用户名: 密码: 验证码:
TIP30/CC3在肾细胞癌中的表达及野生型TIP30/CC3对人肾癌细胞系生长抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国肾癌是仅次于膀胱癌,占第二位的泌尿系恶性肿瘤,同时也是成人肾脏最常见的恶性实体瘤,其中肾细胞癌占肾脏原发恶性肿瘤的85﹪左右。由于肾细胞癌的发病机制不完全清楚,因此,治疗手段仍以手术为主。虽然对于丧失手术时机等晚期肾细胞癌近年出现了靶向治疗手段,但效果并不理想。因此,探索新的生物治疗方法是目前研究的热点。有研究显示,抑癌基因TIP30与多种肿瘤的发生、发展及侵袭进程密切相关,然而它与肾细胞癌发生发展的具体相关关系迄今尚不清楚。本研究应用免疫组化及Western blotting方法探讨了肾细胞癌组织中TIP30的表达及其临床意义。并进一步构建了TIP30/CC3的真核表达载体,筛选含有外源性TIP30/CC3的人肾透明细胞腺癌细胞系786-0,探讨TIP30/CC3对786-0的生长抑制作用,寻找肾癌基因治疗的潜在靶点。
     结果显示TIP30/CC3在人肾细胞癌中表达降低,并与肿瘤的侵润程度、淋巴结转移以及肾静脉癌栓密切相关。重组质粒载体pcDNA3.1-TIP30构建成功,转染pcDNA3.1-TIP30的786-0细胞能够稳定表达外源性TIP30蛋白。各种结果显示TIP30/CC3有抑制786-0细胞增殖的作用,转染TIP30/CC3基因后诱导了786-0细胞的G1期细胞阻滞作用和细胞凋亡的增加。
     本研究提示:针对TIP30/CC3基因表达产物的检测,将对肾细胞癌的恶性程度及预后提供有意义的客观指标。提高肾癌细胞中TIP30/CC3蛋白的表达,能抑制肿瘤细胞的生长,TIP30/CC3是肾癌基因治疗的潜在靶点。
In China, the renal carcinoma is the second urinary system malignant tumor afer the bladder carcinoma, but also the most common renal malignant solid tumor in the adult ,and the 85﹪-90﹪of renal primary malignant tumor is the renal cell carcinoma .
     Research shows that, TIP30 was considered to have tumor suppressor activity by inhibiting tumor growth, invasion, and angiogenesis and inducing apoptosis.However, the relationship with occurrence and development of renal cell carcinoma is not reported.This research discussed the expression of TIP30 and their clinical significance in renal cell carcinoma tissues with immunohistochemical and Western blotting method. And further construct the eukaryotic expression vector of TIP30, screen the 786-0 cell line containing the exogenous TIP30, research the growth inhibition function of TIP30 to 786-0, looking for the potential targets of the renal carcinoma gene therapy. The research was divided into three parts:
     1. Expression of TIP30/CC3 protein in human renal cell carcinoma Objective:To study the expression of TIP30 protein in renal cell carcinoma tissues and adjacent tissues,and to analyze its clinical significance. Meanwhile, TIP30 protein expression in some common cell lines of the human urinary system carcinoma was observed and established the basis for the subsequent research work. Method: Sixty-five patients with renal cell carcinoma treated at the Institute of Urology in the present hospital, from June 2006 to December 2007 were studied respectively. There were 46 male and 19 female patients in the present study, aging between 17-75 years, and the average age is 56.4. The expressions of TIP30 protein were detected in 65 renal cell carcinoma tissues and their adjacent tissues by S-P immunohistochemical method, and Western blot was used to detect the expression of TIP30 in 22 fresh renal cell carcinoma tissues and their adjacent tissues. And TIP30 protein expression in the prostate carcinoma cell line PC-3M, the bladder carcinoma cell line T24 and the renal carcinoma cell line of clear cell was observed with immonohistochemical and Western blotting method. Results:The negative rate of TIP30 expression in renal cell carcinoma (49.2 %) was higher than that in control group(10.8 %) ( P < 0.01) . TIP30 expression was not different between every clinical pathological type ( P > 0.05) . The negative rate of TIP30 expression in real cell carcinoma was related to invasion degree ( P < 0. 05) , lymph node metastasis ( P <0. 05) and tumor thrombus ( P <0. 05). Moreover, Western blotting analysis showed that there was low expression of TIP30 in 77.3% (17/22) of the renal cancer tissues. There was high level TIP30 protein expression in the PC-3M and T24 cells, especially in T24 cells and 786-0 cells showed relative lower level TIP30 protein expression. Conclusion: There was low level TIP30 protein expression in human renal carcinoma tissues. The negative expression of TIP30 protein may be related to the initiation and development of real cell carcinoma; As an tumor suppressor gene product, TIP30 protein may be considered as a new clinical indicator for monitor of real cell carcinoma and provide information for adjuvant therapy.
