用户名: 密码: 验证码:
304不锈钢氯离子腐蚀的力—化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油、化工、能源等工业装置向着高温、高压和大型化方向发展,构件的服役环境日趋复杂,由腐蚀引发的事故大为增加,特别是承载构件的腐蚀所引发的一系列毫无征兆的灾难性事故引起了人们的广泛关注。长期以来,人们对于应力作用下的腐蚀问题进行了广泛的研究,但是由于应力与腐蚀过程之间交互作用的复杂性和多样性,迄今为止仍是一个富有挑战性的难题。本文以304不锈钢在氯离子溶液中的腐蚀为研究对象,围绕单轴塑性变形对材料表面活化溶解的影响、多轴应力状态对材料活化溶解的影响和多轴交变载荷对材料腐蚀性能的影响,进行了理论分析和实验研究,所取得的主要进展和结论如下:
     研究了304不锈钢在含有不同氢离子的氯化钠溶液中的应力腐蚀敏感性,分析304不锈钢在该腐蚀环境中的应力腐蚀开裂机理。研究表明,在0.63mol/L NaCl+0.5mol/L HCl溶液中,304不锈钢具有较强的应力腐蚀敏感性。
     采用恒载荷作用下的电化学实验研究了氢和应力对阳极活化溶解的影响。研究表明塑性变形显著加速阳极活化溶解而氢和应力的交互作用对阳极活化溶解的影响较小。基于热力学和电化学基础,从塑性变形引起的应变能密度和位错引起的表面电子活度变化出发,建立了氢和应力对阳极活化溶解影响的理论模型。恒载荷实验与理论计算取得了较好的一致。从而得出在酸性的氯离子溶液中,304奥氏体不锈钢的应力腐蚀开裂机理并不是氢加速阳极溶解型。
     通过点蚀坑内复杂应力状态对阳极活化溶解的影响,将点蚀坑内部的应力状态与局部腐蚀环境相耦合,开展了在外加载荷作用下点蚀坑内局部腐蚀环境的有限元分析,探讨了外加载荷、温度、点蚀坑尺寸对局部腐蚀环境中电化学性能及各离子浓度分布的影响。通过该模型可以判断温度、点蚀坑大小以及外加应力对点蚀坑内局部腐蚀环境的影响,为实际的生产实践提供趋势性的预测。
     在多轴交变载荷的作用下,采用比例与非比例加载方式研究了复杂交变载荷对304不锈钢腐蚀疲劳性能的影响。研究发现,与比例加载相比,非比例载荷加载过程中主应力面的持续旋转对点蚀坑的形成起了一定的阻碍作用。但是,非比例加载过程中主应力面的不断旋转使材料不能形成稳定的位错结构,提高了材料的附加强化,这种附加强化的形成对材料疲劳寿命降低起主导作用,从而使腐蚀环境的影响则相对较弱。因此,在相同的腐蚀环境和等效应力幅作用下,比例加载产生的疲劳寿命损失率大于非比例加载。
As the installations in petrochemical, power generating and metallurgical industries are developing towards high temperature, high pressure and large-scale applications, corrosion-induced accidents have been a common occurrence, especially when the components are subjected to complex environments and applied loads. For a long time, extensive research efforts have been taken on the corrosion problem with applied stress. However, it remains as a significant challenge due to the complexity and diversity of the interaction between stress and corrosion. In the thesis, the corrosion behavior of 304 stainless steel in chloride solution was investigated. The effect of uniaxial plastic deformation on active dissolution, the effect of local deformation on active dissolution and the effect of multiaxial cycle loading on corrosion property were studied theoretically and experimentally. The main contents and conclusions of the thesis are as follows:
     The stress corrosion cracking sensitivity in the chloride solution with different acid concentration was firstly studied. The stress corrosion cracking mechanism was analyzed. Test results showed that, in the environment of 0.63mol/L NaCl+0.5 mol/L HCl solution,304 stainless steel had a relatively high sensitivity to stress corrosion cracking.
