用户名: 密码: 验证码:
通信信号盲分离方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达、通信等各类电子系统的广泛应用,形成了时域高度密集、频谱严重混叠的复杂电磁环境,使得各类合作/非合作通信系统接收到时频重叠混合信号的概率大大增大。为了完成感兴趣的源信号的参数估计和信息提取,必须首先从混合信号中准确分离出源信号。盲信号分离(Blind Signal Separation, BSS),可以从观测到的混合信号中恢复出无法直接观测到的源信号。利用BSS方法可以大大提高各类通信系统对复杂电磁环境的适应能力,具有重要的实际意义。本文根据不同的接收阵列结构以及源信号否为稀疏信号的情况,分别针对特定阵列稀疏信号的欠定波达方向(Direction-of-Arrival, DOA)估计和盲分离、特定阵列非稀疏信号的欠定DOA估计和盲分离、任意阵列的欠定盲分离以及特定目标信号盲提取四个方面的问题进行了深入研究。主要研究内容概括如下:
     第二章研究了特定阵列且源信号是稀疏信号的欠定DOA估计和盲分离问题。假设任意时频邻域内同时存在的源信号数目小于阵元数目,提出了基于稀疏重构和聚类验证的源个数、DOA与信号波形联合估计算法。首先将信号的时频支撑域划分成若干不相交的时频邻域,利用稀疏重构算法估计出每个时频邻域内不为零的源信号的DOA及其对应的时频域波形,然后利用聚类验证方法对所有时频邻域的DOA估计结果进行聚类分析,从而完成源个数和所有源信号DOA的联合估计。最后,根据DOA完成整个时频域上不同源信号波形的拼接,并通过逆变换求解源信号的时域波形。本章算法充分利用了源信号的时频稀疏性,同时实现了欠定混合条件下源个数、DOA以及信号波形的估计。在DOA估计方面,相比基于高阶累积量的欠定DOA估计算法,所需的样本点数更少,估计精度更高。相比基于聚类的欠定DOA估计方法,放宽了对源信号的稀疏性要求并克服了要求事先已知源个数的不足。在源信号分离方面,由于算法可以准确估计任意时频邻域内同时存在的源信号数目,相比具有相同稀疏性假设的子空间投影算法,提高了源信号的估计性能。仿真结果验证了算法的有效性。
     第三章研究了特定阵列且源信号是非稀疏信号的欠定DOA估计和盲分离问题,提出了基于拓展循环自相关矩阵联合对角化的欠定DOA估计算法。首先计算信号在不同循环频率、不同时延处的循环自相关矩阵,利用代数方法将同一循环频率、不同时延处的循环自相关矩阵表示成拓展循环自相关矩阵形式,从而得到一组不同循环频率的拓展循环自相关矩阵集合;然后,利用联合对角化的方法估计出信号子空间和噪声子空间;最后根据子空间类方法估计出源信号的DOA。该算法通过代数手段实现了阵列的虚拟扩展,不要求源信号在时频域是稀疏的,可以有效地实现欠定条件下非稀疏源信号的DOA估计。同时,由于联合利用了多个不同循环频率的拓展循环自相关矩阵,显著提高了算法的DOA估计精度以及对色噪声的适应能力。在估计出源信号的DOA的基础上,提出了基于期望最大化和时频域最优波束形成的欠定盲分离算法。通过期望最大化算法估计出不同时频邻域内的各源信号和噪声的概率分布参数,在此基础上分别求解不同时频邻域内各源信号对应的最优波束形成器以完成源信号的分离。该算法充分利用了源信号和噪声的概率分布信息,可以有效实现欠定条件下非稀疏源信号的分离。仿真结果表明本章算法可以有效完成欠定条件下非稀疏源信号的DOA估计及盲分离。
     第四章研究了任意阵列的欠定盲分离问题。假设所有源信号均存在时频单源点且任意时频邻域内同时存在的源信号数目不大于阵元数目,提出了基于时频单源点检测以及改进的矩阵对角化的欠定盲分离算法。首先计算混合信号的时频比矩阵,对时频比矩阵的实部和虚部进行直方图统计以完成时频单源点的检测。然后利用基于k均值的聚类验证算法对时频单源点集对应的奇异向量进行聚类分析从而完成源个数和混合矩阵的联合估计。该混合矩阵估计算法有两个优点:一是放宽了对源信号的稀疏性要求,只要求源信号存在离散的时频单源点;二是源个数估计过程中人工参数少且容易设置。在估计出混合矩阵后,针对单源邻域通过子空间投影算法估计该时频邻域内源信号对应的混合矢量;针对多源邻域,通过度量协方差矩阵对角线元素与非对角线元素之间的差异估计该时频邻域内不为零的源信号个数及其对应的混合矩阵。最后通过求解各时频邻域上混合矩阵的伪逆估计出源信号。由于该算法可以准确估计出任意时频邻域内同时存在的源信号数目,克服了原有方法设定固定的源数目而导致分离性能下降的不足。仿真结果验证了算法的有效性。
     第五章研究了适定/超定条件下特定目标信号的盲提取问题。将基于线性瞬时混合模型的约束独立分量分析理论框架推广到线性延迟混合模型,总结了约束的类型和来源,并提出了两类新的求解方法。在此基础上,利用目标信号的循环平稳特性提出了基于循环平稳约束的盲信号提取算法并分析了算法的收敛条件以及约束条件中的人工参数的选取依据;利用目标信号波达方向信息提出了基于空域约束的盲信号提取算法并分析了算法的收敛条件以及约束条件中的人工参数的选取依据。由于约束独立分量分析算法将目标信号的先验信息与独立分量分析算法的学习过程相结合,保证算法可以收敛到满足约束条件的极值点,有效解决了盲信号分离存在的顺序模糊性问题,并提高了目标源信号的估计性能。仿真结果验证了算法的有效性。
The extensive use of the radar, communication and other electronic equipmentsmakes the electromagnetic environment more and more complex, where large numbersof signals are overlapped in the frequency domain at any same time. Thus, theprobability of receiving mixing signals overlapping in the time frequency domain byvarious communication systems increases dramatically. In order to estimate theparameters and extract the information from the signals of interest, the correspondingsignals must be separated from the mixtures firstly. Blind source separation (BSS) is asignal processing technique that consists of retrieving n unobservable sources fromm linear combinations provided by sensors. The adaption ability of the communicationsystems can be greatly improved by utilizing the BSS methods, which consists of majorsignificance in practical field. This paper is aiming to investigate the following fourproblems according to two different factors (e.g., the reception structure of multiplesensors and the sparseness property of signals):1) the problems related to both the DOAestimation and BSS for sparse signals based on controlled sensor arrangement;2) theproblems related to both the DOA estimation and BSS for non-sparse signals based oncontrolled sensor arrangement;3) the problems of BSS based on random receptionstructure of multiple sensors;4) the problems of extraction of the specific target signals.The content of the dissertation is as follows.