     2. Construction and sequence analysis of the eukaryotic expression vector Objective: To construct and sequence the eukaryotic expression vector of TIP30 gene. Methods: The total RNA was extracted from normal renal tissue. TIP30 gene cDNA was amplified by RT-PCR, and then was cloned into eukaryotic expression vector pcDNA3.1(+) and sequenced. Results: After amplification by RT-PCR, the normal renal tissue produced specific bands which were located about 800 bp according to expectation. By BamH-I and EcoR-I digestion, pcDNA3.1-TIP30 produced 2 bands, which agreed with the expected position, and the sequence of obtained TIP30 gene cDNA was homologous (100% ) to the encoding region of TIP30 that was shown in documents(Genbank No.AF039103), and the target gene was correctly cloned into the vector. Conclusions: The sequence of TIP30 gene cDNA encoding region was cloned, and the recombinant eukaryotic expression vector pcDNA3.1-TIP30 was successfully constructed. It lays the foundation for the further research on the function of TIP30 gene.
     3. TIP30 gene suppresses growth of human renal carcinoma 786-0 cells Objective: To explore the effect of TIP30 gene on the growth inhibition of renal carcinoma cell line 786-0 and look for a potential therapeutic target for RCC. Methods: The pcDNA3.1(+) and pcDNA3.1-TIP30 plasmids were transfected into the 786-0 cells with lipo2000, screening the stable expression cell line with G418. The expression of TIP30 in 786-0 cells was detected by RT-PCR and Western blotting. The changes of cell proliferations and cell cycles were observed by MTT and FCM assay. Scorching method was used to observe the transfected 786-0 cells migration ability and Transwell chamber combining matrigel was used to detect the transfected 786-0 cells invasion ability. Results:
     The mRNA and protein expression of TIP30 gene in pcDNA3.1-TIP30-transfected 786-0 cells were significantly increased than those in untreated and pcDNA3.1(+)-transfected cells(P <0.05). However, there was no difference in TIP30 expression between untreated and pcDNA3.1(+)-transfected 786-0 cells(P >0.05).The inhibitory rate of pcDNA3.1- TIP30- transfected 786-0 cells was significantly higher than that in untreated and pcDNA3.1(+)- transfected cells(P <0.01); Cell cycle analysis by flow cytometry showed that the number of cells in G0-G1 phase of pcDNA3.1-TIP30-transfected 786-0 cells was significantly increased while cells in phase S and G2-M was decreased compared with the untreated and pcDNA3.1(+)-transfected cells(P <0.01). 786-0 cells transfected with pcDNA3.1-TIP30 showed increased apoptosis percentage, slower migration ability and attenuating invasion ability compared with normal 786-0 cells.786-0 cells transfected with pcDNA3.1-TIP30 showed increasing vacuoles and diminishing villus with transmitting electron microscope. Conclusions:786-0 can stably express exogene TIP30. Transduction of TIP30 gene into lower expression renal cancer cells can restore its suppressive effect on cell growth, suggesting that TIP30 gene may be a new therapeutic target for RCC.
引文
[1] Selkirk SM. Gene therapy in clinical medicine[J]. Postgrad Med J, 2004, 80(948):560-70.
    [2] Wadhwa PD, Zielske SP, Roth JC, et al. Cancer gene therapy: scientific basis[J]. Annu Rev Med, 2002,53:437-52.
    [3] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control[J]. Nat Med, 2004,10(8):789-99.
    [4] Rosenberg SA. Shedding light on immunotherapy for cancer[J]. N Engl J Med, 2004,350(14):1461-3.
