用户名: 密码: 验证码:
汉江中游小流域水土—养分流失过程与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据2011-2012年汛期在陕南地区石泉后沟农业小流域的监测和实验,开展了水土流失与非点源污染迁移机理与过程模拟研究,探讨了汉江中游小流域主要水土保持措施拦截、削减农业非点源污染物的作用机理,为南水北调中线工程水源地农业非点源污染的控制提供理论基础。通过研究,取得主要结论如下:
     (1)阐明陕南后沟小流域的降雨产流特征及其产沙的时空分布。汛期径流小区降雨量与径流量呈极显著关系,在9°坡耕地降雨产流量与降雨量呈极显著的线性关系,而在14°-25°坡耕地降雨产流量与降雨量之间存在极显著的二次曲线函数关系。不同坡度临界产流降雨量,表现出随着坡度增加产流临界降雨量呈下降的趋势。
     坡地产流表现为蓄满产流,壤中流是坡地的优先流;作物前期和中后期生长阶段的壤中流占总径流量比例是作物收获和土地空置阶段的1.14-1.35倍。
     汛期初期降雨过程流域出口径流流速与流量呈现幂函数变化趋势,而后期降雨过程径流流速与流量呈现线性变化趋势。径流动能与泥沙流失量在汛期初期和末期呈现幂函数和线性关系,而汛期中期,两者呈现幂函数关系。
     (2)不同土壤类型和地表覆被条件下,流域前期土壤水分状况对降雨产流过程具有显著的影响,这个过程可以用SCS模型进行模拟。当初损参数设置为0.3时,实测径流量和计算径流量相接近,CN值为58。
     (3)阐明不同土地利用类型和海拔下土壤可蚀性的变化规律。后沟小流域典型坡面土壤可蚀性研究表明,随着海拔升高林草地和玉米地土壤可蚀性逐渐降低,在390m处达到最大值,随后逐渐降低;在海拔420-430m的梯田处基本达到最小值,并趋于稳定;通过修建梯田,能够增加土壤抗蚀性。
     (4)阐明了不同下垫面对降雨侵蚀力和土壤侵蚀模数的影响,揭示了流域侵蚀产沙与降雨径流的关系。后沟小流域多年降雨侵蚀力最大值出现在7月份,平均降雨侵蚀力R值为3403.66MJ·mm/(hm~2·h·a)。该小流域年土壤侵蚀量为15587.41t,年均土壤侵蚀模数为2013.877t/km~2,属中度土壤侵蚀强度,小流域内坡耕地年均泥沙侵蚀量为9853.47t,占小流域年侵蚀总量的63.2%。小流域内土地利用类型的土壤侵蚀量的顺序为:园地>坡耕地>退耕地>果园。四种不同土地利用类型的土壤流失量最大值均发生在7月份,单场降雨过程土壤最大流失量分别占汛期坡耕地、退耕地、园地、果园地监测土壤侵蚀量的31.76%、32.78%、39.05%、11.44%。
     在四种土地利用类型中,果园泥沙流失量与径流量的最佳回归方程为三次曲线方程,坡耕地、退耕地、园地径流中泥沙含量与径流量关系显著,拟合方程采用S形曲线方程较为合适。
     (5)小流域氮、磷流失过程在汛期内表现出明显的阶段性。通过对小流域汛期内氮、磷流失过程分阶段数值模拟结果表明,分段模拟结果可信度更高。虽然对于整个汛期和分阶段模拟氮磷流失过程,流失量与径流量和产沙量的表达式均为:T=aRbSc,但是分阶段模拟氮磷流失量的预测值更接近实测值。
     不同土地利用类型下年均氮、磷流失量有明显不同。果园和蔬菜园地的TN、TP流失浓度超过地表水Ⅱ水质标准分别为15倍和1.25倍。TN、TP流失量排序为:蔬菜园地>退耕地>坡耕地>果园地,年均TN流失量分别为:坡耕地4.92kg/hm~2、退耕地7.20kg/hm~2、蔬菜园地15.29kg/hm~2、果园地1.37kg/hm~2;年均TP流失量分别为坡耕地0.09kg/hm~2,退耕地0.22kg/hm~2,蔬菜园地0.25kg/hm~2,果园地0.05kg/hm~2。
     (6)揭示了小流域出口径流、泥沙流失过程与TN、TP含量的关系。坡耕地、退耕地,蔬菜园地和果园地径流中TN含量与径流量的函数关系均可以利用三次函数进行拟合。坡耕地、退耕地和果园泥沙含量与TP含量可以用三次函数曲线进行拟合,而果园可以用S形曲线方程、幂函数方程和对数方程进行模拟。
     (7)为研究沟渠拦截氮磷的效果,在不同时间对沟渠不同断面水体进行了监测。研究结果表明,在具有(没有)侧面外来水源干扰的沟渠断面,沟渠径流氮浓度增加(降低)速度要超过磷含量的增加(降低)速度;沟渠径流NH_4~+-N浓度下降速度要快于TN,沟渠径流NO_3~--N浓度的变化规律不明显,总体有波动稍增趋势;沟渠径流NH_4~+-N含量的下降速度要快于TN,降雨结束后,沟渠径流NO_3~--N含量总体有波动稍增趋势;不同断面径流中TN、NH_4~+-N、NO_3~--N和TP浓度的变异系数为:下游>上游>中游;TP变异系数最大,在48.32-113.66%之间;NO_3~--N变异系数最小,在9.71-20.24%之间。
According to the monitoring and experiments in flood seasons during2011-2012in the Hougou agricultural watershed, we carried out the transport mechanisms andmodelling studies of water and sediment erosion and non-point source pollution,discussing the interception of soil and water conservation measures and reduceeffectively of agricultural non-point source pollution for the South-North WaterDiversion Project. By the method of combining theoretical analysis and experimentsstudy, the main results were as follows:
     (1) Clarify the characteristic of runoff and spatial and temporal distribution ofsediment yield. During the flood season, there is in highly significant correlation withrainfall and runoff in runoff plot, among there was a highly significant linear correlationin the9°plot,there existed very significant curve function correlation in14°-25°plots.Moreover, the rainfall of critical runoff yield decline with slope degree increase.