     In chapter2, the problem related to both the DOA estimation and BSS, whichconsists in estimating the waveforms of signals and their physical directions ofpropagation and given a controlled sensor arrangement is investigated. A novelunderdetermined number of sources, DOA and waveforms of sources estimationalgorithm in the TF domain is proposed under the assumption that the number ofsources is less than that of sensors in each time frequency partition domain by utilizingthe concept and method of sparse signal representation. Firstly, partition the timefrequency support domain of the sources into disjointed time frequency neighborhoods,and estimate the DOA and the corresponding waveform of the active sources in eachtime frequency neighborhood domain by the sparse reconstruction method, and thenestimate the number of the source signals and the their DOA simultaneously by thecluster validation technique based on k-means clustering algorithm. Finally, the timefrequency transformation of each signal can be obtained by splicing the estimated resultin each time frequency partition domain while the permutation problem betweendifferent time frequency partition domain can be solved by the utilization of the DOAinformation and then the waveforms in the time domain of the source signals can beobtained by the inverse transform. The proposed algorithm can estimate the number of sources, the DOAs and waveforms of the source signals simultaneously in theunderdetermined case and the major advantages of the proposed algorithm are asfollows:1) Compared with the clustering-based DOA estimation algorithms, theproposed algorithm relaxes the necessary condition that the number of the signals is lessthan that of the sensors. Moreover, the number of the signals needs not to be known as apriori and can be obtained along with the DOA estimation process. Compared with thehigh-order cumulants based DOA estimation algorithms, the proposed algorithmrequires less number of samples and achieves higher DOA estimation accuracy.2) Theproposed algorithm provides better performance in separating source signals than thesubspace-based method which requires the same sparseness assumption as that in theproposed algorithm since it can estimate the number of active sources at any timefrequency partition domain. The simulation results show the efficacy and accuracy ofthe proposed algorithms.
     In chapter3, the problem related to both the DOA estimation and BSS, whichconsists in estimating the waveforms of signals and their physical directions ofpropagation and given a controlled sensor arrangement is investigated, where the sourcesignals are not sparse in time or time frequency domain. A new method fordirection-of-arrival (DOA) estimation of cyclostationary signals is proposed. Based on ajoint diagonalization of combined set of extended cyclic autocorrelation matrices, theproposed DOA estimation algorithm can address for the underdetermined case. Firstly,calculate cyclic correlation matrix of the mixtures corresponding to different cyclefrequencies and time lags, stack the cyclic correlation matrices with the same cyclefrequency and different time lags into the extended cyclic correlation matrix form byalgebraic method. Then estimate the signal subspaces and the noise subspaces by jointdiagonalize a set of extended cyclic correlation matrices with different cycle frequencies.Finally estimate the DOAs by the conventional subspace-like methods. The proposedDOA estimation algorithm does not require the source signals to be sparse in the timefrequency domain and can estimate the DOAs in the underdetermined case bygenerating a virtual of both the effective aperture and the number of sensors of theconsidered array through the algebraic method. Furthermore, it is insensitive to thespatially correlated noise and its estimation performance can be improved greatly byutilizing multiple extended cyclic autocorrelation matrices of source signals. After theestimation of DOAs, a new method for source separation based on ExpectationMaximization (EM) algorithm and optimum beamforming in the time frequency domainis proposed. The source signals in each time frequency neighborhood can be extractedby obtaining the corresponding optimum beamformers. The probability densityparameters of the sources and noise required in the calculation of the optimumbeamformers can be estimated by the expectation maximization method. Simulationresults confirm the validity and high performance of the proposed algorithm.