    [5] Nikitina EY, Chada S, Muro-Cacho C, et al. An effective immunization and cancer treatment with activated dendritic cells transduced with full-length wild-type p53[J]. Gene Ther, 2002,9(5):345-52.
    [6] Weir B, Zhao X, Meyerson M. Somatic alterations in the human cancer genome[J]. Cancer Cell, 2004,6(5):433-8.
    [7] Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types[J]. Nature, 1989,342(6250):705-8.
    [8] Nishizaki M, Fujiwara T, Tanida T, et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect[J]. Clin Cancer Res, 1999,5(5):1015-23.
    [9] Sager R. Tumor suppressor genes: the puzzle and the promise[J]. Science, 1989,246(4936):1406-12.
    [10] Weinberg RA. Oncogenes and tumor suppressor genes[J]. CA Cancer J Clin, 1994,44(3):160-70.
    [11] Swisher SG, Roth JA, Komaki R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy[J]. Clin Cancer Res, 2003,9(1):93-101.
    [12] Majumder PK, Grisanzio C, O'Connell F, et al. A prostatic intraepithelial neoplasia- dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression[J]. Cancer Cell, 2008,14(2): 146- 55.
    [13] Cao J, Li W, Xie J, et al. Down-regulation of FHIT inhibits apoptosis of colorectal cancer: mechanism and clinical implication[J]. Surg Oncol, 2006,15(4):223-33.
    [14] Kim CH, Yoo JS, Lee CT, et al. FHIT protein enhances paclitaxel-induced apoptosis in lung cancer cells[J]. Int J Cancer, 2006,118(7):1692-8.
    [15] Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J]. Proc Natl Acad Sci U S A, 1978,75(1):280-4.
    [16] Kurreck J. Antisense technologies. Improvement through novel chemical modifica- tions[J]. Eur J Biochem, 2003,270(8):1628-44.
    [17] Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer[J]. Oncogene, 2003,22(56):9087-96.
    [18] Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application[J]. Clin Exp Pharmacol Physiol, 2006,33(5-6): 533- 40.
    [19] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391(6669):806-11.
    [20] Ambros V. microRNAs: tiny regulators with great potential[J]. Cell, 2001, 107(7): 823-6.
    [21] Calderon AJ, Lavergne JA. RNA interference: a novel and physiologic mechanism of gene silencing with great therapeutic potential[J]. P R Health Sci J, 2005,24(1):27-33.
    [22] Zhou D, He QS, Wang C, et al. RNA interference and potential applications[J]. Curr Top Med Chem, 2006,6(9):901-11.
    [23] Masiero M, Nardo G, Indraccolo S, et al. RNA interference: implications for cancer treatment[J]. Mol Aspects Med, 2007,28(1):143-66.
    [24] Rual JF, Klitgord N, Achaz G. Novel insights into RNAi off-target effects using C. elegans paralogs[J]. BMC Genomics, 2007,8:106.
    [25] de Fougerolles A, Vornlocher HP, Maraganore J, et al. Interfering with disease: a progress report on siRNA-based therapeutics[J]. Nat Rev Drug Discov, 2007,6(6):443-53.
    [26] Niculescu-Duvaz I, Springer CJ. Introduction to the background, principles, and state of the art in suicide gene therapy[J]. Methods Mol Med, 2004,90:1-27.
    [27] McKeown SR, Ward C, Robson T. Gene-directed enzyme prodrug therapy: a current assessment[J]. Curr Opin Mol Ther, 2004,6(4):421-35.
    [28] Moriuchi S, Glorioso JC, Maruno M, et al. Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant IkappaBalpha and HSV thymidine kinase[J]. Cancer Gene Ther, 2005,12(5):487-96.
    [29] Tanaka T, Yamasaki H, Mesnil M. Induction of a bystander effect in HeLa cells by using a bigenic vector carrying viral thymidine kinase and connexin32 genes[J]. Mol Carcinog, 2001,30(3):176-80.
    [30] Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis[J]. J Exp Med, 1971,133(2):275-88.
    [31] Folkman J. Role of angiogenesis in tumor growth and metastasis[J]. Semin Oncol, 2002,29(6 Suppl 16):15-8.
    [32] Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors[J]. Cancer Cell, 2005,8(4):299-309.
    [33] Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells[J]. Proc Natl Acad Sci U S A, 2006,103(42):15491-6.
