用户名: 密码: 验证码:
集值映射的广义凸性与集值最优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集值优化理论是优化理论和应用的主要研究领域之一。它的理论和方法被广泛应用于微分包含、变分不等式、最优控制、博弈论、经济平衡问题、环境保护、军事决策等领域。对这一问题的研究涉及到集值分析、凸分析、非线性泛函分析、非光滑分析、偏序理论等学科,因此,对它进行研究有重要的理论价值和实际意义。
     集值优化问题的最优性条件与解集的结构理论在集值优化理论中占有重要的地位。最优性条件是建立优化算法的重要基础。而凸性和广义凸性在优化理论中起着十分重要的作用。所以,集值映射的广义凸性与集值优化问题的最优性条件的研究成为一个热点问题。
     众所周知,集值优化问题的有效解,是关于偏序为非劣意义下的解。因此,这种解的集合一般都相当大,如Geo?rion所见,其中的一些解的性质比较差。所以人们一直致力寻求具有更好形态的有效解–称为真有效解。主要有:超有效解、Benson真有效解、Henig真有效解等。超有效解具有非常好的性质,但是它的存在条件是非常强的。另一方面,为讨论Benson真有效解的标量化、Lagrange乘子、鞍点特征,一般都要求序锥具有紧或弱紧基底。而许多常用的赋范空间中的非负坐标锥都不存在紧或弱紧基底。然而,Henig真有效解既保持了超有效解的主要特征,而存在性条件又比超有效点弱得多;同时它仅要求序锥具有基底。目前,人们对它的研究很少。因此,本论文主要研究集值映射的广义凸性与集值优化问题的Henig真有效性。
     全文共分七章,主要内容如下:
     在第一章,首先,我们简要介绍了集值优化(向量优化)问题的发展概况和研究意义。其次,阐述了集合的弱有效点、有效点、真有效点之间的关系;介绍了本文研究所需的概念和相关结论。最后,在第1.5节,综述了集值映射的广义凸性和集值优化问题的最优性条件、集值优化问题的近似解与集值优化问题的解集的连通性等方向的研究现状。
     在第二章,我们主要研究近似锥次类凸集值映射。首先,我们获得了近似锥次类凸集值映射的一些特征。其次,证明了内部锥类凸集值映射是近似锥次类凸集值映射的特殊情形。最后,我们还得到了近似锥类凸集值映射与内部锥类凸集值映射之间的关系。
     在第三章,我们主要研究集值优化问题的Henig真有效性。首先,我们证明了在局部凸空间中,两种Henig真有效点的定义是等价的;详细讨论了Henig真有效点与Benson真有效点之间的关系;给出了Henig真有效点的存在性条件。其次,刻画了近似锥次类凸集值映射优化问题Henig真有效元的标量化、Lagrange乘子、鞍点特征。作为应用,给出了近似锥次类凸集值映射优化问题超有效元的标量化、Lagrange乘子、鞍点特征。
     在第四章,我们研究弧式锥凸集值映射优化问题Henig真有效性。首先,在第4.2节给出了相关的概念和引理。然后,在第4.3节证明了弧式锥凸集值映射优化问题Henig真有效元的一个重要特性,即局部Henig真有效元也是Henig真有效元;利用锥方向相依导数,获得了弧式锥凸集值映射优化问题Henig真有效元(强有效元)统一的必要条件和充分条件。最后,在第4.4节讨论了集值映射优化问题Henig真有效解集和超有效解集的连通性问题,在目标函数为弧式锥凸集值映射的条件下,证明了Henig真有效解集和超有效解集是连通的。
     在第五章,首先,我们得到了广义锥预不变凸集值映射的一些性质。其次,获得了广义锥预不变凸集值映射优化问题的Henig真有效元、超有效元的充分必要条件;同时建立了广义锥预不变凸集值映射优化问题的真有效性与向量似变分不等式的真有效性之间的密切关系。
     在第六章,我们研究集值优化问题的近似解。首先,我们给出了Tammer’s函数的一种有用的表示形式,得到了拟凸集值映射的一个重要性质。其次,在约束集和目标函数不具备任意广义凸性的条件下,获得集值优化问题近似解的标量化特征,并讨论了非凸集值优化问题的近似解与弱有效解之间的关系。最后,我们证明了拟凸集值映射优化问题近似解集是连通的。
     在第七章,我们总结了全文的主要结果,并提出了一些有待研究的问题。
Set-valued optimization theory is one of the main research fields of optimizationtheory and applications. Its theories and methods are widely used in the areasof di?erential inclusion, variational inequality, optimal control, game theory, eco-nomic equilibrium problem, environmental protection, military decision making,etc. The study of this topic involves many disciplines, such as: set-valued analysis,convex analysis, nonlinear functional analysis, nonsmooth analysis, partial order-ing theory, and so on. Thus, the research for this topic has important theoreticalvalue and practical significance.