     In chapter4, the problem of underdetermined BSS in the case that the receptionstructure of multiple channels is random is investigated. A novel underdeterminedseparation algorithm based on single source point detection and improved matrixdiagonalization is proposed in the case of that there should be some single source pointsfor each source and the number of active sources at any time frequency neighborhooddoes not exceed that of sensors. Firstly, calculate the time frequency ratio matrix of themixtures and detect single source point of each source signal by hist stat. of the real partand imag part of the time frequency ratio matrix, then estimate the number of the sourcesignals and the mixing matrix simultaneously by clustering the mixing vectors in thecorresponding single source point set by utilizing the cluster validation technique basedon k-means clustering algorithm. The proposed mixing matrix estimation algorithm hastwo major advantanges:1) relaxes the sparsity requirement of the source signals and canestimate the mixing matrix under the assumption that there exist disjointed single sourcepoints for each source signal.2) user-parameters in the estimation process of number ofsources are easy to set. After the mixing matrix has been estimated, the source signalscan be obtained by the improved matrix diagonalization algorithm. For the single sourceneighborhood, the corresponding mixing vector can be obtained by the subspaceprojection method, and for the multiple source neighborhood where there are more thanone active sources, the corresponding mixing matrix can be obtained by measuring thedifferences between the diagonal elements and non-diagonal elements of the covariancematrix. Finally, the source signals in each time frequency neighborhood can beestimated by calculating the peuside inverse of the corresponding mixing matrix. Theproposed algorithm improves the accuracy over the matrix diagonalization basedalgorithm via estimating the number of active sources at any time frequencyneighborhood. Simulation results confirm the validity and high performance of theproposed algorithm.
     In chapter5, the problem of the specific signal extraction in theoverdetermined/determined case is investigated. The constrained independentcomponent analysis (CICA) framework under the linear instantaneous mixing model isgeneralized to the linear delayed mixing model, the types and the sources of theconstraints are summarized, and two novel solutions to the CICA framework areproposed. Based on the new CICA framework, two new CICA algorithms are proposedby utilizing different prior information of the communication signals. One is CICAalgorithm with cyclosationary constraint which exploits the cyclostationary property ofthe target signals as prior information. The convergence condition and the selectionrules of user parameters are analyzed. The other is CICA algorithm with spatialconstraint which exploits the spatial information corresponding to the Directions ofArrival (DOAs) of the SOIs as prior information. The convergence condition and theselection rules of user parameters are analyzed. The CICA algorithms incorporate the a priori information about the desired signal as the additional constraints into theconventional ICA learning process and means that only a single statisticallyindependent component will be extracted for the given constraint, which effectivelysolve the order ambiguities in conventional BSS problem. The correspondingexperiment results show the efficacy and accuracy of the proposed algorithms.
引文
[1] Amit Kalhan, Ramon Khalona, Henry Chang, et al. Systems and methods forblind source separation of wireless communication signals [P]. United StatesPatent: US2006/0045572A1,2006-05-02.
    [2] Mark Dankberg. Paired Carrier Multiple Access (PCMA) for SatelliteCommunications [C]. Pacific Telecommunications Conference, Honolulu,Hawaii,1998.
    [3]余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社,2011.
    [4] R. Schmidt. Multiple emitter location and signal parameter estimation [J]. IEEETransactions on Antenna Propagation,1986,34(2):276-280.
    [5] R. Roy, T. Kailath. Esprit-estimation of signal parameters via rotationalinvariance techniques [J]. IEEE Transactions on Acoustic Speech SignalProcessing,1989,37(7):984-995.
    [6] I. Ziskind, M. Wax. Maximum likelihood localization of multiple sources byalternating projection [J]. IEEE Transactions on Acoustic Speech SignalProcessing,1988,36(10):1553-1590.
    [7] Karabulut G Z, Kurt T, Yongacoglu A. Estimation of directions of arrival bymatching pursuit (EDAMP)[J]. EURASIP Journal on Wireless Communicationsand Networking,2005,2:197-205.
    [8] Cotter S F. Multiple snapshot matching pursuit for direction of arrival (DOA)estimation [C].15thEuropean Signal Processing Conference, Poznan, Poland,2007:247-251.
