuir,2010,26,724-729.
    [59]WANG X, DREW C, LEE S H, et al. Electrospun nanofibrous membranes for highly sensitive optical sensors [J]. Nano Lett.,2002,2,1273-1275.
    [60]HENG L P, WANG X Y, DONG Y Q, et al. Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials [J]. Chem. Asian J.,2008.3, 1041-1045.
    [61]SMITH A M, GAO X. NIE S. Quantum dot nanocrystals for in vivo molecular andcellular imaging [J]. Photochem. Photobiol.,2004,80,377-385.
    [62]MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocry stallit es [J]. J. Am. Chem. Soc.,1993,115,8706-8715.
    [63]HINES M A, GUYOT-SIONNEST P. Synthesis and character-ization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem.,1996,100,468-471.
    [64]PENG Z A. PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc.,2001.123,183-184.
    [65]YU W W, PENG X. Formation of high quality CdS and other II-VI semiconductor nanocrystals in non-coordinating solvent, tunable reactivity of monomers [J]. Angew. Chem. Int. Ed.,2002,41,2368-2371.
    [66]BATTAGLIA D, PENG X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J]. Nano Lett.,2002.2,1027-1030.
    [67]PENG X, MANN L, WICKHAM J, et al. Shape control of CdSe nanocrystals: from dots to rods and back [J]. Nature.2000.404,59-61.
    [68]TALAPIN D V, ROGACH A L. SHEVCHENKO W V. et al. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency [J]. J. Am. Chem. Soc.,2002,124,5782-5790.
    [69]GAPONIK N L, TALAPIN D V, WELLER H, et al. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes [J]. J. Phys. Chem. B,2002,106,7177-7185.
    [70]ROGACH A L, KATSIKAS L, KORNOWSKI A, et al. Synthesis of water-soluble CdTe nanocrystals [J]. Ber. Bunsenges. Phys. Chem.,1996,100, 1772-1778.
    [71]HE Y, SAI L M, LU H T, et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution [J]. Chem. Mater.,2007,19,359-365.
    [72]YANG Y H, JING L H. YU X L, et al. Coating aqueous quantum dots with silica via reverse microemulsion method:toward size-controllable and robust fluorescent nanoparticles [J].Chem. Mater.,2007,19,4123-4128.
    [73]CHEN Y F, ROSENZWEIG Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem.,2002,74,5132-5138.
    [74]WOGGON U. Optical properties of semiconductor quantum dots [M]. Springer: Berlin, Germany,1997.
    [75]WANG Y, TANG Z Y, CORREA-DUARTE M, et al. Mechanism of strong luminescence photoactivation of citrate- stabilized water-soluble nanoparticles with CdSe cores [J]. J. Phys. Chem. B,2004,108,15461-15469.
    [76]MYUNG N, BAE Y, BARD A J. Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states [J]. Nano Lett.,2003,3,747-749.
    [77]REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J]. Nano Lett.,2002,2,781-784.
    [78]CHEN J L, GAO Y C, GUO C, et al. Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg (Ⅱ) in aqueous solution [J]. Spectrochim. Acta, Part A,2008,69,572-579.
    [79]CHEN J L, GAO Y C, XU Z B, et al. A novel fluorescent array for mercury (Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters [J]. Anal. Chim. Acta,2006,577.77-84.
    [80]XIA Y S, ZHU C Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ) [J]. Talanta,2008,75,215-221.
    [81]LIANG A N, WANG L, CHEN H Q, et al. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe [J]. Talanta,2010,81,438-443.
    [82]CAI Z X, YANG H, ZHANG Y, et al. Preparation, characterization and evaluation of water-soluble 1-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg (Ⅱ) in aqueous solution [J]. Anal. Chim. Acta,2006,559. 234-239.
    [83]KONESWARAN M. NARAYANASWAMY R. L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion [J]. Sens. Actuators B,2009,139. 104-109.
    [84]BO C, PING Z. A new determining method of copper (II) ions at ng ml (-1) levels based on quenching of the water-soluble nanocrystals fluorescence [J]. Anal. Bioanal. Chem.,2005,381,986-992.
    [85]FERNANDEZ-ARGUELLES M T, WEI J J, COSTA-FERNANDEZ J M, et al. Surface- modified CdSe quantum dots for the sensitive and selective determination of Cu(Ⅱ) in aqueous solutions by luminescent measurements [J]. Anal. Chim. Acta,2005.549.20-25.