     Stored-full runoff was the main pattern of runoff yield in slope farmland in theHougou agricultural watershed, and the subsurface flow accounted for a largerpercentage of total runoff. Moreover, the subsurface flow ratio is1.14-1.35times at theseedling stage and the vigorous stage.
     Runoff rate is increase with volume of runoff increase; there is power function andlinear relation between runoff velocity and runoff volume in the early and the later offlood season. There are power functions and linear relation between runoff kineticenergy and sediment loss in the early and the later of flood season, however, powerfunction relation in the middle of flood season.
     (2) The SCS model not only reflects the runoff yield conditions under differentsoil types and vegetation covers in the Hougou agricultural watershed, but also fullyconsidered the soil moisture impacts runoff. When loss parameter is0.3, and CN value is58, monitored runoff and calculated runoff is very closer in runoff plot in the Hougouagricultural watershed.
     (3) Clarify the change laws of soil erodibility under different land use andelevations. The study of slope indicated that soil erodibility of woodland,abandonedland and cornfield is drop off over increasing elevation, the maximum soil erodibility atthe point of309m, then declines gradually,the minimum soil erodibility of terracedfield at elevation between420m and430m, the value is tending towards stability.
     (4) Clarify the effect of the rainfall erosivity and soil erosion modulus underdifferent land use, and reveal the relation between runoff and sediment yield. Themaximum rainfall erosivity in July, average R value is3403.66MJ·mm(/hm~2·h·a), andaverage soil erosion amount is15587.41t/a, soil erosion modulus is2013.877t/(km2·a),which in the scope of middle soil erosion intensity in the Hougou agriculturalwatershed. However, average soil erosion amount of slope land is9853.47t/a, whichtakes up of more than63.2%in total soil erosion amount.
     The order of soil erosion amount in different land use is: garden field>slope land>abandoned land>orchard field.The results showed that the maximum soil erosionamount of slope land, abandoned land, garden field, orchard field in July, which takesup of more than31.76%,32.78%,39.05%,11.44%in total soil erosion amount in a rainevent during flood season, respectively.
     The best regression equation is cubic curve-fitting equation between soil lossamounts and runoff of orchard field, however, the best regression equation is S curveequation between soil loss amounts and runoff of slope land, abandoned land, gardenfield.
     (5) The N and P loss processes shows in stages obviously in flood sesons during2011-2012. N and P loss predictions done stage-by-stage can have improved accuracy.Although the fitted equations between the amount of N and P loss between runoff andsediment yield were N=aR~bS~c assessed stage-by-stage, the method was supported by thestudy for predicting the amount of N and P loss in the Hougou agricultural watershed.
     The process of N and P loss in runoff and sediment is different obviously underdifferent land use. The N and P loss concentrations in orchard field and garden fieldhave exceeded surface water Class Ⅱ water standard more than15and1.25times. For four land uses, the order of N and P loss is garden field>abandoned land>slope land>orchard field. According to the monitored results, average TN amount loss of gardenfield, abandoned land, slope land, orchard field are15.29,7.20,4.92,1.37kg/(hm~2·a),however, average TP amount loss of garden field, abandoned land, slope land, orchardfield are0.25,0.22,0.09,0.05kg/(hm~2·a), respectively.
     (6) Reveal the relation between runoff, sediment and TN, TP concentration. Thecubic function can express relation between the TN concentration in runoff and runofffrom slopeland, abandoned land, garden field, orchard fields, especially orchard field.The cubic function can express relation between the TP concentration and sedimentfrom slopeland, abandoned land, garden field; however, S curve equation; powerfunction and logistic equation can express the relation in orchard fields.
     (7) Ditch water of different sections was monitored at different times to study theecological effectiveness of ditch. The results showed that ditch and aquatic plant hadfunction of interception and purification water. N and P concentration of waterdecreased when water flow through the ditch. Generally reduction range of TN and washigher than that of TP. Moreover, reduction range of NH_4~+-N was higher than that ofTN. However, NO_3~--N concentration had slight fluctuated incremental trend in ditchafter rains. The coefficient of variation of TN, NH_4~+-N, NO_3~--N and TP in differentsections is downstream>upstream>midstream. The coefficient of variation of TP isthe highest; the range is48.32-113.66%, and the coefficient of variation of NO_3~--N isthe smallest; the range is9.71-20.24%.
引文
[1]王星,李占斌,李鹏,等.陕西省丹汉江流域面源污染现状及防治对策[J].水土保持通报,2011,31(6):186-189.
    [2]封光寅,胡家庆,陈学谦,等.南水北调中线水源区水质状况及防治对策[J].中国水利,2005(8):28-50.
    [3]张春玲,李娅妮.陕西省丹汉江流域水质现状及防护对策[J].水资源与水工程学报,2007,18(3):87-90.
