用户名: 密码: 验证码:
升温相转变组分法制备的纳米乳液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米乳液是液滴直径为纳米级的乳液,当纳米乳液粒径小于100nm时,外观通常为透明或半透明的液体,能够在相对较长的时间内不发生分层。正是由于这些性质,纳米乳液的研究受到了广泛关注,并逐渐应用于药物、化妆品、食品等领域。纳米乳液是热力学不稳定体系,不能自发形成,因此在纳米乳液的制备过程中需要能量的输入。根据输入能量的强度,可以分为高能乳化法和低能乳化法两类。高能乳化法是指用高速搅拌、高压均质或超声等方法提供大量的能量,通过拉伸和碰撞使大液滴破裂成小液滴,从而形成纳米乳液。低能乳化法是利用体系组分释放的化学能制备纳米乳液的方法,包括在固定温度下改变组成的PIC法(phase inversion composition method)、在固定组成下改变温度的PIT法(phase inversion temperature method)、微乳液稀释法和自乳化法等。由于能量输入少,仪器装置简单,成本低廉的优点,低能乳化法的研究在近年来引起了广泛兴趣。
     目前,由各种乳化方法制备的纳米乳液都开展了较为全面的研究,得到了纳米乳液的液滴大小随体系组成和制备过程的变化规律,对纳米乳液粒径和稳定性的各种影响因素也都有了较为深刻的认识。尽管如此,我们注意到仍有许多问题需要进一步深入探讨:(1)以往在低能乳化法中选用的油相都为黏度小的短链烷烃(碳原子数小于等于16),由于奥氏熟化速率较快,得到的纳米乳液稳定性也相对较低,通常在几周内粒径增大至微米级;高黏度的长链烷烃(碳原子数大于20)作为油相时制备的乳液稳定较好,室温下放置几个月后乳液仍可以保持稳定,但利用低能乳化法制备形成的纳米乳液尚少见有报道;(2)在低能乳化法的机理讨论中曾经有文献提出了W/O/W型纳米乳液的存在,但尚未发现直接的实验证据;(3)在高能乳化法中已经制备得到了液滴带正电的纳米乳液,并开展了大量的应用研究。但低能乳化法形成的纳米乳液的液滴大多带负电,对纳米乳液带电性质的调控研究较少。
     基于纳米乳液研究领域的上述背景,本文选用非离子型表面活性剂Span80口Tween80作为乳化剂,以液体石蜡为油相,利用PIC法制备乳液。首先讨论了PIC法的乳化温度对纳米乳液性质的影响,发现70℃下可以形成液滴直径为51nm的单分散纳米乳液,且在室温下放置5个月后乳液粒径仍保持不变;在此基础上,通过光学显微镜、小角x射线散射(SAXS)、冷冻蚀刻透射电子显微镜(cryo-TEM)和紫外-可见分光光谱(UV-vis spectrum)等实验手段证实PIC法制备的乳液和纳米乳液均为W/O/WV型结构;另外,通过加入少量阳离子型表面活性剂可以在不改变纳米乳液粒径和稳定性的前提下调控纳米乳液的带电性质。
     本文的主要内容包括以下几个部分:
     1.升温PIC法制备的稳定的纳米乳液
     PIC法是低能乳化法中一种重要的的方法,在制备O/W型纳米乳液时,首先将油相和表面活性剂混合,在低速搅拌下向表面活性剂的油溶液中缓慢滴加水相。随着水相含量的增加,体系发生相反转,形成O/W型纳米乳液。通常情况下,PIC法的乳化温度固定为25℃。但是,以液体石蜡作为油相时,由于液体石蜡含有的烷烃碳原子数分布为20-33,黏度较大,乳化温度在30℃以下时只能得到微米级的粗乳液。在相同的体系组成下,将乳化温度由20℃提高至70℃,乳液的粒径由10.3μm降低至51nm,充分说明升温PIC法是制备纳米乳液的重要途径。
     随后,我们利用升温PIC法制备了分散相体积分数(φ)不同的乳液。纳米乳液是热力学不稳定体系,随着放置时间的延长乳液粒径会不断增大,且分散相浓度越高,稳定性越低,因此对分散相浓度较大的纳米乳液报道很少。以液体石蜡为油相,利用升温PIC制备的纳米乳液(φ=0.1)在室温下放置5个月后粒径未发生变化,因此我们进一步制备了分散相浓度较大的纳米乳液,发现当0.1≤φ≤0.62时乳液的初始粒径均小于58nm。除了φ=0.62的纳米乳液在放置50天后发生分层外,φ≤0.6时的纳米乳液粒径在放置5个月内均未发生变化。这是关于低能乳化法制备的稳定纳米乳液的首次报道。
     2.升温PIC法制备的多重纳米乳液
     我们考察了升温PIC法制备的纳米乳液的液滴结构。由于常见的多重乳液的液滴大小均为微米级,纳米乳液的液滴粒径为纳米级,也就是说纳米乳液的液滴尺寸小于多重乳液分散相中含有的小液滴的尺寸,因此2008年之前几乎所有文献均认为纳米乳液分为O/W型和W/O型,没有关于多重纳米乳液的报道。随着实验手段的发展,2008年的Nature杂志首次报道了多重纳米乳液的存在,由此对纳米乳液液滴结构的研究逐渐引起广泛关注。在我们的体系中,固定乳化温度为25℃,利用PIC法制备乳液,通过光学显微镜观察乳液的形貌时证实得到的乳液为微米级的W/O/W型。将乳化温度提高至70℃,利用升温PIC法制备纳米乳液,通过cryo-TEM、SAXS和UV-vis spectrum三种表征方法,证实得到的纳米乳液为纳米级的W/O/W型。证明PIC法乳化温度的提高只降低了乳液粒径,对液滴的内部结构没有影响。这是首次利用低能乳化方法在常压下形成的多重纳米乳液,具有重要的理论和实际意义。