    [86]CHAN Y H, CHEN J X. LIU Q S, et al. Ultrasensitive copper (Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Anal. Chem.,2010,82,3671-3678.
    [87]CALLAN J F. MULROONEY R C. Luminescent detection of Cu (Ⅱ) ions in aqueous solution using CdSe and CdSe-ZnS quantum dots functionalized with mercaptos uccinic acid [J]. Phys. Status Solidi C,2009,6,920-923.
    [88]赖艳,钟萍,俞英.新型量子点的合成及荧光法测定痕量Cu[J].化学试剂,2006,28,135-138.
    [89]XIA Y S, ZHU C Q. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper (Ⅱ) [J]. Analyst,2008,133, 928-932.
    [90]LIU F C, CHEN Y M, LIN J H. et al. Synthesis of highly fluorescent glutathione-capped ZnxHgl-xSe quantum dot and its application for sensing copper ion [J]. J. Colloids Interface Sci.,2009,337,414-419.
    [91]LIANG J. G, AI X P, HE Z K, et al. Functionalized CdSe quantum dots as selective silver ion chemodosimeter [J]. Analyst,2004,129,619-622.
    [92]ALI E M, ZHENG Y G, YU H H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots [J]. Anal. Chem.,2007,79,9452-9458.
    [93]YANG Y H, GAO M Y. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method [J]. Adv. Mater., 2005,17,2354-2357.
    [94]JING L H, YANG C H, QIAO R R, et al. Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method [J]. Chem. Mater.,2010,22, 420-427.
    [95]CAMPOS B B, ALGARRAl M, ALONSO B, et al. Mercury (Ⅱ) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites [J]. Analyst, 2009,134,2447-2452.
    [96]WANG C, ZHAO J W, WANG Y, et al. Sensitive Hg (Ⅱ) ion detection by fluorescent multilayer films fabricated with quantum dots [J]. Sens. Actuators B, 2009,139,476-482.
    [97]YANG X F, GUO X Q, ZHAO Y B. Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite [J]. Talanta,2002,57,883-890.
    [98]HUANG W, ZHU X, WUA D Y, et al. Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media [J]. Dalton Trans.,2009,10457-10465.
    [99]HUANG L, WANG X, XIE G Q, et al. A new rhodamine-based chemosensor for Cu2+ and the study of its behaviour in living cells [J]. Dalton Trans.,2010,39, 7894-7896.
    [100]KWON J Y. JANG Y J. LEE Y J. et al. A highly selective fluorescent chemosensor for Pb2+ [J].J.Am. Chem. Soc.,2005.127.10107-10111.
    [101]KIM J S, QUANG D T. Calixarene-Derived Fluorescent Probes [J].Chem. Rev., 2007,9,3780-3799.
    [102]SUPPAN P. Chemistry and light [M]. The royal society of chemistry: Cambridge, U.K.,1994.
    [103]MCBRYDE W A E. Spectrophotometric determination of equilibrium constants in solution [J]. Talanta.1974.21,979-1004.
    [104]LIKUSSAR W D, BOLTZ F. Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants [J]. Anal. Chem.,1971,43.1265-1272.
    [105]HUANG W, SONG C X, HE C. et al. Recognition preference of rhodamine-thiospirolactams for mercury (II) in aqueous solution [J]. Inorg. Chem.,2009.48, 5061-5072.
    [106]周志国.光化学传感器的设计、合成与应用研究[D].上海:复旦大学,2007.
    [107]ZHANG M, GAO Y H, LI M Y, et al. Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cystine and homocystine [J]. Tetrahedron Lett.,2007.48.3709-3712.
    [108]HUANG K W, YANG H. ZHOU Z G, et al. Multisignal chemosensor for Cr3+ and it application in bioimaging [J]. Org. Lett.,2008.10,2557-2560.
    [109]CHAE M Y, CZARNIK A W. Fluorimetric chemodosimetry. Hg (Ⅱ) and Ag (Ⅰ) indication in water via enhanced fluorescence signalling [J]. J. Am. Chem. Soc., 1992,114,9704-9705.
    [110]ZHANG G, ZHANG D, YIN S, et al.1,3-Dithiole-2-thione derivatives featuring an anthracene unit:new selective chemodosimeters for Hg (Ⅱ) ion [J]. Chem. Commun.2005.2161-2163.