    [4]崔键,马友华,赵艳萍.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340.
    [5] Sharpley, A.N., Smith S.J.,Menzel R.G. Prediction of phosphorous losses in runoff fromSouthern Plains watersheds [J].Journal of Environment Quality,1982,11:247-251.
    [6]李宪文,史学正,Coen Ritsema.四川紫色土区土壤养分径流和泥沙流失特征研究[J].资源科学,2002,24(6):22-27.
    [7]程文娟,史静,夏运生,等.滇池流域农田土壤氮磷流失分析研究[J].水土保持学报,2008,22(5):52-55.
    [8]甄霖,闵庆文,李文华,等.海南省自然保护区生态补偿机制初探[J].资源科学,2006,28(6):10-19.
    [9]吴晓青,陀正阳,杨春明,等.我国保护区生态补偿机制的探讨[J].国土资源科技管理,2002,19(2):18-21.
    [10]靳芳.中国森林生态系统服务功能及其价值评价[J].应用生态学报,2005,16(8):1531-1536.
    [11]陈浮,张捷.旅游价值货币化核算研究—九寨沟案例分析[J].南京大学学报(自然科学),2001,37(3):296-303.
    [12]赵同谦,欧阳志云.中国森林生态系统服务功能及其价值评价[J].自然资源学报,2004,18(3):480-491.
    [13]巩芳,王芳,长青,等.内蒙古草原生态补偿意愿的实证研究[J].经济地理,2011,31(1):144-148.
    [14]李连英,朱青.我国矿产资源开发生态补偿存在的问题及解决对策分析[J].中国矿业,2010(11):62-65.
    [15]李芬,甄霖,黄河清,等.鄱阳湖区农户生态补偿意愿影响因素实证研究[J].资源科学,2010,32(5):824-830.
    [16]曹世雄,陈莉,余新晓.陕北农民对退耕还林的意愿评价[J].应用生态学报,2009,20(2):436-434.
    [17]张印,周羽辰,孙华.农田氮素非点源污染控制的生态补偿标准—以江苏省宜兴市为例[J].生态学报,2012,32(23):7327-7335.
    [18]毕小刚,杨进怀,李永贵,等.北京市建设生态清洁型小流域的思路与实践[J].中国水土保持,2005(1):18-20.
    [19]杨进怀,吴敬东,祁生林,等.北京市生态清洁小流域建设技术措施研究[J].中国水土保持科学,2007,5(4):18-21.
    [20]陈智星,蔡新明.浙江省清洁小流域建设中的污水处理模式探讨[J].浙江水利科技,2008(6):22-24.
    [21]林强,谢建华,林桂志,等.惠安县黄塘溪生态清洁型小流域建设初探[J].亚热带水土保持,2009,21(2):30-31.
    [22]宋瑞莲.门头沟区生态清洁小流域效益分析[J].中国水土保持,2009(2):32-33.
    [23]夏江宝,陈仲杰,刘信儒,等.山地水土保持林改良土壤效应的研究[J]..水土保持研究,2005,19(1):170-172.
    [24]蔡强国.坡面侵蚀产沙模型的研究[J].地理研究,1988,7(4):95-102.
    [25]高佩玲,雷廷武.小流域水文及土壤侵蚀过程模拟方法研究[J].水土保持通报,2010,30(6):158-161.
    [26]李雅琦,田均良,刘普灵,等.利用稀土元素示踪法研究黄土高原土壤侵蚀空间分布规律[J].核农学报,1997,11(3):145-150.
    [27]李怀恩,沈晋,刘玉尔.流域非点源污染模型的建立与应用实例[J].环境科学学报,1997,17(2):141-147.
    [28]张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51-55.
    [29]李勇,徐晓琴,朱显谟,等.黄土高原植物根系提高土壤抗冲性机制初步研究[J].中国科学B,1992,35(3):254-259.
    [30]李勇,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991,36(12):935-938.
    [31] Wischmeier W.H., Smith D.D. A universal soil loss equation to guide conservation farmplanning [J]. Trans7th International Cong. Soil Sci,1960,1:418-425.
    [32]许刘兵,周尚哲,等.宇宙成因核素测年方法及其在地球科学中的应用[J].冰川冻土,2006,28(4):577-585.
    [33]李锐,上官周平,刘宝元.近60年我国土壤侵蚀科学研究进展[J].中国水土保持科学,2009,7(5):1-6.
    [34] Tan C.S. Effect of tillage and water table control on evapotranspiratio, surface runoff tiledrainage and soil water content under maize [J].Agricultural Water Management,2002,54(3):173-188.
    [35]尹发能,王学雷,余璟.大九湖土地利用变化及其对湿地生态环境的影响研究[J].华中师范大学学报(自然科学版),2007,41(1):148-151.
    [36]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展,2003,22(6):576-584.
    [37] Zhang Y., Liu B.Y., Zhang Q.C., et al. Effect of different vegetation types on soil erosion bywater [J]. Acta Botanica Sinica,2003,45(10):1204-1209.
    [38] Onori F., Bonis P.D., Grauso S. Soil erosion prediction at the basin scale using the reviseduniversal soil loss equation(RUSLE) in a catchment of Sicily(southern Italy)[J]. EnvironmentalGeology,2006,50(8):1129-1140.
    [39] Vente J., Poesen J., Verstraeten G., et al. spatially distributed modeling of soil erosion andsediment yield at regional scales in Spain [J]. Global and Planetary Change,2008,60(3):393-415.