     Electrochemical tests under constant loading was conducted to study the effect of hydrogen and applied stress on anodic active dissolution. Test results revealed that the plastic deformation had a strong effect on active dissolution and the synergistic effect between stress and dissolved hydrogen only slightly promoted the process of active dissolution. On the basis of thermodynamics and electrochemistry, a theoretical model which reflects the effect of applied stress on active dissolution was proposed in terms of the stored strain energy and electron work function. A good agreement between the prediction and test results which revealed that the stress corrosion cracking mechanism of 304 stainless steel in acid chloride solution was not hydrogen-facilitated anodic dissolution.
     A mathematical model for simulating a stressed metal surface with a pit in which active dissolution occurs had been developed. An active dissolution mechanism was assumed and extended to the pit surface by including a multiaxial stress state dependent bare metal dissolution current density. The influence of applied tensile stress, pit radius and temperature was addressed. Through accounting for the thermal activation energy and the stress state in pit bottom, the distribution of solution potential and species concentration was predicted for different applied tensile stresses.
     The effect of multiaxial cyclic loading on corrosion property of 304 stainless steel was studied by use of proportional loading and non-proportional loading. It was found that, compared with proportional loading, the continuous rotation of the principle stress plane during multiaxial non-proportional loading blocked the formation of pits. Furthermore, the lack of stable dislocation structure during the non-proportional loading enhanced the additional hardening of material which strongly reduced the fatigue life of specimen while the corrosion environment only played a promotional role.
引文
[1]陆世英等.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢.北京:原子能出版社.1985:1-2.
    [2]中国腐蚀与防护学会金属腐蚀手册编委会.金属腐蚀手册.上海:科学技术出版社,1987.
    [3]Komai K. Failure analysis and prevention in SCC and corrosion fatigue cases. International Journal of Fatigue.1998,20(2):145-154.
    [4]陆柱.21世纪对腐蚀与防护技术的挑战与对策.海峡两岸材料腐蚀与防护研讨会论文集,厦门,厦门大学出版社,1998:96-98
    [5]Shipilor SA. Solving some key failure analysis problems using advanced methods for materials testing. Engineering Failure Analysis.2007,14(8):1550-1573
    [6]Zucchi F, Trabanelli G, Frignani A, et al. The inhibition of stress corrosion cracking of stainless steels in chloride solutions. Corrosion Science.1978,18(1):87-95.
    [7]褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988.
    [8]Galvele JR. Comments on "notes on the surface mobility mechanism of stress-corrosion cracking", by K. Sieradzki and F. J. Friedersdorf. Corrosion Science.1987,36(5): 901-910.
    [9]Newman RC, Shahrabi J, Sieradzki K. Film-induced cleavage of alpha-brass. Scripta Metallurgica. 1989,23(1):71-74.
    [10]Lepinoux J, Magnin T. Stress corrosion microcleavage in a ductile f.c.c alloy. Material Science and Engineering A.1993,164(1-2):266-269.
    [11]褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京:科学出版社.2000:231.
    [12]Trethewey KR. Some observations on the current status in the understanding of stress-corrosion cracking of stainless steels. Material and Design.2008,29(2):501-507
    [13]Staehle R, Gorman JA. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in PWRs, USNRC, Argonne National Laboratory Contract OF-00664 (RWS152),2000:254.
    [14]Staehle R. Lifetime prediction of materials in environment. In:Revie R W, editor. Uhligs Corrosion Handbook,2nd ed., vol.27. New York:John Wiley and Sons,2000.
    [15]Harston JD, Scully JC. Fracture Path of Stress Corrosion Cracks in Austenitic Stainless Steels. Nature.1969,221(3):853-854.
    [16]Tsai WT, Sheu MJ, Lee JT. The stress corrosion crack growth rate in sensitized alloy 600 in thiosulfate solution. Corrosion Science.1996,38(1):33-45.
    [17]Newman RC, Roberge R, Bandy R. Evaluation of SCC Test Methods for Inconel 600 in Low-Temperature Aqueous Solutions. Corrosion 39 (1983):387.
    [18]Hsu SS, Tsai SC, Kai JJ, et al. SCC behavior and anodic dissolution of Inconel 600 in low concentration thiosulfate. Journal of Nuclear Materials.1991,184(2):97-106.