    [111]LIU B. TIAN H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem. Commun.,2005.3156-3158.
    [112]ROS-LIS J, Marcos M D, Martinez-Manez R, et al. A regenerative chemo dosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+Ions [J]. Angew. Chem. Int. Ed.,2005,44, 4405-4407.
    [113]WU J S, HWANG I C, KIM K S, et al. Rhodamine-based Hg2+-selective chemodo simeter in aqueous solution:fluorescent off-on [J]. Org. Lett.,2007,9, 907-910.
    [114]SPANHEL L, HAASE M. WELLER H, et al. Photochemistry of colloidal semicondu ctors surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc.,1987,109,5649-5655.
    [115]VOSSMEYER T, KATSIKAS L, WELLER H. CdS nanoclusters:synthesis characterize ation size dependent oscillator strength temperature shift of the excitonic transition energy and reversible absorbance shift [J]. J. Phys. Chem.,1994.98.7665-7673.
    [116]ROGACH A L, GAO M Y, WELLER H. et al. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals [J]. J. Phys. Chem. B,1999,103,3065-3069.
    [117]GAO M, ROGACH A L. KORNOWSKI A, et al. Strongly photoluminescent CdTe nanocrystals by Proper Surface Modification [J]. J. Phys. Chem. B,1998, 102.8360-8363.
    [118]ZHANG H, ZHOU Z, YANG B, et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J. Phys. Chem. B,2003,107,8-13.
    [119]MAHTAB R, ROGERS J P, MURPHY C J. Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides [J]. J. Am. Chem. Soc.,1995,117,9099-9100.
    [120]NATALIYA N M, NICHOLAS A K, ROGACH A L. et al. Albumin-CdTe nanoparticle bioconjugates preparation structure and interunit energy transfer with antenna effect [J]. Nano Lett.,2001,1,281-285.
    [121]WANG S P, MAMEDOVA N L, CHEN W. et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates[J]. Nano Lett.,2002,2, 817-822.
    [122]KRICKA L J. Miniaturization of analytical systems [J]. Clinical Chemistry, 1998,44.2008-2014.
    [123]PATOLSKY F, GILL R, WEIZMANN Y, et al. Lighting-up the dynamics of telomere zation and DNA replication by CdSe-ZnS quantum dots [J]. J. Am. Chem. Soc.,2003.125,13918-13919.
    [124]WANG D S, HE J B, ROSENZWEIG N, et al. Superparamagnetic Fe2O3 beads-CdSe /ZnS quantum dots core-shell nanocomposite particles for cell separation [J]. Nano Lett.,2004,4,409-413.
    [125]WANG D Y, ROGACH A L. CARUSO F. Semiconductor quantum dot-labeled microsp here bioconjugates prepared by stepwise self-Assembly [J]. Nano Lett., 2002,2,857-861.
    [126]CONSTATINE C A, GATTAS-ASFURA K M, MELLO S V, et al. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon [J]. J. Phys. Chem. B, 2003,107,13762-13764.
    [127]FENG J. SHAN G. MAQUIEIRA A. et al. Functionalized europium oxide nanopartic les used as a fluorescent label in an immunoassay for atrazine [J]. Anal. Chem.,2003,75.5282-5286.
    [128]BACHAND G D, RIVERA S B. BOAL A K, et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins [J]. Nano Lett.,2004.4,817-821.
    [129]HONG R, FISCHER N O, VERMA A. et al. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds [J]. J. Am. Chem. Soc.,2004.126,739-743.
    [130]PINAUD F, KING D, MOORE H P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides [J]. J. Am. Chem. Soc.,2004,126,6115-6123.
    [131]CORREA-DUARTE M A, GIERSIG M, LIZ-MARZAN L M. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedu re [J]. Chem. Phys. Lett.,1998,286.497-501.
    [132]GERION D, PINAUD F, WILLIAMS S C, et al. Synthesis and properties of biocomp atible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J]. J. Phys. Chem. B,2001,105,8861-8871.
    [133]ROGACH A L, NAGESHA D, OSTRANDER J W, et al. Synthesis of "raisin-bun"-type composite nanoparticle spheres [J]. Chem. Mater.,2000,12, 2676-2685.
    [134]LIU Y, CHEN W, JOLY A G, et al. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen [J]. J. Phys. Chem. B,2006,110, 16992-17000.