     Both optimality condition and the structure theory of solution set of set-valuedoptimization problems are important components in the set-valued optimizationtheory. The optimality condition is an important foundation for developing opti-mization algorithms. And convexity and generalized convexity play a very impor-tant role in the optimization theory. Thus, the research of the generalized convexityof set-valued maps and the optimality conditions of set-valued optimization prob-lems become a hot issue.
     It is well known that e?cient solution of set-valued optimization problem is so-lution in the sense of non-inferiority with respect to partial order. Therefore, gener-ally speaking, the set of solutions will be large, just as Geo?rion observed, some ofthe solution set have poor properties. Then, there has been e?orts to seek e?cientsolutions which possess nice properties–called proper e?cient solution. The mainproper e?cient solutions are: super e?cient solution, Benson proper e?cient solu-tion and Henig proper e?cient solution. The super e?cient solution possess niceproperties. But, the existence condition of super e?cient solution is very strong.Meanwhile, for discussing the scalarization theorem and the Lagrangian multipliertheorem in the sense of the Benson proper e?ciency, we have to require that theordering cone with a compact or weak-compact base. But, many positive cones ofnormal space have not a compact or weak-compact base. However, Henig propersolution has many desirable properties, its existence condition is weaker than thatof super e?cient solutions and the ordering cone only requires a base. So far, thereare a few papers which deal with Henig proper solution. Then, the thesis mainlystudy the generalized convexity of set-valued mappings and Henig proper e?ciencyfor set-valued optimization.
     The thesis is divided into seven chapters, the main contents are as follows:
     In Chapter 1, firstly, we give brief introduction to the development and researchsignificance of set-valued optimization problem. Secondly, the relations amongweak e?cient points, e?cient points and proper e?cient points of a set are given,some concepts and results are presented. Finally, we summarize the developmentof the generalized convexity of set-valued maps and the optimality condition of set-valued optimization problems, the approximate solutions of set-valued optimization problems and the connectedness of the solution set in Section 1.5.
     We study the nearly cone-subconvexlike set-valued maps in Chapter 2. Firstly,some characterizations of nearly cone-subconvexlike set-valued maps are derived.Secondly, we prove the ic-cone-convexlike set-valued maps is special case of thenearly cone-subconvexlike set-valued maps. Finally, the relations between nearlycone-convexlikeness and ic-cone-convexlikeness are also given.
     In Chapter 3, we mainly study Henig proper e?ciency for set-valued optimiza-tion problems. Firstly, we prove that two definitions of Henig proper e?cient pointare equivalent, discuss the relation between Henig proper e?cient points and Ben-son proper e?cient points, and present the existence conditions of Henig propere?cient point. Under the assumption of nearly cone-subconvexlikeness, a scalar-ization theorem, a Lagrange multiplier theorem and two saddle theorems for Henigproper e?cient pair in set-valued optimization problem are established in Section3.3, Section 3.4 and Section 3.5, respectively. As an interesting application of theresults in this chapter, we establish a scalarization theorem , a Lagrange multipliertheorem and a saddle theorem for super e?cient pair in set-valued optimization.