    [19]Tsai MC, Tsai WT, Lee JT. The effect of heat treatment and applied potential on the stress corrosion cracking of alloy 600 in thiosulfate solution. Corrosion Science.1993, 34(5):741-757.
    [20]Szklarska-Smialowska Z. Pitting Corrosion of Metals, NACE National Association of Corrosion Engineers, Houston,1986:430.
    [21]Kolaczkowski ST, Plucinski P, Beltran FJ, et al. Wet air oxidation:a review of process technologies and aspects in reactor design, Chemical Engineering.1999,73(2):143.
    [22]Bruemmer SM. Grain boundary chemistry and intergranular failure of austenitic stainless steels, Materials Science Forum.1989,46:309-334.
    [23]Was GS. Grain boundary chemistry and intergranular fracture in austenitic nickel-base alloys-a review. Corrosion.1990,46(4):319-330.
    [24]Briant CL, Banerji SK. Intergranular failure in steel:the role of grain-boundary composition, International Materials Reviews.1978,4:164-200.
    [25]Newman RC. Stress-corrosion cracking mechanisms, in:P.Marcus, J. Oudar (Eds.), Corrosion mechanisms in theory and practice, Marcel Dekker, New York,1995:311.
    [26]古特曼著,金石译,金属力学化学与腐蚀防护.北京,科学出版社,1989,23-26.
    [27]Despic AR, Rnichelf RG, Bockris JM. Mechanism of the acceleration of the electrodic dissolution of metals during yielding under stress. Journal of Chemical Physics.1968, 49(2):926-938.
    [28]Galvele JR, White RE, Smehle RW. Modem aspects of electrochemistry. New York: Plenum Press,1995:275.
    [29]郑华均,张康达.应力在16MnR钢-饱和硫化氢溶液应力腐蚀体系中的作用.浙江工业大学学报.2001,29(4):360-364.
    [30]林昌健,冯祖德,林福龄,王发扬.18/8型不锈钢在受力变形条件下腐蚀电化学行为的研究.电化学.1995,](4):439-445.
    [31]牛林,张长桥,林海潮.弹、塑性应变对奥氏体不锈钢AISI321电化学行为的影响.腐蚀科学与防护技术.2003,15(4):187-190
    [32]Qiao LJ, Mao SX. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking. Acta Metallurgica Inc.1995,43(11):4001-4006.
    [33]Gutman EM. Mechanochemistry of Solid Surface, World Scientific, Singapore,1994: 116.
    [34]Lu BT, Luo JL, Norton PR, Ma HY. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral PH. Acta Materialia.2009,57(1):41-49.
    [35]Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K:back stress and effective stress. Acta Materialia.1999.47(13):3617-3632.
    [36]Mughrabi H, Ungar T. Dislocations in Solid, Elsevier, Amsterdam,2002:343.
    [37]Sahal M, Creus J, Sabot R, Feaugas X, The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Materialia.2006,54 (8):2157-2167.
    [38]Lu BT, Chen ZK, Luo JL, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochimica Acta.2005,50(6):1391-1403.
    [39]Ke W. Mechanochemical interactions in stress corrosion.14th asian-pacific corrosion control conference, Shanghai,2006.
    [40]Fournier L, Savoie M, Delafosse D. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water. Journal of Nuclear Materials.2007,366(1-2):187-197.
    [41]Green JAS, Hayden HW, Montague WG. In:Thompson A W, Bernsten I M eds. Effect of hydrogen on behavior of materials, PAIC, Moran, Wyo.1975, New York:AMIE,1976: 200.
    [42]乔利杰,刘锐,肖纪美.黄铜应力腐蚀裂纹与应力分量的关系.金属学报.1991,27(6):398-402.
    [43]Nishimura R, Sulaiman A, Maeda Y. Stress corrosion cracking susceptibility of sensitized type 316 stainless steel in sulphuric acid solution. Corrosion Science.2003, 45(2):465-484.
    [44]Turnbull A. Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments. Corrosion Science.1997,39(4):789-805.