    [34] Aghi M, Cohen KS, Klein RJ, et al. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes[J]. Cancer Res, 2006,66(18): 9054-64.
    [35] Sorrentino BP. Gene therapy to protect haematopoietic cells from cytotoxic cancer drugs[J]. Nat Rev Cancer, 2002,2(6):431-41.
    [36] Bollard CM, Heslop HE, Brenner MK. Gene-marking studies of hematopoietic cells[J]. Int J Hematol, 2001,73(1):14-22.
    [37] El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity[J]. Oncogene, 2003,22(47):7486-95.
    [38] Gridley DS, Slater JM. Combining gene therapy and radiation against cancer[J]. Curr Gene Ther, 2004,4(3):231-48.
    [39] Buchschacher GL Jr. Introduction to retroviruses and retroviral vectors[J]. Somat Cell Mol Genet, 2001,26(1-6):1-11.
    [40] Buchschacher GL Jr, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases[J]. Blood, 2000,95(8):2499-504.
    [41] Blesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer[J]. Methods, 2004,33(2):164-72.
    [42] Montini E, Cesana D, Schmidt M, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration[J]. Nat Biotechnol, 2006,24(6):687-96.
    [43] Bastone P, Romen F, Liu W, et al. Construction and characterization of efficient, stable and safe replication-deficient foamy virus vectors[J]. Gene Ther, 2007,14(7):613-20.
    [44] Seth P. Adenoviral vectors[J]. Adv Exp Med Biol, 2000,465:13-22.
    [45] Hitt MM, Graham FL. Adenovirus vectors for human gene therapy[J]. Adv Virus Res, 2000,55:479-505.
    [46] McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors[J]. Annu Rev Genet, 2004,38:819-45.
    [47] Goncalves MA, van der Velde I, Knaan-Shanzer S, et al. Stable transduction of large DNA by high-capacity adeno-associated virus/adenovirus hybrid vectors[J]. Virology, 2004,321(2):287-96.
    [48] Goins WF, Wolfe D, Krisky DM, et al. Delivery using herpes simplex virus: an overview[J]. Methods Mol Biol, 2004,246:257-99.
    [49] El-Aneed A. An overview of current delivery systems in cancer gene therapy[J]. J Control Release, 2004,94(1):1-14.
    [50] Herweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy[J]. Gene Ther, 2003,10(6):453-8.
    [51] Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods[J]. Gene Ther, 2004,11(18):1363-9.
    [52] Serikawa T, Kikuchi A, Sugaya S, et al. In vitro and in vivo evaluation of novel cationic liposomes utilized for cancer gene therapy[J]. J Control Release, 2006, 113(3): 255-60.
    [53] Feril LB Jr, Ogawa R, Kobayashi H, et al. Ultrasound enhances liposome- mediated gene transfection[J]. Ultrason Sonochem, 2005,12(6):489-93.
    [54] Vogel G. Gene therapy. FDA moves against Penn scientist[J]. Science, 2000, 290(5499): 2049-51.
    [55] Shtivelman E. A link between metastasis and resistance to apoptosis of variant small cell lung carcinoma[J]. Oncogene, 1997,14(18):2167-73.
    [56] Xiao H, Tao Y, Greenblatt J, et al. A cofactor, TIP30, specifically enhances HIV-1 Tat-activated transcription[J]. Proc Natl Acad Sci U S A, 1998,95(5): 2146-51.
    [57] Baker ME. TIP30, a cofactor for HIV-1 Tat-activated transcription, is homologous to short-chain dehydrogenases/reductases[J]. Curr Biol, 1999,9(13):R471.
    [58] Xiao H, Palhan V, Yang Y, et al. TIP30 has an intrinsic kinase activity required for up-regulation of a subset of apoptotic genes[J]. EMBO J,2000,19(5):956-63.
    [59] Baker ME, Yan L, Pear MR. Three-dimensional model of human TIP30, a coactivator for HIV-1 Tat-activated transcription, and CC3, a protein associated with metastasis suppression[J]. Cell Mol Life Sci, 2000,57(5): 851-8.
    [60] El Omari K, Bird LE, Nichols CE, et al. Crystal structure of CC3 (TIP30): implications for its role as a tumor suppressor[J]. J Biol Chem, 2005,280(18):18229-36.