     In Chapter 4, we study Henig proper e?ciency in vector optimization involvingcone-arcwise connected set-valued maps. Firstly, we present some notations andlemmas that are required in the sequel. In Section 4.3, some important propertiesof the cone-arcwise connected set-valued mapping are derived, especially, the globalresult for Henig proper e?cient pair is proven, the unified necessary and su?cientoptimality conditions of Henig proper e?cient pair and strong e?cient pair areobtained by using cone-directed contingent derivative. In Section 4.4, we provethat the set of Henig e?cient solution and the set of super e?cient solution areconnected under objective mappings are cone-arcwise connected set-valued maps.In Chapter 5, firstly, we obtain some properties of the generalized cone-preinvexmapping. Secondly, the necessary and su?cient optimality conditions of Henigproper e?cient pair and super e?cient pair are obtained. Meanwhile, we establishthe closed relationships between proper e?ciency of set-valued optimization andproper e?ciency of vector variational-like inequalities.
     In Chapter 6, we study the approximate solutions for vector optimization prob-lem with set-valued maps. Firstly, we present a useful form of Tammer functionand an important characterization of quasiconvex set-valued map in Section 6.2.Secondly, the scalar characterization of approximate solutions is derive withoutimposing any convexity assumption on objective functions in Section 6.3. The re-lations between approximate solutions and weak e?cient solutions are discussed inSection 6.4. Finally, we prove that the set of approximate solutions is connectedunder objective functions are quasiconvex set-valued maps.
     In Chapter 7, we summarize the main results of the thesis, and put forwardsome issues to be studied.
引文
[1] Arrow K.J., Barankin E.W. and Blackwell D., Admissible points of convex sets,contributions to the theory of games[C]. In: Kuhn H.W. and Tucker A.W., NewJersey: Princeton University Press, 1953: 87-92.
    [2] Aubin J.P. and Cellina A., Di?erential inclusions: set-valued maps and viabilitytheory[M]. Berlin: Springer Verlag, 1984.
    [3] Aubin J.P. and Ekelend I., Applied nonlinear analysis[M]. New York: John Wileyand Sons, 1984.
    [4] Aubin J.P. and Frankowska H., Set-valued analysis[M]. Switzerland: Birkhauser,1990.
    [5] Averel M. and Zang I., Generalized arcwise connected functions and characteri-zations of local-global mimimum properties[J], J. Optim. Theory Appl., 1980, 32:407-425.
    [6] Benson H.P., An improved definition of proper e?ciency for vector maximizationwith respect to cones[J], J. Math. Anal. Appl., 1979, 71: 232-241 .
    [7] Bhatia D. and Mehra A., Lagrangian duality for preinvex set-valued functions[J], J.Math. Anal. Appl., 1997, 214: 599-612.
    [8] Borwein J.M., The geometry of pareto e?ciency over cones[J], Optimization, 1980,11: 235-248.
    [9] Borwein J.M. and Zhuang D.M., Super e?ciency in convex vector optimization[J],ZOR-Methods Models Oper. Res., 1991, 35: 175-184.
    [10] Borwein J M. and Zhuang D.M., Super e?ciency in vector optimization[J], Trans.Amer. Math. Soc., 1993, 338: 105-122.
    [11] Breckner W.W. and Kassay G.A., systematization of convexity concepts for sets andfunctions[J], J. Convex Analysis, 1997, 4: 109-127.
    [12]陈光亚,优化和均衡中的某些问题[J],重庆师范大学学报(自然科学版), 2004,21: 1-3.
    [13] Chen G.Y., Existence of solutions for a vector variational inequality: An extensionof Hartman-Stampacchia theorem[J], J. Optim. Theory Appl., 1992, 74: 445-456.
    [14] Chen G.Y., Huang X.X. and Yang X.Q., Vector Optimization: Set-valued and Vari-ational Analysis[M]. Lecture Notes in Economics and Mathematical Systems, Vol.541, Springer, 2005.
    [15] Chen G.Y. and Jahn J., Special issue on”Set-valued optimization”: Editors’pref-ace[J], Math. Methods Oper. Res., 1998, 48: 151-152.
    [16] Chen G.Y. and Jahn J., Optimality conditions of set-valued optimization problem[J],Math. Methods Oper. Res., 1998, 48: 187-200.