    [45]Nishimura R, Sulaiman A, Maeda Y. Stress corrosion cracking susceptibility of sensitized type 316 stainless steel in sulphuric acid solution. Corrosion Science.2003,43 (2): 465-484.
    [46]Qiao LJ, Chu WY, Miao HJ, et al. Hydrogen-faxilitated corrosion and stress corrosion cracking of Austennitic stainless steel of type 310. Metallurgical Transactions A.1993,24 (4):959-962.
    [47]Itatani M, Miyoshi Y, Ogura K. Hydrogen-assisted crack growth of austenitic stainless steel hydrogenated by high temperature cathodic charging. Engineering Fracture Mechanics.1988,30(3):337-348.
    [48]Tsay LW, Young MC, Tsay LW. Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen. Corrosion Science.2003,45(9):1985-1997.
    [49]Pan C, Chu WY, Li ZB, et al. Hydrogen embrittlement induced by atomic hydrogen and hydrogen-induced martensites in type 304L stainless steel. Material Science and Engineering A.2003,351 (1-2):293-298.
    [50]Tsay LW, Liua YF, Huang YF, et al. The effect of sensitization on the hydrogen-enhanced fatigue crack growth of two austenitic stainless steels. Corrosion Science.2008, 50(5):1360-1367.
    [51]Alyousif OM, Nishimura R. On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions: Effect of applied stress. Corrosion Science.2008,46(10):2919-2926.
    [52]Urushino K, Sugimoto K. Stress-corrosion cracking of aged Al-Cu-Mg alloys in NaCl solution. Corrosion Science.1979,19(4):225-236.
    [53]Nishimura R, Katim I, Maeda Y. Stress corrosion cracking of sensitized type 304 stainless steel in hydrochloric acid solutions- predicting time to failure and effect of sensitizing temperature. Corrosion,2001,57(10):853.
    [54]Abou-Elazm A, Abdel-Karim R, Elmahallawi I, et al. Correlation between the degree of sensitization and stress corrosion cracking susceptibility of type 304H stainless steel. Corrosion Science.2009,51(2):203-208
    [55]Garcia C, Martin F, Tiedra PD, et al. Effect of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels. Corrosion Science.2001,43(8):1519-1539
    [56]Sharland SM. A review of the theoretical modeling of crevice and pitting corrosion. Corrosion Science.1987,27(3):289-323.
    [57]Williams DE, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels. Journal of Electrochemical Society.1985,132(8):1796-1804.
    [58]Talbot JB, Oriani RA, Dicarlo MJ. Application of linear stability analysis to passivation models. Journal of Electrochemical Society.1985,132:1031-1037.
    [59]Okada T. A theoretical analysis of the electrochemical noise during the induction period of pitting corrosion in passive metals:Part 1. The current noise associated with the adsorption/desorption processes of halide ions on the passive film surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1991,297(2):349-359.
    [60]Okada T. The rate of passive metal dissolution in relation to the presence of transitional halide complexes in halide solutions. Corrosion Science.1986,26(10):839-849.
    [61]Isaacs HS. The localized breakdown and repair of passive surfaces during pitting. Corrosion Science.1989,29(2-3):313-323.
    [62]Dorovskikh IV, Gorichev IG, Batrakov VV, et al. Effect of the anionic composition and pH on the dissolution kinetics of chromium (Ⅲ) oxide and chromium (Ⅲ) hydroxide oxide in acids. Physical Chemistry of Solutions.2006,51(1):150-159.
    [63]Melville PH. Variation of potential around a pit. Corrosion science.1980,20(5):369-371.
    [64]Doig P, Flewitt P E J. Limitations of potentiostatic control in stress corrosion crack growth measurements. Metallurgical and Materials Transactions A.1978,9(3):357-362.
    [65]Bignold GJ, Garnsey R, Mann GMW. High temp, aqueous corrosion of iron development of theories of equilibrium solution phase transport through a porous oxide. Corrosion Science.1972,12(4):325-332.
    [66]Newman J, Hanson DN, Vetter K. Potential distribution in a corroding pit. Electrochimica Acta.1977,22(8):829-831.