     3.升温PIC法制备的正电纳米乳液
     我们研究了升温PIC法制备的纳米乳液的带电性质。由非离子表面活性剂稳定的乳液带负电,这是由于在油/水界面OH-发生选择性吸附和有机弱酸杂质的存在导致的。由于正电纳米乳液在石油、医药、化妆品和农业等领域中已经开展了大量的应用研究,我们尝试向升温PIC法制备的负电纳米乳液中添加少量的阳离子表面活性齐(?) CTAB来调控乳液的带电性质。实验发现,CTAB的加入在基本不改变纳米乳液粒径和稳定性的同时,调控纳米乳液的zeta电位。
     随后我们考察了正电纳米乳液的几点特殊性质。(1)高温稳定性:将正电纳米乳液在70℃的恒温培养箱中放置,平衡10天后发现乳液的外观和液滴大小均未发生变化。这也是关于耐高温纳米乳液的首例报道。(2)对固体表面的改性作用:将盖玻片分别浸泡在含有不同浓度CTAB的纳米乳液中静置24小时,取出擦干后测量盖玻片表面的接触角,发现正电纳米乳液改性后的盖玻片表面的接触角增大,而负电纳米乳液改性后的盖玻片表面的接触角未发生变化,由此说明正电纳米乳液通过静电吸附作用对盖玻片表面进行了疏水改性,在造纸、金属加工、纺织等领域具有潜在应用价值。(3)带相反电荷的纳米乳液混合后的稳定性。分别取相同体积的正电纳米乳液和负电纳米乳液混合并在室温下放置,20天后发现混合后的纳米乳液的外观和粒径均未发生变化,没有发生聚结。这种现象说明静电斥力可能并不是使乳液滴保持稳定的关键因素。
Emulsions with droplet size in the nanomettic scale are often referred to as nanoemulsions. Due to their characteristic size, nanoemulsions appear transparent or translucent to the naked eye and possess stability against sedimentation or creaming. These properties make nanoemulsions of interest for fundamental studies and for practical applications (e.g. pharmaceutical, cosmetic, food, etc. fields). Since emulsions are thermodynamically unstable systems, energy input is required for the formation of emulsions. Two main approaches are currently used for the preparation of nanoemulsions:high energy and low energy. For the high-energy methods, intense mechanical energy input is carried out by extreme shear stirring, high-pressure homogenizers, or ultrasounds. For the low-energy methods, the chemical energy stored in the components is used by changing the spontaneous curvature of the surfactants. For nonionic surfactant system, this can be achieved by changing the temperature at constant composition, i.e., phase inversion temperature, PIT method, or changing the composition at constant temperature, i.e., phase inversion composition, PIC method. Studies of nanoemulsion formation by low-energy method are receiving an increased interest because less energy input and simple apparatus is required.