    [135]KLAYMAN D L, GRIFFIN T S. Reaction of selenium with sodium borohydride-in protic solvents. A facile method for the introduction of selenium into organic molecules [J]. J. Am. Chem. Soc.,1973,95,197-199.
    [136]CHEN Y J, ZHU C L, SHI X L, et al. The synthesis and selective gas sensing characteristics of SnO2/a-Fe2O3 hierarchical nanostructures [J]. Nanotechnology, 2008,19,205603.
    [137]王书刚.无机-有机荧光化合物/聚合物纳米复合材料的制备与表征[D].吉林:吉林大学化学学院,2007.
    [138]ROBERT I N, DHANASEKARAN T, YIMEI C, et al. Synthesis of nanoscale mesoporous silica spheres with controlled particle size [J]. Chem. Mater.,2002,14, 4721-4728.
    [139]CAO X B, LAN X M, GUO Y, et al. From CdTe nanoparticles precoated on silicon substrate to long nanowires and nanoribbons:oriented attachment controlled Growth [J]. Cryst. Growth. Des.,2008,8,575-580.
    [140]GONG C, CHEN D, JIAO X, et al. Continuous hollow a-Fe2O3 and α-Fe fibers prepared by the sol-gel method [J]. J. Mater. Chem.2002,12.1844-1847.
    [141]CHAUDHARI N K, YU J S. Size control synthesis of uniform β-FeOOH to high coercive field porous magnetic a-Fe2O3 nanorods [J]. J. Phys. Chem. C 2008. 112,19957-19962.
    [142]LAKOWICZ J R. Principles of fluorescence spectroscopy [M].3rd ed. Springer: New York.2006.
    [143]HERTURBISE R J. ACHERMAN A H, SMITH B W. Mechanical aspects of the oxygen quenching of the solid-matrix phosphorescence of perdeuterated phenanthrene on partially hydrophobic paper [J]. Appl. Spectrosc.,2001.55, 490-495.
    [144]JIN W J, COSTA-FERNANDEZ J M, PEREIRO R, et al. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination [J]. Anal. Chim. Acta.2004,522,1-8.
    [145]SHI G H. SHANG Z B, WANG Y, et al. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds [J]. Spectrchim. Acta Part A,2008,70,247-252.
    [146]HUFFMAN D L. OHALLORAN T V. Function, structure, and mechanism of intracellular copper trafficking proteins [J]. Ann. Rev. Biochem.,2001,70,677-701.
    [147]FIELD L S, LUK E, CULOTTA V C. Copper chaperones:personal escorts for metal ions [J]. J Bioenerg. Biomembr.,2002,34.373-379.
    [148]MERCER J F B. The molecular basis of copper-transport dieases [J]. Trends Mol.Med., 2001,7,64-69.
    [149]HARRISON M D. DAMERON C T. Molecular mechanisms of copper metabolism and the role of the Menkes diaease protein [J]. J Biochem. Mol. Toxic., 1999,13.93-106.
    [150]STRAUSAK D, MERCER J F B, DIETER H H, et al. Copper in disorders with neurological symptoms:Alzheimer's, Menkes, and Wilson diseases [J]. Brain Res. Bull.,2001,55.175-185.
    [151]WAGGONER D J, BARTNIKAS T B, GITLIN J D. The role of copper in neurode generative disease [J]. Neurobiol. Dis.,1999.6,221-230.
    [152]DENG H, LI X L, PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.,2005,44,2782-2785.
    [153]QI D W, ZHANG H Y, TANG J. et al. Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins [J]. J. Phys. Chem. C 2010,114,9221-9226.
    [154]LI D. XIA Y N. Electrospinning of nanofibers:reinventing the wheel? [J]. Adv. Mater.,2004,16,1151-1170.
    [155]DEIZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nano fibers and textiles [J]. Polymer, 2001,42,261-272.
    [156]DZENIS Y. Spinning continuous fibers for nanotechnology [J]. Science,2004, 304,1917-1919.
    [157]WAN L S, KE B B, WU J, et al. Catalase immobilization on electrospun nanofibers:effects of porphyrin pendants and carbon nanotubes [J]. J. Phys. Chem. C,2007,111,14091-14097.
    [158]HUANG Z, ZHANG Y, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos. Sci. Technol.,2003,63,2223-2253.
    [159]CASPER C L, STEPHENS J S, TASSI N G, et al. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process [J]. Macromolecules,2004,37,573-578.