    [67]Tester JW, Isaacs HS. Diffusional effects in simulated localized corrosion. Journal of Electrochemical Society.1975,122(11):1438-1445.
    [68]Alkire R, Siitari D. The location of cathodic reaction during localized corrosion. Journal of Electrochemical Society.1979,126(1):15-22.
    [69]Turnbull A, Ferriss DH. Mathematical modeling of the electrochemistry in corrosion fatigue cracks in steel corrosion in marine environments. Corrosion Science.1987,27(12): 1323-1350.
    [70]Sharland SM, Tasker PW. A mathematical model of crevice and pitting corrosion-I. the physical model. Corrosion Science.1988,28(5):603-620.
    [71]Macdonald DD, Urquidi-Macdonald M. A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments. Corrosion Science.1991,32(1):51-81.
    [72]Vankeerberghen M, Macdonald DD. Predicting crack growth rate vs. temperature behaviour of Type 304 stainless steel in dilute sulphuric acid solutions. Corrosion Science. 2002,44(7):1425-1441.
    [73]Turnbull A. Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments. Corrosion Science.1997,39(4):789-805.
    [74]Gavrilov S, Vankeerberghen M, Nelissen G, ea al. Finite element calculation of crack propagation in type 304 stainless steel in diluted sulphuric acid solutions. Corrosion Science.2007,49(3):980-999.
    [75]Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions. Journal of Nuclear Materials.2009,384(3): 274-285.
    [76]Gough HJ, Sopwith DG. Atmospheric action as a factot in fatigue of metals. Journal Institute of Metals.1932,49:93-122.
    [77]Johnson HH, Paris PC. Sub-critical flaw growth. Engineering fracture.1968, 1(1):3-45.
    [78]Vogelesang LB, Schijve J. Environmental effects on fatigue fracture mode transitions observed in aluminium alloys. Fatigue & Fracture of Engineering Materials &Structures. 1980,3(1):85-98.
    [79]Yuen JL, Schmidt CG, Roy P. Effects of air and inert environments on the near threshold fatigue crack growth behavior of alloy 718. Fatigue & Fracture of Engineering Materials & Structures.1985,8(1):65-76.
    [80]Sudarshan TS, Srivatsan T S, Harveyll D P. Fatigue processes in metals-role of aqueous environments. Engineering Fracture Mechanics.1990,36(6):827-852.
    [81]Liaw PK, Leax TR, Donald JK. Fatigue crack growth behavior of 4340 steels. Acta Metallurgica.1987,35(7):1415-1432.
    [82]Pao PS, Gill SJ. Feng CR. On fatigue crack initiation from corrosion pits in 7 075-T7351 aluminum alloy. Scripta Materialia,2000,43 (5),391-396.
    [83]Ford FP. Quantitative examination of slip-dissolution and hydrogen-embritlement theories of cracking in aluminium alloys. Metal Science,1978,12(7):326-334.
    [84]Magnin T, Coudreuses L. Corrosion fatigue mechanisms in b.c.c. stainless steels. Acta Metallurgica.1987,35(8):2105-2113.
    [85]Hanninen H, Torronen K, Kemppainen M, et al. On the mechanisms of environment sensitive cyclic crack growth of nuclear reactor pressure vessel steels. Corrosion Science. 1983,23(6):663-679.
    [86]Shipilov SA. Corrosion fatigue. In:Varvani-Farahani A, editor. Advances in fatigue, fracture and damage assessment of materials. Southampton:WIT Press,2004:329-89.
    [87]Gangloff RP. Corrosion fatigue crack propagation in metals. In:Gangloff RP, Ives MB, editors. Environment-induced cracking of metals. Houston:NACE,1990:55-106.
    [88]McEvily AJ, Wei RP. Fracture mechanics and corrosion fatigue. In:Devereux O, McEvily AJ, Staehle RW, editors. Corrosion fatigue:chemistry mechanics and microstructure. Houston:NACE; 1972:381-95.
    [89]Sprowls DO. Evaluation of corrosion fatigue. In:ASM handbook. Corrosion, Materials Park:ASM,1998:291-302.
    [90]Paris PC, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering, Transactions of the ASME.1963,85:528-34.