    [40]傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [41] Smith D.D., Wischmeier W.H. Factor’s affecting sheet and rill erosion [J]. Trans. AmerGeophys Union,1957,38(6):889-896.
    [42] McCool D.K., Brown L.C., Foster G.R., et al. Revised slope steepness factor for the UniversalSoil Loss Equation [J]. Transactions of the ASAE,1987,30:1387-1396.
    [43]唐克丽.小流域土壤侵蚀调查制图的讨论[J].陕西省土壤学会一九八三年论文集[C].1983.
    [44]郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持.1989,(8):23-24.
    [45]曹文洪.土坡侵蚀的坡度界限研究.水土保持通报[J].1993,13(4):1-5.
    [46]郑粉莉,高学田.坡面土壤侵蚀过程研究进展[J].地理科学,2003,23(2):230-235.
    [47] Zhang C.B., Chen L.H., Liu Y.P., et al. Triaxial compression test of soil-root composites toevaluate influence of roots on soil shear strength [J]. Ecological Engineering,2010,36(3):19-26.
    [48] Fournier F. Soil Conservation, Nature and Environment Seiers [M]. Brussels: Council ofEurope,1972,68-69.
    [49]游珍,李占斌.黄土高原小流域景观格局对土壤侵蚀的影响[J].中国科学院研究生院学报,2005,4(22):447-451.
    [50]李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展[J].地球科学进展,2005,1(20):74-80.
    [51]李鹏,李占斌,郑良勇.植被恢复演替初期对模拟降雨产流特征的影响[J].水土保持学报,2004,1(18):54-62.
    [52]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    [53]李鹏,李占斌,鲁克新.黄土区草本植被根系与土壤垂直侵蚀产沙关系研究[J].植物生态学报,2006,30(2):302-306.
    [54]满建利,姜成,彭红霞.降雨因素和不同土地利用方式对水土流失的影响[J].水土保持研究,2010,17(1):30-34.
    [55]穆兴民,王文龙,徐学选.黄土高原沟壑区水土保持对小流域地表径流的影响[J].水利学报,1999,(2):71-75.
    [56]张升堂,康绍忠,张楷.黄土高原水土保持对流域降雨径流的影响分析[J].农业工程学报,2004,20(6):56-59.
    [57] Garbrecht J, Campbell J. TOPAZ: an automated digital landscape analysis tool for topographicevaluation, drainage identification, watershed segmentation and subcatchment parameterization(M). TOPAZ User Manual, USDA-ARS, Oklahoma.1997.
    [58] S.L. Neitsch, J.G.Arnold, J.R. Kiniry, J.R. Williams, Soil and WaterAssessment Tool User’sManual Version2000, Agriculture Research Service and Blackland Research Center,2001.
    [59] Duchemin M., Hogue R. Reduction in agricultural non-point source pollution in the first yearfollowing establishment of an integrated grass/tree filter strip system in southern Quebec(Canada)[J]. Agriculture, Ecosystems and Environment,2009,131:85-97.
    [60]陈西平,黄时达.涪陵地区农田径流污染输出负荷定量化研究[J].环境科学,1991,12(3):75-79.
    [61]徐向阳,徐颖.太湖湖区农田按态氮流失模拟及对太湖水质影响的分析[J].农业环境保护,1993,12(2):67-71.
    [62]张振克.太湖流域湖泊水环境问题、成因与对策[J].长江流域资源与环境,1999,8(1):81-87.
    [63]马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究[J].应用生态学报,1992,3(4):346-354.
    [64]张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染[J].环境科学,1993,14(6):24-30.
    [65]高超,张桃林.太湖地区农田土壤磷素动态及流失风险分析[J].农村生态环境,2000,16(4):24-27.
    [66]沈景文.化肥农药和污灌对地下水的污染[J].农业环境保护,1992,11(3):137-139
    [67]李保国,白由路,胡克林,等.黄淮海平原浅层地下水中NO-3-N含量的空间变异与分布特征[J].中国工程科学,2001,3(4):42-44.
    [68] Zhu B., Wang Z.H., Wang T., et al. Non-point-source nitrogen and phosphorus loadings from asmall watershed in the Three Gorges Reservoir area [J]. J. Mt. Sci.2012(9):10–15.
    [69] Sharpley A.N., Chapra S.C., Wedepohl R. Managing agricultural phosphorus for protection ofsurface waters: Issues and options. J.Environ.Qual,1994,23:437-451.
    [70] USDA. A guide to hydrologic analysis using SCS methods [M]. New Jersey: Prentice-Hall, Inc.,1982,145.
    [71]王龙,黄跃飞,王光谦.城市非点源污染模型研究进展[J].环境科学,2010,31(10):2532-2540.
    [72]郭青海,杨柳,马克明.基于模型模拟的城市非点源污染控制措施设计[J].环境科学,2007,28(11):2425-2431.
    [73]郝芳华,程红光,杨胜天.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社,2006.
    [74] Charbeneau R.J., Barrett M.E. Evaluation of methods for estimating stormawater pollutantloads [J]. Water Environment Research,1998,70(7):1295-1302.
    [75]赵剑强.城市地表径流污染与控制[M].北京:中国环境科学出版社,2002.
    [76]祁继英.城市非点源污染负荷定量化研究[D].南京:河海大学,2005.
    [77]贺锡泉.城市径流非点源污染运动波模型初探[J].上海环境科学,1990,9(8):12-15.