    [9] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data usingFOCUSS: A re-weighted minimum norm algorithm [J]. IEEE Trans. SignalProcessing,1997,45(3):600-613.
    [10] Fuchs J J. On the application of the global matched filter to DOA estimation withuniform circular arrays [J]. IEEE Trans. Signal Processing,2001,49(4):702-709.
    [11] Model D, Zibulevsky M. Signal reconstruction in sensor arrays using sparserepresentations [J]. Signal Processing,2006,86:624-638.
    [12] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspectivefor source localization with sensor arrays [J]. IEEE Trans. Signal Processing,2005,53(8):3010-3022.
    [13] Hyder M. M., Mahata K. Direction-of-Arrival estimation using a mixedL2,0norm approximation, IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
    [14]刘璋孟.基于信号空域稀疏性的阵列处理理论与方法[D].长沙:国防科学技术大学博士学位论文.2012.
    [15] Sawada H, Mukai R, Makono S. Direction of arrival estimation for multiplesource signals using independent component analysis [C]. InternationalSymposium on Signal Processing and its Application,2003:411-413.
    [16] Shimada Y, Yamda H, Yamaguchi Y. Blind array calibration technique ofuniform array using ICA [C]. Proc. IEEE TENCON,2007:1-4.
    [17]胡增辉.盲信号处理及在阵列信号波达参数估计中的应用[D].长沙:国防科学技术大学博士学位论文.2012.
    [18] S. Rickard, F. Dietrich. DOA Estimation of Many W-Disjoint OrthogonalSources From Two Mixtures Using DUET [C]. Proceedings of the10thIEEEWorkshop on Statistical Signal and Array Processing, Pocono Manor, PA,2000:211-314.
    [19] Shoko Araki, Hiroshi Sawada, Ryo Mukai, et al. DOA estimation for multiplesparse sources with normalized observation vector clustering [C]. IEEE Int. Conf.Acoust., Speech, Signal Process.,2006: V33-36.
    [20] Wenyi Zhang, Bhaskar D. Rao. A two microphones-based approach for sourcelocalization of multiple speech sources [J]. IEEE Trans. Acoust. Speech SignalProcess,2010,18:1913-1928.
    [21] M. Swartling, B. S llberg, N. Grbic. Source localization for multiple speechsources using low complexity non-parametric source separation and clustering[J]. Signal Processing,2011,91:1781-1788.
    [22] Porat B., Friedlander B. Direction finding algorithms based on higher orderstatistics [J]. IEEE Trans. Signal Process.1991,39(9):2016-2024.
    [23] Chevalier P., Ferreol A., Albera L. High resolution direction finding from higherorder statistics: the2q-MUSIC algorithm [J]. IEEE Trans. Signal Process,2006,54:2986-2997.
    [24]刘剑.非圆信号波达方向估计算法研究[D].长沙:国防科学技术大学博士学位论文.2007.
    [25] D. H. Johnson, D. E. Dudgeon. Array signal processing: concepts and techniques
    [M]. New Jersey: Simon&Schuster,1992.
    [26] J. F. Cardoso. Source separation using higher order moments [C]. Proc. IEEEInternational Conference on Acoustics, Speech and Signal Processing, Glasgow,UK,1989:2109-2112.
    [27] V. C. Soon, L. Tong, Y. F. Huang, et al. An extended fourth order blindidentification algorithm in spatially correlated noise [C]. InternationalConference on Acoustics, Speech and Signal Processing, Albuquersue, NM,1990:1365-1368.
    [28] J. F. Cardoso, A. Souloumiac. Blind beamforming for non-Gaussian signals [J].IEE Proceedings-F,1993,140:362-370.
    [29] A. Hyvarinen, Fast and robust fixed-point algorithms for independent componentanalysis [J]. IEEE Trans. on Neural Networks,1999,10:626-634.
    [30] E. Bingham, A. Hyvarinen. A fast fixed-point algorithm for independentcomponent analysis of complex valued signals [J]. International Journal ofNeural Systems,2000,10:1-8.
    [31] A. J. Bell, T. J. Sejnowski. An information-maximization approach to blindseparation and blind deconvolution [J]. Neural computation,1995,7:1129-1159.
    [32] Pearimutter B, Parra L. A context sensitive generalisation of ICA [C].International Conference on Neural information Processing, Springer,1996, l1:151-15.
    [33] Cardoso J F. Infomax and maximum likelihood for blind source separation [J].IEEE Signal Processing Letters,1997,4:109-111.
    [34] Amari S. Natural gradient works efficiently in learning [J]. Neural Computation,1997,10:251-276.
    [35] Lewicki M, Sejnowksi T. Learning overcomplete representation [J].Neurocomputing,2000,12:337-365.
    [36] P. Comon, C. Jutten. Handbook of Blind Source Separation IndependentComponent and Application [M]. Burlington: Elsevier.2010.
    [37] Li Y Q, Cichocki A, Amari S-I. Analysis of sparse representation and blindsource separation [J]. Neural Computation,2004,16:1193-1234.