    [91]Speidel MO. Corrosion fatigue and stress corrosion crack growth in high strength aluminums alloys, magnesium alloys, and titanium alloys exposed to aqueous solutions. In:Devereux O, McEvily A J, Staehle R W, editors. Corrosion Fatigue:chemistry, mechanics and microstructure. Houston:NACE,1972:324-45.
    [92]Wang ZF, Li J, Wang JQ, et al. The influence of loading waveform on corrosion fatigue crack propagation. Corrosion Science.1995,37(10):1151-1565.
    [93]Barsom JM. Corrosion-Fatigue Crack Propagation Below KISCC.Engineering Fracture Mechanics.1971,3(1):15-25
    [94]Gallagher JP. Corrosion fatigue crack growth rate behavior above and below KISCC. Journal of Material.1971,6:941-64.
    [95]Meyn DA. An analysis of frequency and amplitude effects on corrosion fatigue crack propagation in Ti-8Al-1Mo-1V. Metallurgical and Materials Transactions B.1971, 2(3):853-865.
    [96]Shipilov SA. Solving some key failure analysis problems using advanced methods for materials testing. Corrosion Science.2007,14(8):1550-1573.
    [97]赵建平,周昌玉,龄孝春等.加载频率f和应力比R对腐蚀疲劳裂纹扩展速率影响的研究.压力容器.1999,16(6):1-4.
    [98]Austen IM, Walker EF. Quantitative understanding of the effects of mechanical and environmental variables on corrosion fatigue crack growth behavior. In:The influence of environment on fatigue. London,1977:1-10.
    [99]Liu YM, Mahadevan S. Multiaxial high-cycle fatigue criterion and life prediction for metals. International Journal of Fatigue.2005,27(7):790-800.
    [100]Vu QH, Halm D, Nadot Y. Multiaxial fatigue criterion for complex loading based on stress invariants. International Journal of Fatigue.2010,32(7):1004-1014.
    [101]Kanazawa K, Miller KJ, Brown MW. Low-cycle fatigue under out-of-phase loading conditions. Journal of Engineering Materials and Technology, Transactions of ASME. 1977,99:222-228.
    [102]何国球,陈成澍,高庆.不锈钢多轴非比例加载低周疲劳的研究.机械工程学报,1999,35(1):47.
    [103]Wang YY, Yao WX. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading. International Journal of Fatigue.2006, 28(4):401-408.
    [104]Socie DF. Multiaxial fatigue damage models. ASME J Engng Mater Tech.1987, 109:293
    [105]Sonsino CM. Influence of load and deformation-controlled multiaxial test on fatigue life to crack initiation. International Journal of Fatigue.2001,23(2):159
    [106]Nishino S, Namada N, Sakane M. Microstructural study of cyclic strain hardening behavior in biaxial stress states at elevated temperature. Fatigue & Fracture of Engineering Materials & Structures.1986,9(1):65-11.
    [107]Itoh T, Sakane M, Ohnami M. Nonproportional low cycle fatigue criterion for type 304 stainless steel. Journal of Engineering Materials and Technology, Transactions of ASME.1995,117(3):285-292.
    [108]Ackermamm F, Kubin LP, Lepinoux J, et al. The dependence of dislocation mirostructure on plastic strain amplitude in cyclically strained copper single crystals. Acta Metallurgica.1984,32(5):715-725.
    [109]Lufrano J, Sofronis P. Numerical analysis of the interaction of solute hydrogen atoms with the stress field of a crack. International Journal of Solids and Structures.1996, 33(12):1709-1723.
    [110]Mao SX, Li M. Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion:Experiment and theory. Journal of the Mechanics and Physics of Solids.1998,46(6):1125-1137.
    [111]Rogers HC. Adiabatic Plastic Deformation. Annual Review of Materials Science. 1979,9:283-311.
    [112]Oilferuk W, Korbel A, Bochnik W. Energy balance and macroscopic strain localization during plastic deformation of polycrystalline metals. Material Science and Engineering A.2010,316-321:250-253.