     Currently, there are many systematic works on nanoemulsion preparation by various methods and the effects of formulation and process parameters were discussed thoroughly. Nevertheless, we note that there are still many problems in low-energy methods need further study.(1) In the previous work the oil phase of nanoemulsions is mainly constituted of short-chain alkanes (C8-C16) with low viscosity. Due to the significant solubility in the water phase Ostwald ripening rate is rapid for these oils. The droplet size of nanoemulsions increased to micron scale within a few weeks. The emulsification of viscous oils makes nanoemulsions stable for months. However, nanoemulsions with long-chain alkanes prepared by low-energy methods have been rarely reported.(2) In the mechanism discussions in the low-energy methods it has been proposed that double emulsions exist during the emulsification process. But direct experimental evidence has not yet been found.(3) Positively charged nanoemulsions with a wide range of application prospects were prepared by high-energy methods. But most of nanoemulsions produced by low-energy methods were negatively charged. There are few studies on the adjustment of the electrical properties of nanoemulsion.
     Based on the above background in nanoemulsions research, in this dissertation, two kinds of nonionic surfactants Span80and Tween80are selected as the emulsifers and liquid paraffin is used as the oil phase. All the emulsions are prepared by the PIC method. First, the effect of emulsification temperature on nanoemulsion properties is investigated. Monodisperse nanoemulsions with droplet diameter of51nm could be obtained at70℃and the droplet size remain unchanged after5months of storage. Therefore, the temperature of preparation is fixed at70℃for further investigation. Afterwards, the W/O/W structure of emulsions produced by the PIC method is characterized by optical microscopy, small angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and UV-vis spectrum. Moreover, by the addition of cationic surfactant the electric property of nanoemulsions is controlled without changing the emulsion size or stability.
     The present dissertation includes three topics.
     1. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature
     The PIC method has a great potential for scale-up applications because of the ease of formation and relatively low energy costs. A phase transition is produced by stepwise addition of water to a mixture of the surfactant and oil for the formation of oil-in-water (O/W) nanoemulsions. This process is well-known for the emulsification process at25℃. In this dissertation the liquid paraffin is mainly constituted of long-chain isoalkanes (C20to C33), which makes the dispersed phase hard to be emulsified by the PIC method below30℃. The droplet diameter decreases from10.3μm to51nm with the increase of emulsification temperature at a constant composition, indicating the significant influence of temperature on droplet size. The reason is that the interfacial tension decreases with the increase of temperature, leading to the gradual increase of the amount of surfactant molecules adsorbed at the O/W interface.
     In low-energy methods most nanoemulsions are prepared at relatively low volume fractions of the dispersed phase (φ). Since nanoemulsions are thermodynamically unstable systems, the droplet radii increase dramatically with time. The effect of φ on the droplet size distribution has been studied less frequently because of the disadvantage on storage stability especially when the droplets are concentrated. The size distributions of nanoemulsion (φ=0.1) have not changed over5months due to the high viscosity of the oil phase. So we investigate the effect of the droplet volume fraction on emulsions properties. The droplet diameter remains less than58nm when the volume fraction of the dispersed phase is varied from0.1to0.62. A free oil phase was present above the emulsion with φ=0.62after50days. The droplet diameters of other samples with φ less than0.62remain unchanged after5months of storage. This is the first report about the formation of stable concentrated nanoemulsions by low-energy methods.