    [38] Jourjine A, Rickard S. Blind separation of disjoint orthogonal signals: demixingN sources from2mixtures [C]. ICASSP, Istanbul, Turkey, June,2000.
    [39] zgür Y, Richard S. Blind separation of speech mixtures via time-frequencymasking [J]. IEEE Trans. on Signal Processing,2004,52(7):1830-1847.
    [40] Ngutyen Lin-Trung, A. Belouchrani, Karim A-M. Separating more sources thansensors using time-frequency distributions [J]. EURASIP Journal on AppliedSignal Processing,2005,17:2828-2847.
    [41] Sun T. Y., Lan L. E., Zhang Y. J. Mixing matrix identification forunderdetermined blind signal separation: using hough transform and fuzzyk-means clustering [C]. Proceedings of the2009IEEE International Conferenceon System, Man, and Cybernetics, San Antonio, USA, October,2009.
    [42] M. Aharon, M. Elad, A. Bruckstein. K-SVD: an algorithm for designingovercomplete dictionaries for sparse representation [J]. IEEE Trans on SignalProcessing,2006,54(11):4311-4322.
    [43]付宁,乔立岩,等.基于改进K-means聚类和霍夫变换的稀疏源混合矩阵盲估计算法[J].电子学报,2009,37(4):92-96.
    [44] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind sourceseparation of underdetermined mixtures [J]. IEEE Trans. Neural Networks,2005,16(4):992-996.
    [45]谢胜利,谭北海,傅予立.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007,17(6):795-800.
    [46] Nainia F M, Mohimania G H, et al. Estimating the mixing matrix in sparsecomponent analysis (SCA) based on partial k-dimensional subspace clustering[J]. Neurocomputing,2008,71:2330-2343.
    [47] F Abrard, Y Deville. A time-frequency blind signal separation method applicableto underdetermined mixtures of dependent sources [J]. Signal Processing,2005,85:1389-1403.
    [48] M Puigt, Y Deville. Time-frequency ratio-based blind separation methods forattenuated and time-delayed sources [J]. Mechanical Systems and SignalProcessing.2005,19(6):1348-1379.
    [49]肖明,谢胜利,等.基于频域单源区间的具有延迟的欠定盲分离[J].电子学报,2007,35(12):2279-2283.
    [50]刘琨,杜利民,等.基于时频域单源主导区的盲源欠定分离方法[J].中国科学E辑,2008,38(8):1284-1301.
    [51]陆凤波,黄知涛,姜文利.基于时频域单源区域的延迟欠定混合非平稳信号盲分离[J].电子学报.2011.39(4):854-858.
    [52] Li Y Q, Amari S-I, Cichocki Andrzej, et al. Underdetermined blind sourceseparation based on sparse representation [J]. IEEE Trans. on Signal Processing,2006,54(2):423-437.
    [53] Kim S G, Yoo C D. Underdetermined blind source separation based on subspacerepresentation [J]. IEEE Trans. on Signal Processing,2009,57(7):2604-2614.
    [54] A. Aissa-El-Bey, N. Linh-Trung, Karim Abed-Meraim, et al. Underdeterminedblind separation of nondisjoint sources in the time-frequency domain [J]. IEEETrans. on Signal Processing,2007,55(3):897-907.
    [55] Ferréol A, Albera L, Chevalier P. Fourth-Order Blind Identification ofUnderdetermined Mixtures of Sources [J]. IEEE Trans on Signal Processing,2005,53(5):1640-1653.
    [56] Lathauwer L D, Castaing J, Cardoso J F. Four-Order cumulant-based blindidentification of underdetermined mixtures [J]. IEEE Trans on Signal Processing,2007,55(6):2965-2973.
    [57] Karfoul A, Albera L, Birot G. Blind underdetermined mixture identification byjoint canonical decomposition of HO cumulants [J]. IEEE Trans on SignalProcessing,2010,58(2):638-649.
    [58] Almeida A, Luciani X, Comon P. Blind identification of underdeterminedmixtures based on the hexacovariance and higher-order cyclostationarity [C].2009IEEE/SP15thWorkshop on Statistical Signal Processing,2009:669-672.
    [59] Tichavsky P, Koldovsky Z. Weight adjusted tensor method for blind separationof underdetermined mixtures of nonstationary sources [J]. IEEE Transaction onSignal Processing,2011,59(3):1037-1047.
    [60] Lathauwer L D, Castaing J. Blind identification of underdetermined mixtures bysimultaneous matrix diagonalization [J]. IEEE Trans on Signal Processing,2008,56(3):1096-1105.
    [61] Comon P and Rajih M. Blind identification of under-determined mixtures basedon the characteristic function [J]. Signal Processing,2006,86(9):2271-2281.
    [62] Comon P and Rajih M. Blind identification of complex underdeterminedmixtures [C]. in ICA Conf., Granada,2004:105-112.