    [113]Ramberg W, Osgood WR. Description of stress-strain curves by three parameters. Technical Note No.902, National Advisory Committee for Aeronautics, Washington DC,1943.
    [114]Kurtz RJ, Hoagland RG, Hirth JP. Physical metallurgy of stress corrosion fracture. New York:AIME Interscience,1959:29.
    [115]Lapovok R. Damage evolution under severe plastic deformation. International Journal of Fracture.2002,115(2):159-172.
    [116]Alyousif OM, Nishimura R. On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions:Effect of applied stress. Corrosion Science,2008,50:2919-2926.
    [117]Nishimura R, Maeda Y. SCC evaluation of type 304 and 316 austenitic of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique. Corrosion Science,2004,46:769-785.
    [118]Timofeev BT, Fedorova VA, Buchatskii AA. Intercrystalline corrosion cracking of power equipment made of austenitic steels (review). Materials Science,2004,40:48-58.
    [119]Gutman EM, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel. Corrosion Science.1996,38:1141-1145.
    [120]刘幼平.不锈钢局部腐蚀过程中的氢去极化反应研究.腐蚀科学与防护技术.1997,9(2),115-119.
    [121]Krishnan KN. Prasad RK. Effect of microstructure on stress corrosion cracking behaviour of austenitic stainless steel weld metals. Material Science and Engineering A. 1991,142(1):79-85.
    [122]曾一民,乔利杰,杨迈之等.氢对纯铁钝化膜电子性质的影响.中国腐蚀与防护学报.2000,20(2):74-80.
    [123]Murphy OJ, Pou TE, Bockris JO. Investigation of the anodically formed passive film on iron by secondary ion mass spectroscopy. Journal of the Electrochmeical Society.1984, 131(12):2785-2790.
    [124]Qin Z, Norton PR, Luo JL. Effects of hydrogen on formation of passive films on AISI 310 stainless steel. British Corrosion Journal.2001,36:33-35.
    [125]Nishimura R. Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method. Corrosion Science.49(2007):81-91.
    [126]Mohamed RB. The mechanics and mechanisms of fracture in stress corrosion cracking of aluminium alloys. Engineering Fracture Mechanics.1996,54(6):879-889.
    [127]Fauvet P, Balbaud F, Robin R, et al. Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. Journal of Nuclear Materials.2008, 375(1):52-64.
    [128]Qiao LJ, Luo JL. Hydrogen-Facilitated Anodic Dissolution of Austenitic Stainless Steels. Corrosion.1998,54(4):281-288.
    [129]Yang Q, Qiao LJ, Chiovelli S, et al. Effect of hydrogen on pitting susceptibility of type 310 stainless steel. Corrosion.1998,54 (8):628-633.
    [130]胡小丽,黄震中,乔利杰等.氢和应力对阳极溶解的影响.中国腐蚀与防护学报,1996,16(3):187-194.
    [131]Sahal M, Creus J, Sabot.R, Feaugas.X, Consequences of plastic strain on the dissolution process of polycrystalline nickel in H2SO4 solution. Scripta Materialia.2004, 51(9):869-873.
    [132]Li W, Li DY. Variations of work function and corrosion behaviors of deformed copper surfaces. Applied Surface Science.2005,240 (1-4):388-395.
    [133]Hermas AA, Morad MS. A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions. Corrosion Science.2008, 50 (9):2710-2717.
    [134]Gu B, Luo J, Mao X. Hydrogen-Facilitated Anodic Dissolution-Type Stress Corrosion Cracking of Pipeline Steels in Near-Neutral pH Solution. Corrosion.1999, 55(1):96-106.
    [135]Nishimura R, Alyousif OM. A new aspect on intergranular hydrogen embrittlement mechanism of solution annealed types 304,316 and 310 austenitic stainless steels. Corrosion Science.2009,51(9):1894-1900.
    [136]Uhlig H, editor. Corrosion handbook. New York, John Wiley,1949:138.
    [137]Yang Q, Qiao LJ, Chiovelli S, et al. Critical hydrogen charging condition for martensite transformation and surface cracking in type 304 stainless steel. Scripta Materialia.1999,40(11):1209-1214.