    [160]YOU Y, MIN B, LEE S J, et al. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly (lactide-co-glycolide) [J]. J. Appl. Polym. Sci., 2005,95,193-200.
    [161]HUANG L, NAGAPUDI K, APKARIAN R P. et al. Engineered collagen-PEO nanofibers and fabrics [J]. J.Biomater. Sci. Polym. Ed.,2001.12,979-993.
    [162]ZHANG Y Z, OUYANG H W, LIM C T, et al. Electrospinning of gelatin fibers and Gelatin/PCL composite fibrous scaffolds [J]. J. Biomed. Mater. Res. Part B, 2005,72,156-165.
    [163]ZENG J, AIGNER A, CZUBAYKO F, et al. Poly(vinyl alcohol) nanofibers by electros pinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings [J]. Biomacromolecules,2005,6,1484-1488.
    [164]DEMIR M M, GULGUN M A. MENCELOGLU Y Z, et al. Palladium nanoparticles by electrospinning from poly (acrylonitrile-co-acrylic acid)-PdCl solutions. Relations between preparation conditions, particle size, and catalytic activity [J]. Macromolecules,2004.37,1787-1792.
    [165]KIM G M, WUTZLER A. RADUSCH H J. et al. One-dimensional arrangement of gold nanoparticles by electrospinning [J]. Chem. Mater..2005.17.4949-4957.
    [166]JIN W J, LEE H K, JEONG E H, et al. Preparation of polymer nanofibers containing silver nanoparticles by using poly (N-vinylpyrrolidone) [J]. Macromol. Rapid. Commun.,2005.26,1903-1907.
    [167]WANG M, SINGH H, HATTON T A, et al. Field-responsive superparamagnetic composite nanofibers by electrospinning [J]. Polymer,2004,45.5505-5514.
    [168]KROHA O, BECKER M, LEHMANN M, et al. Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers-A route to magnetic micromanipulators [J]. Adv. Mater.,2007,19,2483-2485.
    [169]KO F, GOGOTSI Y, ALIA, et al. Electrospinning of continuons carbon nanotube-filled nanofiber yarns [J]. Adv. Mater.,2003,15,1161-1165.
    [170]SEN R. ZHAO B, PEREA D. et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning [J]. Nano Lett.,2004,4,459-464.
    [171]WANG H G, LIU Q W, YANG Q B, et al. Electrospun poly (methyl methacrylate) nanofibers and microparticles [J]. J. Mater. Sci.,2010,45, 1032-1038.
    [172]WU H, LIN D, PAN W. Fabrication, assembly, and electrical characterization of CuO nanofibers [J]. Appl. Phys. Lett.,2006,89,133125.
    [173]LEE S W, LEE H J, CHOI J H. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers [J]. Nano Lett., 2010,10,347-351.
    [174]YOON J, CHA S K, KIM J M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers [J]. J. Am. Chem. Soc.,2007,129,3038-3039.
    [175]CHAE S K. PARK H, YOON J. et al. Polydiacetylene supramolecules in electrospun microfibers:fabrication, micropatterning, and sensor applications [J]. Adv. Mater.,2007,19.521-524.
    [176]TAO S Y, LI G T, YIN J X. Fluorescent nanofibrous membranes for trace detection of TNT vapor [J]. J. Mater. Chem.,2007,17,2730-2736.
    [177]WERTZ J, SCHNEIDERS I. Advantages of nanofibre coating technology [J]. Filtr. Separa.,2009,46,18-20.
    [178]CHEN L P, HONG S G, ZHOU X P, et al. Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for Sonogashira coupling reaction [J]. Catal. Commun.,2008,9,2221-2225.
    [179]SELWYN J E, STEINFELD J I. Aggregation of equilibriums of xanthene dyes [J]. J. Phys. Chem.,1972,76,762-774.
    [180]WONG M M, SCHELLY Z A. Solvent-jump relaxation kinetics of the association of rhodamine type laser dyes [J]. J. Phys. Chem.,1974,78.1891-1895.
    [181]CARBONARO C M, ANEDDA A, GRANDI S, et al. Hybrid materials for solid state dye laser applications [J]. J. Phys. Chem. B,2006,110,12932-12937.
    [182]INNOCENZI P, KOZUKA H, Yoko T. Dimer-to-monomer transformation of rhodamine 6G in sol-gel silica films [J]. J. Non-Cryst. Solids,1996,201,26-36.