     2. Water-in-oil-in-water nanoemulsions by the phase inversion composition method at elevated temperature
     The structure of nanoemulsion droplets prepared by the PIC method at elevated temperature is investigated. Nanoemulsions are generally classified as water-in-oil (W/O) or oil-in-water (O/W) based on which phase constitutes the dispersed phase. The droplet size of nanoemulsions lies in the nanometer range and is even smaller than the innermost dimension of common double emulsions. As a result, the droplet morphology of nanoemulsions was rarely taken into account years ago. Nevertheless, the structure of nanoscale double emulsions was published for the first time in Nature in2008. With the development of characterization methods, determining the mesoscopic structure of nanoemulsions is attracting particular interest. As is shown in the optical photomicrograph, the micronscale oil droplets prepared by the PIC method at25℃contain several small internal droplets, indicating the multiple structure of this microscale emulsion. Then the structure of nanoemulsions droplets prepared by the PIC method at70℃is characterized by cryo-TEM, SAXS, and UV-vis spectrum, demonstrating the double structure of these nanoemulsions. These results indicate that with the increase in emulsification temperature the droplet size of emulsions decreases, whereas the droplet structure remains unchanged. To the best of our knowledge, this is the first experimental confirmation of W/O/W nanoemulsions prepared by low-energy methods. Formation of double nanoemulsions is attractive for both a theoretical and practical point of view.
     3. Positively charged nanoemulsions by the phase inversion composition method at elevated temperature
     The electric property of nanoemulsions prepared by the PIC method at elevated temperature is explored. For emulsions stabilized by nonionic surfactants, the droplets are found to be negatively charged. The probable reason for this negative surface charge is suggested to be the specific adsorption of hydroxyl ions at the O/W interface and the presence of trace fatty acids impurities dissolved in the oil phase. So far, intensive research efforts have been concentrated on the applications of positively charged nanoemulsions in petroleum, pharmaceutics, agriculture, cosmetics, and other areas. Therefore, a small amount of the cationic surfactant CTAB is added to the negatively charged system to control the electric property of nanoemulsions droplets. It is found that the addition of CTAB could adjust the charge of emulsions without changing the droplet size or stability.
     Afterwards, three special characteristics of the positively charged nanoemulsions prepared by the PIC method at elevated temperature are examined.(1) The thermostability of nanoemulsions. The positively charged nanoemulsions remain stable after10days of storage at70℃. Both the appearance and the droplet size keep unchangeable during the process at elevated temperature. To the best of our knowledge, this is the first report about thermostable nanoemulsions.(2) The modification at the solid surface. The coverslips are immersed in nanoemulsions with different charge for24hours. After that the coverslips are dried and the contact angle measurements of water at the glass surface are carried out. The contact angle of the coverslip, modified by the positively charged nanoemulsion, increases dramatically. In contrast, the contact angle of the coverslip, modified by the negatively charged nanoemulsion, remains unchanged. This result demonstrates the electrostatic adsorption of the positively charged droplets on the solid surface. This property makes positively charged nanoemulsions have potential applications in papermaking, metal processing, textile and other fields.(3) The non-coalescence of oppositely charged nanoemulsions. By the addition of CTAB or SDS, we prepare nanoemulsions that consist of oppositely charged droplets. Mixed nanoemulsions are obtained by combining equal volumes of these oppositely charged emulsions. The appearance and droplet size of the mixed emulsion remain stable after stored at room temperature for20days. The non-coalescence of oppositely charged droplets proves that electrostatic interactions between droplets do not determine the emulsion stability.