    [17] Chen G.Y. and Yang X.Q., The vector complementarity problem and its equivalenceswith weak minimal elements[J], J. Math. Anal. Appl., 1990, 153: 136-158.
    [18] Chen G.Y. and Yang X.Q., Characterizations of variable damination structures vianonliear scalarization[J], J. Optim. Theory Appl., 2002, 112: 97-110.
    [19] Chen G.Y., Yang X.Q. and Yu H., A nonlinear scalarization function and generalizedquasi-vector equilibrium problems[J], J. Global Optim., 2005, 32: 451-466.
    [20] Choo E.U., Schaible S. and Chew K.P., Connectedness of the efcient set in three-criteria quasiconcave programming[J], Cahiers du Centre d’Etudes de RechercheOperationnelle, 1985, 27: 213-220,
    [21] Clarke F. H., Optimization and nonsmooth analysis[M]. New York: John Willy andSons, 1983.
    [22] Corley H.W., Existence and Lagrange duality for maximization of set-valued func-tions[J], J. Optim. Theory Appl., 1987, 54: 489-501.
    [23] Corley H.W., Optimality conditions for maximizations of set-valued functions[J], J.Optim. Theory Appl., 1988, 58: 1-10.
    [24] Dauer J.P. and Gallagher R.J., Positive proper e?cient points and related coneresults in vector optimization theory[J], SIAM J. Control Optim., 1990, 28, 158-172.
    [25] Dauer J.P. and Saleh O.A., A characterization of proper minimal points as solutionsof sublinear optimization problems[J], J. Math. Anal. Appl. 1993, 178: 227-246.
    [26] Debreu G., Representation of a preference ordering by a numerical function[C]. In:Thrall R.M., Coombs C.H. and Davis R.L., Decision processes. New York: JohnWiley and Sons, 1954: 159-165.
    [27] Deng S., On appoximate solutions in convex vector optimization[J], SIAM J. ControlOptim., 1997, 35, 2128-2136.
    [28] Dutta J. and Vetrivel V., On appoximate minima in vector optimization[J], Numer.Funct. Anal. Optim. 2001, 22, 845-859.
    [29] Ferrero O., Theorems of the alternative for set-valued functions in infinite- dimen-sional spaces[J], Optimization, 1989, 20: 167-175.
    [30]傅万涛,集值映射多目标规划问题的解集的连通性[J],高校应用数学学报(A辑), 1994, 9: 321-327.
    [31]傅万涛,周昆平,无限维空间拟凸映射多目标最优化问题解集的连通性[J],应用数学学报, 1997, 20: 137-145.
    [32] Geo?rion A.M., Proper e?ciency and the theory of vector maximization[J], J. Math.Anal. Appl., 1968, 22: 618-630.
    [33] Gerth C. and Weidner P., Nonconvex separation theorem and some applications invector optimization[J], J. Optim. Theory Appl., 1990, 67: 297-320.
    [34] Giannessi F., Theorems of alternative,quadratic programs and complementarityproblems[C]. In: Cottle R.W., Giannessi F. and Lions J.L., Variational Inequal-ity and complementary problems, New York: Wiley, 1980: 151-186.
    [35] Giannessi F., On Minty variational inequality principle, New trends in mathematicalprogramming[M], Dordrecht: Kluwer Academic Publishers, 1997.
    [36] Giannessi F., Vector variational inequality and vector equilibria, mathematical the-ories[M]. Nonconvex Optimizatin and its Applications, Vol. 38, Dordrecht: KluwerAcademic Publishers, 2000.
    [37] Gong X.H., Connectedness of e?cient solution sets for set-valued maps in normedspacs[J], J. Optim. Theory Appl., 1994, 83: 83-96.
    [38] Gong X.H., Connectedness of super e?cient solution sets for set-valued maps inBanach spacs[J], Math. Methods Oper. Res., 1996, 44: 135-145.
    [39] Gong X.H., Dong H. B. and Wang S. Y., Optimality conditions for proper e?cientsolutions of vector set-valued optimization[J], J. Math. Anal. Appl., 2003, 284: 332-350.
    [40] Gong X.H., Optimality conditions for Henig and globally proper e?cient solutionswith ordering cone has empty interior[J], J. Math. Anal. Appl., 2005, 307: 12-31.