    [63] Luciani X, Almeida A, Comon P. Blind identification of underdeterminedmixtures based on the characteristic function: the complex case [J]. IEEETransaction on Signal Processing,2011,59(2):540-553.
    [64] Fanglin Gu, Hang Zhang, Desheng Zhu. Blind separation of complex sourcesusing generalized generating function [J]. IEEE Signal Processing Letters.2013,20(1):71-74.
    [65] S S Chen, D L Donoho, M A Saunders. Atomic decomposition by basis pursuit[J]. SIAM Journal Scientific Computing,1999,20(1):33-61.
    [66] B K Natarajan. Sparse approximate solutions to linear systems [J]. SIAM JournalScientific Computing,1995,24(2):227-234.
    [67] E J Candes, J Romberg, T Tao. Stable signal recovery from incomplete andinaccurate measurements [J]. Communications on Pure and AppliedMathematics,2006,59:1207-1223.
    [68] H Mohimani, M Babaie-Zadeh, C Jutten. A fast approach for overcompletesparse decomposition based on smoothedl0norm [J]. IEEE Trans. SignalProcessing,2009,57(1):289-301.
    [69] Y Zhang, N Kingsbury. Fastl0-based sparse signal recovery [J]. MachineLearning for Signal Processing,2010,29(1):403-408.
    [70] M. Hyder, K Mahata. An approximatel0norm minimization algorithm forsparse representation [J]. IEEE Trans. Signal Processing.2010,58(4):2194-2205.
    [71] D L Donoho. For most large underdetermined systems of linear equations theminimall1-norm solutions is also the sparsest solution [J]. Communications onPure and Applied Mathematics.2006,59(6):797-829.
    [72] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems vial q-minimization for0q1[J]. Applied and Computational HarmonicAnalysis,26(3):395-407.
    [73] R Chartrand, W Yin. Iteratively reweighted algorithms for compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Nevada, USA,2008:3869-3872.
    [74] P Rodriguez, B Wohlberg. An iterative reweighted norm algorithm for totalvariation regularization [J]. IEEE Signal Processing Letters,2007,14(12):948-951.
    [75] M E Tipping. Sparse bayesian learning and the relevance vector machine [J].Journal of Machine Learning Research,2001,1:211-244.
    [76] M E Tipping. The relevance vector machine [J]. Advances in Neural InformationProcessing Systems.2000,12:652-658.
    [77] D P Wipf, B D Rao. Sparse bayesian learning for basis selection [J]. IEEE Trans.Signal Processing.2004,52(8):2153-2164.
    [78] Zayyani H, Babaie-Zadeh M and Jutten C. An iterative Bayesian algorithm forsparse component analysis in presence of noise [J]. IEEE Transactions on SignalProcessing,2009,57(11):4378-4390.
    [79] Fevotte C, Godsill S J, and Wolfe P J. Bayesian approach for blind separation ofunderdetermined mixtures of sparse sources [C. In Proc.5th InternationalConference on Independent Component Analysis and Blind Source Separation(ICA2004), Granada, Spain,2004, pages:398-405.
    [80] Fevotte C, Godsill S J. A Bayesian approach for blind separation of sparsesources [J]. IEEE Transactions on Signal Processing,2005,
    [81] Cemgil A T, Fevotte C and Godsill S. Blind separation of sparse sources usingvariational EM [C]. In Proceedings of13th European Signal ProcessingConference,2005:1-4.
    [82] Chami Z E, Pham A D, Serviere C. A new EM algorithm for underdeterminedconvolutive blind source separation [C].17th European Signal ProcessingConference, Glasgow, Scotland, August24-28,2009,1457-1461.
    [83] Cemgil A T, Fevotte C and Godsill S. Variational and stochastic inference forBayesian source separation [J]. Digital Signal Processing,2007,17:891-913.
    [84] Snoussi H, Idier J. Bayesian Blind Separation of Generalized HyperbolicProcesses in Noisy and Underdeterminate Mixtures [J]. IEEE Transactions onSignal Processing,2006,54(9):3257-3269.
    [85] Kim S G, Yoo C D. Underdetermined blind source separation based ongeneralized Gaussian distribution [C]. Proceedings of the20066th IEEE SignalProcessing Society Workshop on Machine for Signal Processing,2006:103-108.
    [86] Kim S G, Yoo C D.Underdetermined blind source separation based on subspacerepresentation [J]. IEEE Transactions on Signal Processing,2009,57(7):2604-2614.
    [87] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparserepresentations [J]. Signal Processing,2001,81(11):2353-2362.
    [88] Reju V G, Koh S N, Soon I Y. Underdetermined convolutive blind sourceseparation via Time-Frequency masking [J]. IEEE Transactions on Audio,Speech, and Language Processing,2010,18(1):101-116.
    [89] Nesbit A and. Plumbley M D. Oracle estimation of adaptive cosine packettransforms for underdetermined audio source separation [C]. In Proceedings ofICASSP2008, Las Vegas, NV, U.S.A.,2008:41-44.