    [78]杨勇.设计暴雨条件下城市非点源污染负荷分析[D].天津:天津大学,2007.
    [79]施为光.城市降雨径流长期污染负荷模型的探讨[J].城市环境与城市生态,1993,6(2):6-10.
    [80]李家科,李亚娇,李怀恩.城市地表径流污染负荷计算方法研究[J].水资源与水工程学报,2010,21(2):5-13.
    [81]王晓燕.非点源污染过程机理与控制管理:以北京密云水库流域为例[M].北京:科学出版社,2011.
    [82]沙茜,汪海涛,黄婧,等.农村环境综合整治规划的编制与思考—以湖北省武汉市为例[J].污染防治技术,2012,25(2):55-60.
    [83]阎自申.前置库在滇池流域运用研究[J].云南环境科学,1996,15(2):33-35.
    [84] Shan B.Q.,Yin C.Q.,Li G.B.Transport and retention of phosphorus pollutants in the landscapewith a traditional,multipond system[J].Water,Air and Soil Pollution,2002,139(1-4):15-34.
    [85]王淑莹,代晋国,李利生,等.水环境中非点源污染的研究[J].北京工业大学学报,2003,29(4):486-490.
    [86]张淑荣,陈利顶,傅伯杰.于桥水库流域农业非点源磷污染控制区划研究[J].地理科学,2004,24(2):232-237.
    [87]李俊然,陈利顶,郭旭东,等.土地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510.
    [88]张春玲,李亚妮.陕西省丹汉江流域水质现状及防护对策[J].水资源与水工程学报,2007,18(3):87-90.
    [89]赵文耀,胡家庆.丹江口水库流域面源污染现状分析[J].南水北调与水利科技,2007,5(2):50-52.
    [90] Ahuja L.R., Sharpley A.N., Yamamoto M., et al. The depth of rainfall-runoff-soil interaction asdetermined by32P [J]. Water Resour. Res.1981,17(4),969–974.
    [91] Ahuja, L.R., Lehman, O.R. The extent and nature of rainfall-soil interaction in the release ofsoluble chemicals to runoff [J]. J. Environ. Qual.1983,12(1),34–40.
    [92] Green, T., D.F. Houke. The mixing of rain with near surface water [J]. Fluid Mech.1979,90:569-588.
    [93] Ingram J.J., Woolhiser D.A. Chemical transfer into overland flow[R].p.40-53.In Proc.Symp.Watershed Management, Boise, ID,1980, July21-23. Am. Soc. Civ. Eng., New York.
    [94] Ahuja L.R., Sharpley A.N., Lehman O.R. Effect of soil slope and rainfall characteristics onphosphorus in runoff [J]. J. Environ. Qual.1982,11,9–13.
    [95] Havis R.N. Transport from overland flow [D]. Ph.D. dissertation, Colorado State Univ., FortCollins.1986.
    [96] Sharpley A.N., Ahuja L.R., Yamamoto M., et al. The release of soil phosphorus to runoff inrelation to the kinetics of desorption [J]. J. Environ. Qual.1981,10:386-391.
    [97] Snyder, I.K., Woolhiser D.A. Effect of infiltration on chemical transport into overland flow [J].Trans. ASAE.1985.28:1450-1457.
    [98]王万忠,焦菊英.黄土高原坡面降雨产流产沙过程变化的统计分析[J].水土保持通报,1996,16(5):21-28.
    [99]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58:147-154.
    [100] Walton R.S., Volker R.E., Bristow K.L., et al. Solute transport by surface runoff fromlow-angle slopes: theory and application [J]. Hydrological processes,2000,14(6):1139-1159.
    [101] Flanagan D.C., Foster G.R. Storm pattern effect on nitrogen and phosphorus losses in surfacerunoff [J]. Trans ASAE,1989,32(2):535-544.
    [102] Zhang X.C., Norton L.D., Hickman M. Rain pattern and soil moisture content effects onAtrazine and Metolachlor losses in runoff [J]. J Environ Qual.1997,26:1539-1547.
    [103] Wallach, R., Galina Grigorin, Judith Rivlin. A comprehensive mathematical model fortransport of soil-dissolved chemicals by overland flow [J]. Journal of Hydrology.2001,247:85-99.
    [104]王辉,王全九,邵明安.降雨条件下黄土坡面养分随径流迁移试验研究[J].农业工程学报,2006,22(6):39-44.
    [105] Walton R.S.,Volker R.E., Bristow K.L., et al.Experimental examination of solute transportby surface runoff from low-angle slopes[J].Journal of Hydrology,2000,233:19-36.
    [106]张亚丽,李怀恩,杨素勤,等.模拟降雨条件下黄土坡地土壤溶质迁移特征试验研究[J].水土保持学报.2009,23(4):113-117.
    [107]刘秉正,李光录,吴发启,等.黄土高原南部土壤养分流失规律[J].水土保持学报,1995,9(2):77-86.
    [108]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,2002,5(2):18-22.
    [109]李怀恩,张亚平,蔡明,等.植被过滤带的定量计算方法[J].生态学杂志,2006,25(1):108-112.
    [110]汤家喜,孙丽娜,孙铁珩.河岸缓冲带对氮磷的截留转化及其生态恢复研究进展[J].生态环境学报,2012,21(8):1514-1520.
    [111]陈勇.陕西省农业非点源污染评价与控制研究[D].杨凌:西北农林科技大学,2010.