    [183]GHANADZADEH A, ZANJANCHI M A. Self-association of rhodamine dyes in different host materials Spectrochim [J]. Spectrochim. Acta. Part A,2001,57, 1865-1871.
    [184]ARBELOA F L, OJEDA P R, ARBELOA I L. Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield [J]. J. Chem. Soc., Faraday Trans.,1988,84,1903-1912.
    [185]COSTELA A, GARCIA-MORENO I, FIGUERA J M. Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G [J]. Appl. Phys. Lett.,1996,68,593.
    [186]PANTELI N, SELISKAR C. Dynamics of rhodamine 6G sorption into a porous tri-block copolymer thin film [J]. J. J. Phys. Chem. C,2007. 111,18595-18604.
    [187]RAO K D, SHARMA K K. Dispersion of the induced optical nonlinearity in rhodamine 6G doped boric acid glass [J]. Opt. Commun.,1995,119.132-138.
    [188]MITANI Y, SHIMADA A, KOSHIHARA S, et al. Role of adsorbed water in diffusion of rhodamine 6G on glass surface [J]. Chem. Phys. Lett.,2006.431. 164-168.
    [189]MEECH S R, YOSHIHARA K. The photoreaction of a rhodamine 6G monolayer adsorbed on quartz studied by surface second harmonic generation [J]. Photochem. Photobiol.,1991,53,627-632.
    [190]ELKING M D, HE G, XU Z. Molecular orientation of submonolayer rhodamine 6G on quartz substrates:A comparative study using reflection and transmission UV-Vis spectroscopy [J]. J. Chem. Phys.,1996,105,6565-6573.
    [191]KANEKO Y, IYI N. BUJDAK J, et al. Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites [J]. J. Colloid Interf. Sci., 2004,269,22-25.
    [192]SALLERES S. LOPEZ ARBELOA F, MARTINEZ V, et al. Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films [J]. J. Colloid Interf. Sci., 2008.321,212-219.
    [193]BLONSKI S. Aggregation of rhodamine 6G in porous silica gels [J]. Chem. Phys. Lett.,1991,184,229-234.
    [194]WANG J F, TSUNG C K, HONG W B. et al. Synthesis of mesoporous silica nanofibers with controlled pore architectures [J]. Chem. Mater.,2004,16, 5169-5181.
    [195]MARLOW F, MCGEHEE M D, ZHAO D Y, et al. Doped mesoporous silica fibers:A new laser material [J]. Adv. Mater.,1999,11,632-636.
    [196]MALFATTI L, KIDCHOB T, AIELLO D, et al. Aggregation states of rhodamine 6G in mesostructured silica films [J]. J. Phys. Chem. C.2008.112. 16225-16230.
    [197]GIBON P, SCHREUDER-GIBSON H. RIVIN D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids Surf. A,2001, 187-188.469-481.
    [198]SASAI R, IYI N, FUJITA T, et al. Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films [J]. Langmuir,2004.20. 4715-4719.
    [199]MALFATTI L, KIDCHOB T. AIELLO D, et al. Aggregation states of rhodamine 6G in mesostructured silica films [J]. J. Phys. Chem. C,2008,112, 16225-16230.
    [200]INNOCENZI P, KOZUKA H, YOLO T. Dimer-to-monomer transformation of rhodamine 6G in sol-gel silica films [J]. J. Non-Cryst. Solids,1996,201,26-36.
    [201]BOJARSKI P, MATCZUK A, BOJARSKI C, et al. Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution [J]. Chem. Phys.,1996, 210,485-499.
    [202]KEMNITZ K, YOSHIBARA K. Entropy-driven dimerization of xanthene dyes in nonpolar solution and temperature dependent fluorescence decay of dimmers [J]. J. Phys. Chem.,1991,95,6095-6104.
    [203]LAI F C, HUANG M, WONG D S. EHD-enhancement drying of partially wetted glass beads [J]. Drying Technol.,2004,22,597-609.
    [204]LI M J, ZHANG J H. ZHANG H. et al. Electrospinning:a facile method to disperse fluorescent quantum dots in nanofibers without forster resonance energy transfer [J]. Adv.Funct. Mater.,2007,17,3650-3656.
    [205]LIN C T. MAHLOUGJI A M, LI L, et al. Molecular aggregation of rhodamine 6G probed by optical and electrochemical techniques [J]. Chem. Phys. Lett.,1992, 193,8-16.