    [41] Gong X.H., Optimality conditions for vector equilibrium problems[J], J. Math. Anal.Appl., 2008, 342: 1455-1466.
    [42] Guerraggio A., Molho E. and Za?aroni A., On the notion of proper e?ciency invector optimization[J], J. Optim. Theory Appl., 1994, 82: 1-21.
    [43] Gutierrez C., Jimenez B. and Novo V., A unified approach and optimality conditionsfor appoximate solutions of vector optimization problems[J], SIAM J. Optim., 2006,17: 688-710.
    [44] Hurwicz L., Programming in linear spaces[C]. In: Arrow K.J., Harwicz L. and UzawaH., Studies in linear and nonlinear programming, California: Standford UniversityPress, 1958. Second printing, London: Oxford University Press, 1964: 38-102.
    [45] Helbig S., On the connectedness of the set of weakly e?cient points of a vectoroptimization problem in locally convex spaces[J], J. Optim. Theory Appl., 1990, 65:256-270.
    [46] Henig M.I., Proper e?ciency with respect to cones[J], J. Optim. Theory Appl., 1982,36: 387-407.
    [47] Hiriart-Urruty J.B., Images of connected sets by semicontinuous multifunctions[J],J. Math. Anal. Appl., 111: 407-422.
    [48]胡毓达,胡一凡,锥拟凸与拓扑向量空间多目标最优化有效解集和弱有效解集的连通性[J],应用数学学报, 1989, 12: 115-123.
    [49]胡毓达,多目标规划有效性理论[M].上海:上海科学技术出版社, 1994.
    [50] Hu Y.D. and Sun E.J., Connectedness of the efcient set in strictly quasi- concavevector maximization[J], J. Optim. Theory Appl., 1993, 78: 613-622.
    [51] Jahn J., Mathematical vector optimization in partially order linear spaces[M]. Frank-furt: Verlag Peter Lang, 1986.
    [52] Jahn J. and Rauh R., Contigent epiderivatives and set-valued optimization[J], Math.Methods Oper. Res., 1997, 46: 193-211.
    [53] Jameson G., Order linear spaces[M]. Lecture Notes in Math. Vol. 141, Berlin:springs, 1970.
    [54] Jeyakumar V., Convexlike alternative theorems and mathematical programming[J],Optimization, 1985, 16: 643-652.
    [55] Johnsen Z., Studies in multiobjective decision models[M]. Lund Sweden: EconomicResearch Center in Lund, 1968.
    [56] Koopmans T.C., Analysis of production as an e?cient combination of activities[C].In: Koopmans T.C. Activity analysis of production and allocation, Cowles Com-mission Mongraph Vol. 13. New York: John Wiley and Sons, 1951: 33-97.
    [57] Kuhn H.W. and Tucker A.W., Nonlinear analysis[C]. In: Proceeding of the secondBerley Symposium on mathematical statisties and probability, California: Univer-sity of California press, 1951: 481-492.
    [58] Kutateladze S.S., Convexε-programming[J], Soviet Math. Dokl., 1979, 20: 391-393.
    [59] Klein K. and Thompson A.C., Theory of correspondences[M]. New York: JohnWiley, 1984.
    [60] Lalitha C.S., Dutta J. and Govll M.G., Optimality criteria in set-valued optimiza-tion[J], J. Aust. Math. Soc., 2003, 75: 221-231.
    [61]李雷,吴从忻,集值分析[M].北京:科学出版社, 2003.
    [62] Li Z.F., Benson proper e?ciency in the vector optimization of set-valued maps[J],J. Optim. Theory Appl., 1998, 98: 623-649.
    [63] Li Z.F and Chen G.Y., Lagrangian multipliers, saddle points and duality in vectoroptimization of set-valued maps[J], J. Math. Anal. Appl., 1997, 215: 297-316.
    [64] Li Z.F and Wang, S.Y., Connectedness of super e?cient sets in vector optimizationof set-valued maps[J], Math. Methods Oper. Res., 1998, 48: 207-217.