    [112]邓红兵,王青春,王庆礼,等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    [113]王庆成,于红丽,姚琴,等.河岸带对陆地水体氮素输入的截流转化作用[J].应用生态学报,2007,18(11):2611-2617.
    [114]江新,李小漫.江苏省农村环境污染治理与可持续发展[J].生态经济,2005(8):37-39.
    [115]黄军,何健,周青.循环农业模式下的农业废弃物资源化利用[J].世界科技研究与发展,2006,28(6):76-79.
    [116]吴发启,史东梅.水土保持农业技术[M].北京:科学出版社,2012.
    [117]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017
    [118] USEPA. Methods for chemical analysis of water and waste water. EPA EnvironmentalMonitoring and Support [M], Cincinnati, OH, USA,1979.
    [119] Colvin T.S., Rippke G.R. Corn response to late-spring nitrogen management in the WalnutCreek Watershed [J]. Agron. J.2005,97:1054-1061.
    [120]鲍士旦编.土壤农化分析[M].北京:中国农业出版社,2000.
    [121]张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地理科学进展,2000,19(2):128-135.
    [122]朱智勇,解建仓,李占斌,等.坡面径流侵蚀产沙机理试验研究[J].水土保持学报,2011,25(5):1-7.
    [123]崔灵周,李占斌,朱永清,等.流域侵蚀强度空间分异及动态变化模拟研究[J].农业工程学报,2006,22(12):17-22.
    [124]陈晓燕,王茹,卓素娟,等.不同降雨强度下紫色土陡坡地侵蚀泥沙养分特征[J].水土保持学报,2012,26(6):1-5.
    [125]高敏,牛青霞,王茹,等.人工模拟降雨条件下紫色土陡坡地侵蚀泥沙变化特征研究[J].水土保持学报,2011,25(2):19-23.
    [126]马忠秋,张万军,刘志军,等.太行山低山区刺槐人工林水土保持效应研究[J].水土保持学报,2001,15(4):134-135.
    [127]姚贤良.红壤水特性的形成机理[A].何圆球,杨艳生.红壤生态系统研究[M].北京:中国农业科技出版社,1998.142-143.
    [128]景元书,张斌,王明珠,等.鹰潭小流域季节性降雨径流特征研究[J].水土保持学报,2003,17(5):45-47.
    [129]张展羽,左长清,刘玉含,等.水土保持综合措施对红壤坡地养分流失作用过程研究[J].农业工程学报,2008,24(11):41-45.
    [130]韩建刚.紫色土丘陵区土壤及养分流失机制与预测模型研究[D].杨凌:西北农林科技大学,2005.
    [131]傅涛,倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74.
    [132]康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536-543.
    [133] Wischmeir W.H. Estimating the loss equation’s cover and management factor for undisturbedareas. Proceedings of Sediment Yield Workshop, U. S. Department of AgricultureSedimentation Laboratory, Oxford, MS,1972.
    [134]孟红旗,赵同谦.降雨侵蚀力对河岸滩区耕地土壤养分流失的影响[J].水土保持通报,2009,29(1):28-31.
    [135]刘纪根,蔡强国,刘前进,等.流域侵蚀产沙过程随尺度变化规律研究[J].泥沙研究,2005(4):7-13.
    [136]杨开宝,郭培才.陕北丘陵沟壑区降雨侵蚀力指标研究[J].水土保持通报,1991,14(5):31-35.
    [137]Foster G.R. Evaluation of rainfall-runoff erosivity factors for individual storms [J].Transactions of the ASAE,1982(25):124-132.
    [138]章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):36-41.
    [139]宁丽丹,石辉.利用日降雨量资料估算西南地区的降雨侵蚀力[J].水土保持研究,2003,10(4):183-186.
    [140] Hudson N.W.土壤保持[M].窦葆璋译.北京:科学出版,1976.
    [141] Yu B., Rosewell C.J. An assessment of a daily rainfall erosivity modelfor New SouthWales.Australian Journal of Soil Research,1996,34:139-152.
    [142]Yu B., Rosewell C.J. Rainfallerosivity and its estimation for Austrailia’s tropic. AustralianJournal of Soil Research,1998,36:143-165.
    [143]Yu B., Hashim G.M., Eusof Z. Estimating the R-factor with limited rainfall data: A Case Studyfrom Peninsular Malaysia. Soil and Water Conservation,2001,56:101-106.
    [144]李静,刘志红,李锐.黄土高原不同地貌类型区降雨侵蚀力时空特征研究[J].水土保持通报,2008,28(3):124-127.
    [145]刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
    [146]Zhang K.L., Shu A.P., Xu X.L., et al. Soil erodibility and its estimation for agricultural soils inChina [J]. Journal of Arid Environments,2008,72:1002-1011.
    [147]海春兴,赵烨,陈志凡,等.河北省坝上不同土地利用方式土壤可蚀性研究—以河北省丰宁县大滩乡三道河为例[J].中国生态农业学报,2005,13(1):146-147.
    [148] Sharply A.N., Williams J.R. EPIC—erosion/productivity impact calculator:1.ModelDocumentation [A].US Department Agriculture Technical Bulletin, No1768[C]. U.SDepartment Agriculture: Temple TX,1990.
    [149]邓良基,侯大斌,王昌全,等.四川自然土壤和旱耕地土壤可蚀性特征研究[J].中国水土保持,2003,12(7):23-25.
    [150]吴发启,张玉斌,宋娟丽,等.水平梯田环境效应的研究现状及其发展趋势[J].水土保持学报,2003,17(5):28-31.