    [61] SHI Mei, WANG Ping, ZHANG Xia,et al. Regulation of Bcl-2 Family in TIP30-Induced Apoptosis in Hepatoblastoma Cells[J]. The Chinese-German Journal of Clinical Oncology, 2005,4(1):11-5.
    [62] Shi M, Zhang X, Wang P, et al. TIP30 regulates apoptosis-related genes in its apoptotic signal transduction pathway[J]. World J Gastroenterol, 2005, 11(2):221-7.
    [63] Shi M, Yan SG, Xie ST, et al. Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells[J]. Biochim Biophys Acta, 2008,1783(2):263-74.
    [64] Zhang X, Zhao J, Li XD, et al. [Construction of adenovirus vector expressing TIP30 and its tumor suppressive effect in vitro and in vivo][J]. Zhonghua Zhong Liu Za Zhi, 2004,26(2):85-8.
    [65] Kuo PL, Chiang LC, Lin CC. Resveratrol- induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells[J]. Life Sci, 2002,72(1):23-34.
    [66] Zhao J, Chen J, Lu B, et al. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma[J]. Cancer Res, 2008,68(11):4133-41.
    [67] King FW, Shtivelman E. Inhibition of nuclear import by the proapoptotic protein CC3[J]. Mol Cell Biol, 2004,24(16):7091-101.
    [68] NicAmhlaoibh R, Shtivelman E. Metastasis suppressor CC3 inhibitsangiogenic properties of tumor cells in vitro[J]. Oncogene, 2001,20(2): 270- 5.
    [69]张霞,陈樟树,欧阳学农.人肝癌组织及肝癌细胞系中TIP30基因与VEGF的关系[J].中国肿瘤临床, 2005,32(9): 489-492.
    [70]江中明,吕春堂,周中华,等.减毒沙门菌介导联合基因对腺样囊性癌血管生成的抑制作用[J].第二军医大学学报, 2005,26(6): 609-612.
    [71]江中明,赵平,高军,等.携带TIP30与人IFN-γ基因的重组减毒鼠伤寒沙门氏菌的构建及抗腺样囊性癌的初步研究[J].中国肿瘤生物治疗杂志, 2004,11(1): 42-45.
    [72]张蕾,吕春堂,周中华,等. Tip30联合紫杉醇对腺样囊性癌细胞生长抑制的实验研究[J].第二军医大学学报, 2005,26(6): 613-614.
    [73] Zhao J, Zhang X, Shi M, et al. TIP30 inhibits growth of HCC cell lines and inhibits HCC xenografts in mice in combination with 5-FU[J]. Hepatology, 2006,44(1):205-15.
    [74] Jiang C, Pecha J, Hoshino I, et al. TIP30 mutant derived from hepatocellular carcinoma specimens promotes growth of HepG2 cells through up-regulation of N-cadherin[J]. Cancer Res, 2007,67(8):3574-82.
    [75] Ito M, Jiang C, Krumm K, et al. TIP30 deficiency increases susceptibility to tumorigenesis[J]. Cancer Res, 2003,63(24):8763-7.
    [76]张霞,刘庆宏,陈樟树,等. TIP30蛋白表达对非小细胞肺癌复发和存活率预测的价值[J].中国癌症杂志, 2006,16(3): 183-185.
    [77]张霞,赵健,欧阳学农,等. TIP30基因抑制人肝癌细胞转移的实验研究[J].福州总医院学报, 2006,13(4): 197-199.
    [78] Zhang X, Ouyang XN, Li XD, et al. [Effects of tumor suppressing gene TIP30/CC3 on the growth of tumor cells][J]. Zhonghua Gan Zang Bing Za Zhi, 2005,13(1):38-41.
    [79] Lu B, Ma Y, Wu G, et al. Methylation of Tip30 promoter is associated withpoor prognosis in human hepatocellular carcinoma[J]. Clin Cancer Res, 2008,14(22):7405-12.
    [80] Zhao J, Lu B, Xu H, et al. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma[J]. Hepatology, 2008,48(1):265-75.
    [81]张霞,欧阳学农,李晓冬,等.肠癌组织中TIP30基因的表达与转移、预后间的关系及机制[J].第二军医大学学报, 2005,26(5): 488-491.