    [65] Li Z., Theorem of the alternative and its application to the optimization of set-valuedmaps[J], J. Optim. Theory Appl., 1999, 100: 365-375.
    [66] Lin L.J., Optimization of set-valued functions[J], J. Math. Anal. Appl., 1994, 186:30-51.
    [67]林挫云,董加礼,多目标优化的方法与理论[M].长春:吉林教育出版社, 1992.
    [68]凌晨,集值映射向量优化问题的ε-超有效解(英文)[J],运筹学学报, 2001, 5:51-56.
    [69]凌晨,集值映射向量优化问题的ε-超鞍点和ε-对偶定理(英文)[J],运筹学学报, 2002, 6: 53-60.
    [70]凌晨,锥上半连续锥拟凸集值映射多目标优化超有效解集的连通性[J],系统科学与数学, 2003, 23: 163-169.
    [71] Liu W. and Gong X.H., Proper e?ciency for set-valued vector optimization problemand vector variational inequalities[J], Math. Methods Oper. Res., 2000, 51: 443-457.
    [72] Loridan P.,ε-solution in vector minimization problems[J], J. Optim. Theory Appl.,1984, 43: 265-272.
    [73] Luc D.T., Theory of vector optimization[M]. Lecture in economics and mathematicalsystem 319, Berlin: Springer Verlag, 1989.
    [74] Luc, D.T., Contingent derivaties of set-valued maps and applications to vector op-timization[J], Math. Programming, 1991, 50: 99-111.
    [75] Luc D.T., A saddlepoint theorem for set-valued maps[J], Nonlinear Anal. TheoryMethods Appl., 1992, 18: 1-7.
    [76] Mehra A., Super e?ciency in vector optimization with neraly convexlike set-valuedmaps[J]. J. Math. Anal. Appl., 2002, 276: 815-832.
    [77] Naccache P.H., Connectedness of the set of nondominated outcomes in multicriteriaoptimization[J], J. Optim. Theory Appl., 1978, 25: 459-467.
    [78] Neumann V. and Morgenstern J., Theory of game and economic behavior[M].Princeton: Princeton University Press, 1953.
    [79] Paeck S., Convexlike and concavelike conditions in alternative, minimax, and mini-mization theorems[J], J. Optim. Theory Appl., 1992, 14: 317-332.
    [80] Pareto V., Manuale di economic politica[M]. Milano: Societ a Editrice Linraria,1906.
    [81] Qiu J.H., Cone-directied contingent derivatives and generalized preinvex set-valuedoptimization[J], Acta Mathematica Scientia, 2007, 27B: 211-218.
    [82] Qiu Q.S., Henig e?ciency in vector optimization with nearly cone-subconvexlikeset-valued functions[J], Acta Mathematicae Applicatae Sinica, 2007, 23: 319-328.
    [83]仇秋生,集值优化问题的真有效性与向量似变分不等式,南昌大学学报(理科版), 2008, 32: 330-336.
    [84]仇秋生,傅万涛,集值映射最优化问题超有效解的连通性[J],系统科学与数学,2002, 22: 107-114.
    [85] Qiu qiusheng, Yang xinmin, Some Characterizations of Nearly Cone-SubconvexlikeSet-Valued Functions, J. Optim. Theory Appl.(to appear).
    [86] Qiu qiusheng, Yang xinmin, Some properties of approximative solutions for vectoroptimization problem with set-valued functions, J. Global Optimization (已录用).
    [87] Qiu qiusheng, Yang xinmin, Connectedness and optimality conditions for Henige?ciency in set-valued optimization problem, Pacific Journal of Optimization (toappear).
    [88] Robertson A.P. and Robertson W.J., Topological vector space[M]. London: Cam-bridge University Press, 1964.
    [89] Rong W.D. and Wu Y.N., Characterization of super e?ciency in cone-convex-likevector optimization with set-valued maps[J], Math. Methods Oper. Res., 1998, 48:247-258.
    [90] Rong W.D. and Wu Y.N.,ε-weak minimal solutions of vector optimization problemwith set-alued maps[J], J. Optim. Theory Appl., 2000, 106: 569-579.