    [206]DEL MONTE F, LEVY D. Formation of fluorescent rhodamine B j-dimers in sol-gel glasses induced by the adsorption geometry on the silica surface [J]. J. Phys. Chem. B,1998,102,8036-8041.
    [207]BOJARDKI P. Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films [J]. Chem. Phys. Lett.,1997,278,225-232.
    [208]SLYADNEVAl O N, SLYADNEV M N, TSUKANOVA V M, et al. Orientation and aggre gation behavior of rhodamine dye in insoluble film at the air-water interface under compression. Second harmonic generation and spectroscopic studies [J]. Langmuir,1999,15,8651-8658.
    [209]KASHA M. RAWLS H R. EL-BAYOUMI M A. The exciton model in molecular spectroscopy [J]. Pure Appl. Chem.,1965,11,371-392.
    [210]KASHA M. Relation between Exciton Bands and Conduction Bands in Molecular Lamellar Systems [J]. Rev. Mod. Phys.,1959,31,162-169.
    [211]DEL MONTE F. FERRER M L, LEVY D. Preferred formation of coplanar inclined fluorescent j-dimers in rhodamine 101 doped silica gels [J]. Langmuir. 2001,17,4812-4817.
    [212]KASHA M. Energy transfer mechanisms and the molecular exciton model for molecular aggregates [J]. Radiat. Res.,1963,20,55-71.
    [213]VOGEL R. HARVEY M. EDWARDS G et al. Dimer-to-monomer transformation of rhodamine 6G in aqueous PEO-PPO-PEO block copolymer solutions [J]. Macromolecules,2002,35,2063-2070.
    [214]WEISSMAN S I. Intramolecular energy transfer:the fluorescence of complexes of europium [J]. J. Chem. Phys.,1942.10.214-217.
    [215]LIU H H, SONG H W. LI S W. et al. Preparation, characterization and photol uminescence properties of ternary europium complexes Eu(DBM)3bath encapsulated into aluminosilicate zeolites [J]. J. Nanosci.Nanotechnol., 2008,8,3959-3966.
    [216]CHEN Y, CHEN Q, SONG L, et al. Preparation and characterization of encapsulation of europium complex into meso-structured silica monoliths using PEG as the template [J]. Micropor. Mesopor. Mater.,2009,122,7-12.
    [217]SEO S J. ZHAO D, SUH K. et al. Synthesis and luminescence properties of mesoph ase silica thin films doped with in-situ formed europium complex [J]. J. Lumin.,2008,128,565-572.
    [218]LIU J L, YAN B. Lanthanide (Eu3+, Tb3+) centered hybrid materials using modified functional bridge chemical bonded with silica:molecular design, physical characterization, and photophysical properties [J]. J. Phys. Chem. B. 2008,112,10898-10907.
    [219]LI Y, YAN B, YANG H. Construction, characterization, and photoluminescence of mesoporous hybrids containing europium (Ⅲ) complexes covalently bonded to SBA-15 directly functionalized by modified β-diketone [J]. J. Phys. Chem. C. 2008,112,3959-3968.
    [220]PENG C Y, ZHANG H J, YU J B, et al. Synthesis, characterization, and luminesce nce properties of the ternary europium complex covalently bonded to mesoporous SBA-15 [J]. J. Phys. Chem. B,2005,109,15278-15287.
    [221]SHUNMUGAM R, TEW G N. Metal ligand containing polymers:building a foundation for functional materials in opto-eletronic applications (with G.N. Tew) [J]. Macromol. Rapid Commun.,2008,29,1355-1362.
    [222]LAI W Y, LEVELL J W, BURN P L, et al. A study on the preparation and photophysical properties of an iridium (Ⅲ)-complexed homopolymer [J]. J. Mater. Chem.,2009,19,4952-4959.
    [223]QIAO X F, YAN B. Hybrid materials of lanthanide centers/functionalized 2-thenoyltrifluoroacetone/silicon-oxygen network/polymeric chain:coordination bonded assembly, physical characterization, and photoluminescence [J]. Inorg. Chem.,2009,48.4714-4723.
    [224]YANG C Y, SRDANOV V, ROBINSON M R, et al. Orienting Eu(dnm)3phen by tensile drawing in polyethylene:polarized Eu3+ emission [J]. Adv. Mater.,2002, 14,980-983.