    [90] Dutta M K, Gupta P, Pathak V K. An efficient algorithm for underdeterminedblind source separation of audio mixtures [C].2009International Conference onAdvances in Recent Technologies in Communication and Computing,2009:136-140.
    [91] Duong N Q K, Vincent E, Gribonval R. Under-determined reverberant audiosource separation using a full-rank spatial covariance model [J]. IEEETransactions on Audio, Speech, and Language Processing,2010,18(7):1830-1840.
    [92]陆凤波,黄知涛,姜文利.一种时频混叠的欠定混合通信信号盲分离算法[J].国防科技大学学报,2010,32(5):80-85.
    [93] Dezhong Peng, Yong Xiang. Underdetermined blind source separation based onrelaxed sparsity condition of sources [J]. IEEE Transactions on SignalProcessing,2009,57(2):809-813.
    [94] Fengbo Lu, Zhitao Huang, Wenli Jiang. Underdetermined blind separation ofnon-disjoint signals in time-frequency domain based on matrix diagonalization[J]. Signal Processing,2011,91(7):156-1577.
    [95] Dimitris G Manolakis, Vinay k Ingle, Stephen M Kogon. Statistical and adaptivesignal processing [M].北京:电子工业出版社.2003.
    [96] W. Lu, J. C. Rajapakse. Approach and applications of constrained ICA [J]. IEEETrans. on Neural Networks.2005,16:203-212.
    [97] W. Lu, J. C. Rajapakse. ICA with reference [J]. Neurocomputing,2006,69:2244-2257.
    [98] W. Lu, J. C. Rajapakse. Eliminating indeterminacy in ICA [J]. Neurocomputing,2003,50:271-290.
    [99] C. J. James, O. J. Gibson. Temporally constrained ICA: an application to artifactrejection in electromagnetic brain signal analysis [J]. IEEE Trans. on BiomedicalEngineering,2003,50:1108-1116.
    [100] Lee J., K. L. Park, K. J. Lee. Temporally constrained ICA-based foetal ECGseparation [J]. Electronics Letters,2005,41:1158-1160.
    [101] De-Shuang Huang, Jian-Xun Mi. A New Constrained Independent ComponentAnalysis Method [J]. IEEE Trans. on Neural Networks,2007,18:1532-1535.
    [102] Qiu-Hua Lin, Yong-Rui Zheng, Fu-Liang Yin, et al., A fast algorithm forone-unit ICA-R [J]. Information Sciences,2007,177:1265-1275.
    [103] N. Mitianoudis, T. Stathaki, A. G. Constantinides. Smooth signal extraction frominstantaneous mixtures [J]. IEEE Signal Processing Letters,2007,14:271-274.
    [104] C. W. Hesse, C. J. James. The FastICA Algorithm with Spatial Constraints [J].IEEE Signal Processing Letters,2005,12:792-795.
    [105] Lucas C., Parra, C. V. Alvino. Geometric source separation: mergingconvolutive source separation with geometric beamforming [J]. IEEE Trans onSpeech and Audio Processing,2002,10:352-362.
    [106] Hiroshi S, Araki S, Mukai R. Blind extraction of dominant target sources usingICA and time-frequency masking [J]. IEEE Trans. Audio, Speech and LanguageProcessing,2006,14(6):2165-2173.
    [107] Allan Kardec Barros, Andrzej Cichocki. Extraction of Specific Signals withTemporal Structure [J]. Neural Computation,2001,13:1995-2003.
    [108] Z. L. Zhang, Z. Yi. Robust extraction of specific signals with temporal structure[J]. Neurocomputing,2006,69:888-893.
    [109] Tsalaile T, Sameni R, Saner S, et al. Sequential blind source extraction forquasi-periodic signals with time-varying period [J]. IEEE Trans. Biomed. Eng.,2009,56:646-655.
    [110] S. Javidi, D. P. Mandic, A. Cichocki. Complex blind source extraction fromnoisy mixtures using second-order statistics [J]. IEEE Trans. Circuits andSystems-I: Regular Papers,2010,57:1404-1416.
    [111] S. Javidi, D. P. Mandic, C. Cheong Took, et al. Kurtosis Based Blind SourceExtraction of Complex Noncircular Signals with Application in EEG ArtifactRemoval in Real Time [J]. Frontiers in Neuroscience,2011,5:1-18.
    [112]胡广书.现代信号处理教程[M].北京:清华大学出版社.2004.
    [113] Davies M. E., Eldar Y. C. Rank awareness in joint sparse recovery [J]. IEEETransactions on Information Theory,2012,58(2):1135-1146.
    [114] Y. Tarik, Jian L, Ming X, et al. Source localization and sensing: a nonparametriciterative adaptive approach based on weighted least squares [J]. IEEETransactions on Aerospace and Electronic Systems,2010,46(1):425-443.