    [82] Li X, Zhang Y, Cao S, et al. Reduction of TIP30 correlates with poor prognosis of gastric cancer patients and its restoration drastically inhibits tumor growth and metastasis[J]. Int J Cancer, 2009,124(3):713-21.
    [83] Zhang DH, Wong LL, Tai LK, et al. Overexpression of CC3/TIP30 is associated with HER-2/neu status in breast cancer[J]. J Cancer Res Clin Oncol, 2005,131(9):603-8.
    [84] Zhao J, Ni H, Ma Y, et al. TIP30/CC3 expression in breast carcinoma: relation to metastasis, clinicopathologic parameters, and P53 expression[J]. Hum Pathol, 2007,38(2):293-8.
    [85]王西京,程冲,康华峰,等. TIP30/CC3基因在乳腺癌中表达的研究[J].国际外科学杂志, 2007,34(6): 372-375.
    [86]张蕾,吕春堂,周中华. TIP30蛋白在ACC-M细胞中的表达鉴定及作用[J].实用口腔医学杂志, 2004,20(5): 610-612.
    [87]张蕾,吕春堂,周中华. Tip30基因修饰的ACC-M细胞裸鼠体内致瘤性观察[J].口腔颌面外科杂志, 2005,15(2): 132-133.
    [88] Zhang H, Zhang Y, Duan HO, et al. TIP30 is associated with progression and metastasis of prostate cancer[J]. Int J Cancer, 2008,123(4):810-6.
    [89] Whitman S, Wang X, Shalaby R, et al. Alternatively spliced products CC3 and TC3 have opposing effects on apoptosis[J]. Mol Cell Biol, 2000,20(2): 583-93.
    [90] Lindfors K, Halttunen T, Kainulainen H, et al. Differentially expressedCC3/TIP30 and rab11 along in vivo and in vitro intestinal epithelial cell crypt-villus axis[J]. Life Sci, 2001,69(12):1363-72.
    [91]王韶辉,赵博生,张士璀. TIP30/CC3基因研究进展[J].现代生物医学进展, 2007,7(7): 1099-1101.
    [92] Nakahara J, Kanekura K, Nawa M, et al. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis[J]. J Clin Invest, 2009,119(1):169-81 LID - 35440 [pii] LID - 10.1172/JCI35440 [d.
    [93] Brosnan CF, John GR. Revisiting Notch in remyelination of multiple sclerosis lesions[J]. J Clin Invest, 2009,119(1):10-3.
    [94]吴阶平.吴阶平泌尿外科学[M].山东:山东科学技术出版社,2004. 898-899.
    [95] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006[J]. CA Cancer J Clin, 2006,56(2):106-30.
    [96] Moore LE, Wilson RT, Campleman SL. Lifestyle factors, exposures, genetic susceptibility, and renal cell cancer risk: a review[J]. Cancer Invest, 2005,23(3):240-55.
    [97] Yao M, Yoshida M, Kishida T, et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma[J]. J Natl Cancer Inst, 2002,94(20):1569-75.
    [98] Ohh M, Yauch RL, Lonergan KM, et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix[J]. Mol Cell, 1998,1(7):959-68.
    [99] Esteban-Barragan MA, Avila P, Alvarez-Tejado M, et al. Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions[J]. Cancer Res, 2002,62(10):2929-36.
    [100] Okuda H, Saitoh K, Hirai S, et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical proteinkinase C[J]. J Biol Chem, 2001,276(47):43611-7.
    [101] Esteban MA, Harten SK, Tran MG, et al. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein[J]. J Am Soc Nephrol, 2006,17(7):1801-6.
    [102] Roe JS, Kim H, Lee SM, et al. p53 stabilization and transactivation by a von Hippel-Lindau protein[J]. Mol Cell, 2006,22(3):395-405.
    [103] Kondo K, Kim WY, Lechpammer M, et al. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth[J]. PLoS Biol, 2003,1(3):E83.
    [104] Kaelin WG Jr. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing[J]. Biochem Biophys Res Commun, 2005,338(1):627-38.
    [105] McLaughlin JK, Lipworth L. Epidemiologic aspects of renal cell cancer[J]. Semin Oncol, 2000,27(2):115-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700