    [91] Sach P.H., Nearly subconvexlike set-valued maps and vector optimization prob-lems[J], J. Optim. Theory Appl., 2003, 119: 335-356.
    [92] Sach P.H., New generalized convexity notion for set-valued maps and application tovector optimization[J], J. Optim.Theory Appl., 2005, 125: 157-179.
    [93] Schaible S., Bicriteria quasiconcave programs[J], Cahiers du Centre d’Etude deRecherche Operationnelle, 1983, 25: 93-101.
    [94]盛宝怀,刘三阳, Benson真有效意义下集值优化的广义最优性条件[J],数学学报, 2003, 46: 611-620.
    [95] Staib T., A generalization of Pareto minimality[J], J. Optim. Theory Appl., 1988,59: 289-306.
    [96] Song W., Lagrangian duality for minimization of nonconvex multifunctions[J], J.Optim. Theory Appl., 1997, 93: 167-182.
    [97] Sun E.J., On the Connectedness of the e?cient set for strictly quasiconvex vectorminimization problems[J], J. Optim. Theory Appl., 1996, 89: 475-581.
    [98] Tammer C., Stability results for approximately e?cient solution[J], OR Spectrum,1994, 16: 47-52.
    [99] Tanaka T., A new approach to approximation of solutions in vector optimizationproblems[C]. In: Fushimi M. and Tone K., Proceedings of APORS, 1994, Singapore:World Scientific Publishing, 1995: 497-504.
    [100] Tanaka T. and Kuroiwa D., Some general conditions assuring intA + B = int(A +B)[J], Applied Mathematics Letters, 1993, 6: 51-53.
    [101] Valyi, I., Approximate saddle-point theoremss in vecotr optimization[J], J. Optim.Theory Appl., 1987, 55: 435-448.
    [102] Warburton M.R., Quasiconcave vector maximization: connectedness of the sets ofPareto-optimal and weak Pareto-optimal alternatives[J], J. Optim. Theory Appl.,1983, 40: 537-557.
    [103] White D.J., Epsilon e?ciency[J], J. Optim. Theory Appl., 1986, 49: 319-337.
    [104] Xu Y.H. and Liu S.Y., Super e?ciency in the nearly cone-subconvexlike vectoroptimization with set-valued functions[J], Acta Mathematica Scientia, 2005, 25B:152-160.
    [105] Xu Y.H. and Zhu C.X., On Super e?ciency in set-valued optimization in locallyconvex spaces[J], Bull. Austral. Math. Soc., 2005, 71: 183-192.
    [106] Yang X.Q., Vector variational inequality and vector pseudolinear optimization[J],J. Optim. Theory Appl., 1997, 95: 729-734.
    [107] Yang X.Q. and Goh C.J., On vector variational inequality: application to vectorequilibria[J], J. Optim. Theory Appl., 1997, 95: 431-443.
    [108] Yang X.Q. and Zheng X.Y., Approximate solution and optimality conditions ofvector variational inequalities in Banach spaces[J], J. Glob. Optim., 2008, 40: 455-462.
    [109] Yang X.M., Li D. and Wang S.Y., Near-subconvexlikeness in vector optimizationwith set-valued functions[J], J. Optim. Theory Appl., 2001, 110: 413-427.
    [110] Yang X.M. and Yang X.Q., Vector variational-like inequality and pseudoinvexity[J],Optimization, 2006, 55: 157-170.
    [111] Yang X.M., Yang X.Q. and Chen G.Y., Theorems of the alternative and optimiza-tion with set-valued maps[J], J. Optim. Theory Appl., 2000, 107: 627-640.
    [112] Zalinescu C., Convex analysis in general vector space[M]. Singapore: World Scien-tific Publishing Co. Pte. Ltd., 2002.
    [113] Zeleny M., Multiple criteria decision making[M]. Kyoto, 1975.
    [114] Zheng X.Y., The domination property for e?ciency in locally convex spaces[J], J.Math. Anal. Appl., 1997, 213: 455-467.
    [115] Zheng X.Y., Proper e?ciency in locally convex topological vector spaces[J], J.Optim. Theory Appl., 1997, 94: 469-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700