    [151]杨占彪,朱波,林立金,等.川中丘陵区紫色土坡耕地土壤侵蚀特征[J].四川农业大学学报,2010,28(4):480-485.
    [152]水建国,柳俊,廖根清,等.不同自然植被管理措施对红壤丘陵果园水土流失的影响[J].农业工程学报,2003,19(6):42-46.
    [153]张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地理科学进展,2000,19(2):128-133.
    [154]朱冰冰,李占斌,李鹏,等.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究[J].2010,47(3):401-407.
    [155]徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展[J].生态学报,2006,26(9):3137-3143.
    [156]林超文,罗春燕,庞良玉,等.不同耕作和覆盖方式对紫色丘陵区坡耕地水土及养分流失的影响[J].生态学报,2010,30(22):6091-6101.
    [157]唐涛,郝明德,单风霞.人工降雨条件下秸秆覆盖减少水土流失的效应研究[J].水土保持研究,2008,15(1):911.
    [158]尹忠东,丛晓红,李永慈.江西丘陵红壤区坡面径流及其与降雨关系的影响因素[J].水土保持通报,2008,28(4):7-10.
    [159]杨青森,郑粉莉,温磊磊,等.秸秆覆盖对东北黑土区土壤侵蚀及养分流失的影响[J].水土保持通报,2011,31(2):1-5.
    [160]王静,郭熙盛,王允青.自然降雨条件下秸秆还田对巢湖流域旱地氮磷流失的影响[J].中国生态农业学报,2010,18(3):492-495.
    [161]贾海燕,雷阿林,雷俊山,等.紫色土地区水文特征对硝态氮流失的影响研究[J].环境科学学报,2006,26(10):1658-1664.
    [162]徐勤学,王天巍,李朝霞,等.紫色土坡地壤中流特征[J].水科学进展,2010,21(2):229-234.
    [163]张亚丽,张兴昌,邵明安,等.秸秆覆盖对黄土坡面矿质氮素径流流失的影响[J].水土保持学报,2004,18(1):85-88.
    [164]王士永,贾国栋,段红祥,等.北京山区小流域不同植被覆盖对地表径流影响研究[J].湖南农业科学,2011(19):51-56.
    [165] Soil Conservation Service (SCS).“Section4,hydrology”.national engineering handbook
    [R].U. S. Department of Agriculture,Washington,D.C.,1972.
    [166]Soil Conservation Service (SCS). Hydrology in National Engineering Handbook,SupplementA, Section4,Chap.10,Soil Conservation Service[R]. USDA, Washington,1985.
    [167] Boughton W.C.A.Review of the USDA SCS curve number method [J]. Australian JournalResearch.1989,27(3):511-523.
    [168] Mockus V. Estimation of total (and peak rates of) surface runoff for individual storms. In:Interim Survey Report Grand (Neosho) River Watershed. Exhibit A of Appendix B. U.S. Dep.Agric.(U.S.Gov.print.Office: Washington, D.C),1949,20-25.
    [169]李常斌,秦将为,李金标.计算CN值及其在黄土高原典型流域降雨-径流模拟中的应用[J].干旱区资源与环境,2008(8):67-70.
    [170] William J.R., Lasear W.V. Water yield model using SCS curve numbers [J].Journal ofHydraulics Division,1976,102(9):1221-1253.
    [171]贺宝根,周乃晟,高效江,等.农田非点源污染研究中的降雨径流关系-SCS法的修正[J].环境科学研究,2001,14(3):49-52.
    [172]房孝铎,王晓燕,欧洋.径流曲线数法(SCS法)在降雨径流量计算中的应用[J].首都师范大学学报(自然科学版),2007,28(1):89-92.
    [173]高扬,朱波,缪驰远,等. SCS模型在紫色土坡地降雨径流量估算中的运用[J].中国农学通报,2006,22(11):396-400.
    [174]黄秉维.华南坡地利用与改良[J].地理研究,1987,6(4):5-12.
    [175]刘秉正,李光录,等.黄土高原南部土壤养分流失规律[J].水土保持学报.1995(2):77-79.
    [176]Brubaker S.C., Jones A.J., Lewis D.T., et al. Soil properties accociated with Landscapeposition. Soil Sci. Soc.Am.J.1993,7:235-239.
    [177]Alberts E.E., Wendt R.C., Bmwel1R.E. Corn and soybean cropping effects on soil and Cfactors. Soil Sci.Soc.Am.J.1985,49(3):721-728.
    [178]李春杰,任东兴,王根绪,等.青藏高原两种草甸类型人工降雨截留特征分析[J].水科学进展,2009,20(6):769-774.
    [179]张晓明.黄土高原典型流域土地利用/森林植被演变的水文生态响应与尺度转换研究[D].北京:北京林业大学,2007.
    [180]李香云.缙云山林地坡面径流特征研究[D].北京:北京林业大学,2008.
    [181]张保华,何毓蓉.长江上游几种林地表层土壤侵蚀率及与相关土壤性质关系[J].水土保持研究,2006,13(4):220-223.
    [182]李鹏,李占斌,郑良勇.黄土陡坡径流侵蚀产沙特性室内试验研究[J].农业工程学报,2005,21(7):42-45.
    [183]张光辉.坡面水蚀过程水动力学研究进展[J].水科学进展,2001,12(3):395-400.
    [184] Horton R E. Erosion development of streams and their drainage basins: Hydro physicalapproach to quantitative morphology [J].Bull.Geol.Soc.Am.1945,56:275-3701.