    [115] P Stoica, J Li, J Ling. Missing data recovery via a nonparametric iterativeadaptive approach [J]. IEEE Signal Processing Letters,2009,16(4):241-244.
    [116]孙即祥.现代模式识别[M].长沙:国防科技大学出版社.2003.
    [117] H. Sun, S. Wang, Q. Jiang. FCM-based model selection algorithms fordetermining the number of clusters [J]. Pattern Recognition,2004,37:2027-2037.
    [118] P. Guo, C. L. P. Chen, M. R. Lyu. Cluster number selection for a small set ofsamples using the Bayesian Ying-Yang model [J]. IEEE Transactions on NeuralNetworks,2002,13(3):757-763.
    [119] M. K. Pakhira, S. Bandyopadhyay, U. Maulik. Validity index for crisp and fuzzyclusters [J]. Pattern Recognition,2004,37:487-501.
    [120] A. Belouchrani, M. G. Amin, K. Abed-Meraim. Direction finding in correlatednoise fields based on joint block-diagonalization of spatial-temporal correlationmatrices [J]. IEEE Signal Process. Letters.1997,4:266-268.
    [121] W. A. Gardner, A. Napolitano, L. Paura. Cyclostationarity: half a century ofresearch [J]. Signal processing.2006,86:639-697.
    [122] W. A. Gardner. Cyclic Wiener filtering: theory and method [J]. IEEE Trans. onCommunications.1993,41:151-163.
    [123] W. Gardner. Spectral correlation of modulated signals: Part I--analog modulation[J]. IEEE Trans. on Communications.1987,35:584-594.
    [124] W. Gardner, W. Brown, C. K. Chen. Spectral correlation of modulated signals:Part II--digital modulation [J]. IEEE Trans. on Communications.1987,35:595-601.
    [125] L. De Lathauwer. A link between the canonical decomposition in multilinearalgebra and simultaneous matrix diagonalization [J]. SIAM J. Matrix Anal. Appl.2006,28(3):642-666.
    [126] M C Dogan, J M Mendel. Applications of cumulants to array processing—Part I:Aperture extension and array calibration [J]. IEEE Trans. Signal Processing.1995,43(5):1200-1216.
    [127] Chevalier P., Albera L, Ferreol A. On the virtual array concept for higher orderarray processing [J]. IEEE Trans. Signal Process2005,53:1254-1271.
    [128] A. Belouchrani, K. Abed-Meraim and J.-F. Cardoso. E. Moulines. A blind sourceseparation technique using second order statistics [J]. IEEE Trans. Signal Process.1997,45:434-444.
    [129] J F Cardoso, A Souloumiac. Jacobi angles for simultaneous diagonalization [J].
    [130] A Ferreol, P Larzabal, M Viberg. On the asymptotic performance analysis ofsubspace DOA estimation in the presence of modeling errors: Case of MUSIC[J]. IEEE Trans. Signal Processing.2006,54(3):907-920.
    [131] Wax M, Kailath T. Detection of signals by information theoretic criteria [J].IEEE Trans. Acoustics, Speech and Signal Processing.1985,33(2):387-392.
    [132] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incompletedata via the EM algorithm [J]. Journal of Royal Statistical Society Series B,1977,39:1-38.
    [133] Boyles R A. On the convergence of the EM algorithm [J]. Journal of RoyalStatistics Series B,1983,45(1):47-50.
    [134] W. A. Gardner. Simplification of MUSIC and ESPRIT by exploitation ofcyclostationarity [J]. Proc. IEEE,1988,76:845-847.
    [135] Wen-Jun Zeng, Xi-Lin Li, Xian-da Zhang. Direction-of-arrival estimation basedon the joint diagonalization structure of multiple fourth-order cumulant matrices[J]. IEEE Signal Process. Letters.2009,16:164-167.
    [136] Shi, Z., C. Zhang, Semi-blind source extraction for fetal electrocardiogramextraction by combining non-Gaussianity and time-correlation [J].Neurocomputing.2007,70:1574-1581.
    [137] Mi J.X., J. Gui. A method for ICA with reference signals [C]. AdvancedIntelligent Computing Theories and Applications with Aspects of ArtificialIntelligence.2010:156-162.
    [138] J. Nocedal, S. J. Wright. Numerical optimization [M]. New York: Springer.1999.
    [139]张贤达.矩阵分析分析与应用[M].北京:清华大学出版社.2004.
    [140] A. Hyvarinen, J. Karhunen, E. Oja. Independent component analysis [M]. NewYork: Wiley-interscience.2001.
    [141] M. G. Jafari, S. R. Alty, J. A. Chambers. New natural gradient algorithm forcyclostationary sources [J]. IEE proceedings Vision, image and signal processing.2002,151:62-68.
    [142] B. G. Agee, S. V. Schell, W. A. Garder. Spectral self-coherent restoral: a newapproach to blind adaptive signal extraction using antenna arrays [J].Proceedings of the IEEE.1990,78:753-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700