    [138]Li W, Wang Y. Li D Y. Response of the electron work function to deformation and yielding behavior of copper under different stress states. Physical Status Solidi A,2004, 201(9):2005-2011.
    [139]Li W, Li DY. Effect of surface geometrical configurations induced by microcracks on electron work function. Acta Materialia.2005,53(14):3871-3878.
    [140]刘志林,李志林,刘伟东.界面电子结构和界面性能.北京,科学出版社:2002.
    [141]乔丽杰,王燕斌,褚武扬.应力腐蚀机理.北京,科学出版社:1993.
    [142]Sharland SM. A mathematical model of crevice and pitting corrosion-Π. the mathematical solution. Corrosion Science.1988,28(6):621-630.
    [143]Huang YH, Xuan F-Z, Tu S-T, Itoh T. Effects of hydrogen and surface dislocation on active dissolution of deformed 304 austenitic stainless steel in acid chloride solution. Material Science and Engineering A.2011,528(3):1882-1888.
    [144]张组训,汪尔康.电化学原理和方法.北京:科学出版社.2000:152.
    [145]Turnbull A, Zhou S. Hinds G. Stress corrosion cracking of steam turbine disc steel-measurement of the crack-tip potential. Corrosion Science.2004,46(1):193-211.
    [146]Inoue H, Iwawaki H, Yamakawa K. Potential fluctuation during early stage of stress corrosion cracking of type-304 stainless steel in a chloride solution containing thiosulfate. Corrosion Science.1997,39(10-11):1873-1882.
    [147]White SP, Weir GJ, Laycock NJ. Calculating chemical concentrations during the initiation of crevice corrosion. Corrosion Science.2000,42(4):605-629.
    [148]Gravano SM, Galvele JR. Transport processes in passivity breakdown-Ⅲ. Full hydrolysis plus ion migration plus buffers. Corrosion Science.1984,24(6):517-534.
    [149]Wan JS, Yue ZF. A low-cycle fatigue life model of nickel-based single crystal superalloys under multiaxial stress state. Material Science and Engineering A.2005, 392(1-2):145-149.
    [150]You BR, Lee SB. A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue.1996,18(4):235-244.
    [151]Papuga J. A survey on evaluating the fatigue limit under multiaxial loading. International Journal of Fatigue.2011,33(2):417-425.
    [152]Wang Y, Pan J. Use of fracture mechanics to predict fatigue initiation life under multiaxial loading conditions. International Journal of Fatigue.1999,21(1):173-180.
    [153]Gilman JD, Rungta R, Hinds P, et al. Corrosion-fatigue crack-growth rates in austenitic stainless steels in light water reactor environment. International Journal of Pressure Vessels and Piping.1988,31(1):55-68.
    [154]Baik YM, Kim KS. The combined effect of frequence and load level on fatigue crack growth in stainless steel 304. International Journal of Fatigue.2001,23(5):417-425.
    [155]Begum Z, Poonguzhali A, Basu R, et al. Studies of the tensile and corrosion fatigue behaviour of austenitic stainless steels. Corrosion Science.2011,53(4):1424-1432.
    [156]Nakajimaa M, Akitab M, Uematsuc Y, et al. Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel. International Journal of Fatigue.2010,2(1):323-330.
    [157]Ebara R. Corrosion fatigue crack initiation behavior of stainless steels. Procedia Engineering.2010,2(1):1297-1306.
    [158]Kawai S, Kasai K. Considerations of allowable stress of corrosion fatigue (focused on t he influence of piting). Fatigue& Fracture of Engineering Materials& Structures. 1985,8(2):115-127.
    [159]Kenzou M, Makoto K, Toshitugu O. Effect of crevice on corrosion fatigue prevention of Cr-Mo cast steel in fresh water using inhibitor. Jounral of the Society of Materials Science, Japan.1985,34 (379):429-435.
    [160]Maeng WY, Kang YH, Nam T W, et al. Synergistic interaction of fatigue and stress corosion on the corrosion fatigue crack growth behavior in alloy 600 in high temperature and high pressure water. Jounral of Nuclear Materials.1999,275(2):194-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700