    [185]周佩华,窦葆璋,孙清芳.降雨能量的研究初报[J].水土保持通报,1981,1(1):51-60.
    [186]吴普特.动力水蚀实验研究[M].西安:陕西科学技术出版社,1997.
    [187]夏卫生,雷廷武,张晴雯.冲刷条件下坡面水流速度与产沙关系研究[J].土壤学报,2004,41(6):876-880.
    [188]李鹏,李占斌,郑良勇.黄土坡面水蚀动力与侵蚀产沙临界关系试验研究[J].应用基础与工程科学学报,2010,18(3):435-441.
    [189]郑良勇,李占斌,李鹏.黄土区陡坡径流水动力学特性试验研究[J].水利学报,2004(5):46-51.
    [190]Guy B.T., Dickinson W.T., Rudra R. P.The roles of rainfall and runoff in the sediment transportcapacity of interrill flow [J]. Transactions of the ASAE,1987,30(5):1378-1387.
    [191] Wischmeir W.H. Estimating the loss equation’s cover and management factor for undisturbedareas. Proceedings of Sediment Yield Workshop, U. S. Department of AgricultureSedimentation Laboratory, Oxford, MS,1972.
    [192]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    [193]杨子生.滇东北山区坡耕地土壤侵蚀的地形因子[J].山地学报,1999,17(增刊):16-18.
    [194]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [195]McCool D.K., Brown L.G., Foster G.R., et al. Revised slope steepness factor for the UniversalSoil Loss Equation [J]. Transactions of the ASAE,1987,30(5):1387-1396.
    [196]Liu B.Y., Nearing M.A., Risse L.M. Slope gradient effects on soil loss for steep slopes.Transactions of the ASAE,1994,37(6):1835-1840.
    [197]杨子生.滇东北山区坡耕地土壤侵蚀的作物经营因子[J].山地学报,1999,17(增刊):19-21.
    [198]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,2:113-120.
    [199]杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,1999,17(增刊):22-24.
    [200] Huang Y.L., Chen L.D., Fu B.J., Zhang L.P., et al. Evapotranspiration and soil moisturebalance for vegetative restoration in a gully catchment on the Loess Plateau, China [J].Pedosphere.2005,15(4),509-517.
    [201] Poudel D.D., Midmore D.J., West L.T. Farmer participatory research to minimize soil erosionon steepland vegetable systems in the Philippines [J]. Agric. Ecosyst. Environ.2002,79,113-127.
    [202]Li Z.B., Li P., Han J.G., et al. Sediment flow behavior in agro-watersheds of the purple soilregion in China under different storm types and spatial scales [J]. Soil Till. Res.2009,105(2),285-291.
    [203]Puigdefabregas J., Sole A., Gutierrez L., et al. Scales and processes of water and sedimentredistribution in drylands: results from the Rambla Honda field site in Southeast Spain [J].Earth Sci. Rev.1999,48,39-40.
    [204]刘泉,李占斌,李鹏,等.汉江水源区自然降雨过程下坡地壤中流对硝态氮流失的影响.水土保持学报,2012,26(5):1-5.
    [205]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):779-784.
    [206]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229-232.
    [207]徐勤学,王天巍,李朝霞,等.紫色土坡地壤中流特征[J].水科学进展,2010,21(2):229-234.
    [208]丁文峰,张平仓.紫色土坡面壤中流养分输出特征[J].水土保持学报,2009,23(4):15-19.
    [209]陈磊,李占斌,李鹏,等.野外模拟降雨条件下水土流失与养分流失耦合研究[J].应用基础与工程科学学报,2011,19(增刊):170-176.
    [210]徐红灯,席北斗,王京刚,等.水生植物对农田排水沟渠中氮、磷的截留效应[J].环境科学研究,2007,20(2):84-88.
    [211]徐红灯,席北斗,翟丽华.沟渠沉积物对农田排水中氨氮的截留效应研究[J].农业环境科学学报,2007,26(5):1924-1928.
    [212]胡宏祥,朱小红,黄界颍,等.关于沟渠生态拦截氮磷的研究[J].水土保持学报,2010,24(2):141-145.
    [213] Cheng Q.J., Cai Q.G., Ma W.J. Study on sensitivity of soil surface crust formation in typicalregions with serious soil and water loss, China [J]. Geogr. Res.2008,27(6):1290-1298.
    [214]Marc D., Richard H. Reduction in agricultural non-point source pollution in the first yearfollowing establishment of an integrated grass/tree filter strip system in southern Quebec(Canada)[J]. Agric. Ecosyst. Environ.2009,131(1/2):85-97.
    [215]王夏晖,尹澄清,颜晓,等.流域土壤基质与非点源磷污染物作用的3种模式及其环境意义[J].环境科学,2004,25(4):123-128.
    [216]王改玲,李立科,郝明德,等.长期施肥及不同施肥条件下秸秆覆盖、灌水对土壤酶和养分的影响[J].核农学报,2012,26(1):129-134.
    [217]马力,杨林章,肖和艾,等.长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响[J].植物营养与肥料学报,2011,17(4):898-905.
    [218]朱利群,夏小江,胡清宇,等.不同耕作方式与秸秆还田对稻田氮磷养分径流流失的影响[J].水土保持学报,2012,26(2):6-10.
    [219]李小英.滇池流域台地水土和氮磷流失及防控技术研究[D].北京:北京林业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700