    [225]ZHANG H, SONG H W, YU H Q, et al. Electrospinning preparation and photolu minescence properties of rare-earth complex/polymer composite fibers [J]. J. Phys. Chem. C,2007,111,6524-6527.
    [226]ZHANG H, SONG H W, YU H Q, et al. Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning [J]. Appl. Phys. Lett.,2007,90,103103 (1-3).
    [227]ZHANG H, SONG H W, DONG B, et al. Electrospinning preparation and lumines cence properties of europium complex/polymer composite fibers [J]. J. Phys. Chem. C,2008,112,9155-9162.
    [228]MCCANN J T, LIM B K, OSTERMANN R, et al. Carbon nanotubes by electrosp inning with a polyelectrolyte and vapor deposition polymerization [J]. Nano Lett.,2007,7,2470-2474.
    [229]KIM C, YANG K S, KOJIMA M. et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries [J]. Adv. Funct.Mater..2006,16.2393-2397.
    [230]CHOWDHURY P S, SAHA S, PATRA A. The role of semiconducting hosts on photolu minescence efficiency of Eu-complex [J]. Chem. Phys. Lett.,2005,405, 393-397.
    [231]MELBY L R, ROSE N J. ABRAMSON E, et al. Synthesis and fluorescence of some trivalent lanthanide complexes [J]. J. Am. Chem. Soc.,1964,86,5117-5125.
    [232]DONG H, PRASAD S, NYAME V. JONES W E. Sub-micrometer conducting polyanili ne tubes prepared from polymer fiber templates [J]. Chem. Mater.,2004, 16,371-373.
    [233]MOYNIHAN S. IACOPINO D. O'CARROLL D. et al. Emission colour tuning in semiconducting polymer nanotubes by energy transfer to organo- lanthanide dopants [J]. Adv. Mater.,2007,19,2474-2479.
    [234]CHANG N C, GRUBER J B. Spectra and energy levels of Eu3+in Y2O3 [J]. J. Chem. Phys.,1964.41,3227-3234.
    [235]MALTA O L, BRITO H F, MENEZES J F S, et al. Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)32(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model [J]. J. Lumin.,1997,75,255-268.
    [236]MURTAGH M T, SHAHRIARI M R. KRIHAK M. A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a Ru (Ⅱ) complex [J]. Chem. Mater.. 1998,10,3862-3869.
    [237]CAO H, GAO X C. HUANG C H. Electroplex emission from a layer of a mixture of a europium complex and tris (8-quinolinolato) aluminum [J]. Appl. Surf. Sci.,2000,161,443-447.
    [238]MALTA O L, COUTO DOS SANTOS M A. Thompson L C. et al. Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)31,10-phenanthroline complex [J]. J. Lumin.,1996,69,77-84.
    [239]CARLOS L D. MESSADDEQ Y, BRITO H F, et al. Full-color phosphors from europium (Ⅲ)-based organosilicates [J]. Adv. Mater.,2000,12,594-598.
    [240]SA FERREIRA R A, CARLOS L D,.GONCALVES R R, et al. Energy-transfer mechanisms and emission quantum yields in Eu3+-based siloxane-poly (oxyethylene) nanohybrids [J]. Chem. Mater.,2001,13,2991-2998.
    [241]SOARES-SANTOS P C R, NOGUEIRA H I S, FELIX V, et al. Novel Lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles [J]. Chem. Mater.,2003,15,100-108.
    [242]TEOTONIO E E S, ESPINOLA J G P, BRITO H F, et al. Influence of the N-[meth ylpyridyl] acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes [J]. Polyhedron,2002,21,1837-1844.
    [243]RIBEIRO S J L, DAHMOUCHE K, RIBEIRO C A, et al. Study of hybrid silica- polyeth yleneglycol xerogels by Eu3+ luminescence spectroscopy [J]. J. Sol-Gel Sci. Technol.,-1998,13,427-432.
    [244]WERTS M H V, JUKES R T F, VERHOEVENerh J W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes [J]. Phys. Chem. Chem. Phys.,2002,4,1542-1548.
    [245]LI Z Y, ZHANG H N, ZHENG W, et al. Highly sensitive and stable humidity nanosensors based on LiCl Doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc.,2008,130,5036-5037.
    [246]Liu H Q, Kameoka J, Czaplewski D A, et al. Polymeric nanowire chemical sensor [J].Nano Lett.,2004,4,671-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700