引文
1.赵国玺;朱步瑶,表面活性剂作用原理 中国轻工业出版社,2003,562-563.
    2. Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J., Nano-emulsions. Current Opinion in Colloid & Interface Science 2005,10,102-110.
    3. Hessien, M.; Leone, P.; Suchaud, M.; LeBeau, B.; Nouali, H.; Guari, Y; Prouzet, E., Nanocrystalline iron oxide synthesised within Hierarchical Porous Silica prepared by nanoemulsion templating. Chemical Communications 2012,48,10022-10024.
    4. Anton, N.; Benoit, J.-P.; Saulnier, P., Design and production of nanoparticles formulated from nano-emulsion templates-A review. Journal of Controlled Release 2008,128,185-199.
    5. Maali, A.; Mosavian, M. T. H., Preparation and Application of Nanoemulsions in the Last Decade (2000-2010). Journal of Dispersion Science and Technology 2013,34, 92-105.
    6.肖进新;赵振国,表面活性剂应用原理,化学工业出版社,2003,201-202.
    7. Tadros, T., Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science 2004,108, 227-258.
    8. Taylor, P., Ostwald ripening in emulsions. Advances in Colloid and Interface Science 1998,75,107-163.
    9. McClements, D. J., Nanoemulsions versus microemulsions:terminology, differences, and similarities. Soft Matter 2012,8,1719-1729.
    10. McClements, D. J., Edible nanoemulsions:fabrication, properties, and functional performance. Soft Matter 2011,7,2297-2316.
    11. Yang, Y.; Marshall-Breton, C.; Leser, M. E.; Sher, A. A.; McClements, D. J., Fabrication of ultrafine edible emulsions:Comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids 2012,29,398-406.
    12. Meleson, K.; Graves, S.; Mason, T. G., Formation of concentrated nanoemulsions by extreme shear. Soft Materials 2004,2,109-123.
    13. Graves, S.; Meleson, K.; Wilking, J.; Lin, M. Y.; Mason, T. G., Structure of concentrated nanoemulsions. Journal of Chemical Physics 2005,122,137703.
    14. Mason, T. G.; Graves, S. M.; Wilking, J. N.; Lin, M. Y., Effective structure factor of osmotically deformed nanoemulsions. Journal of Physical Chemistry B 2006,110, 22097-22102.
    15. Jeong, M. W.; Oh, S. G.; Kim, Y. C., Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloids and Surfaces A 2001,181,247-253.
    16. Wilking, J. N.; Chang, C. B.; Fryd, M. M.; Porcar, L.; Mason, T. G., Shear-Induced Disruption of Dense Nanoemulsion Gels. Langmuir 2011,27,5204-5210.
    17. Donev, A.; Cisse, I.; Sachs, D.; Variano, E.; Stillinger, F. H.; Connelly, R.; Torquato, S.; Chaikin, P. M., Improving the density of jammed disordered packings using ellipsoids. Science 2004,303,990-993.
    18. Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M., Nanoemulsions:formation, structure, and physical properties. Journal of Physics-Condensed Matter 2006,18,635-666.
    19. Fryd, M. M.; Mason, T. G., Advanced Nanoemulsions. Annual Review of Physical Chemistry 2012,63,493-518.
    20. Sadurni, N.; Solans, C.; Azemar, N.; Garcia-Celma, M. J., Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. European Journal of Pharmaceutical Sciences 2005,26, 438-445.
    21. Fernandez, P.; Andre, V.; Rieger, J.; Kuhnle, A., Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A 2004,251,53-58.
    22. Heunemann, P.; Prevost, S.; Grillo, I.; Marino, C. M.; Meyer, J.; Gradzielski, M., Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter 2011,7,5697-5710.
    23. Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C., Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Trends in Colloid and Interface Science 2000,115,36-39.
    24. Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C., Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 2001,17, 2076-2083.
    25. Pey, C. M.; Maestro, A.; Sole, I.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids and Surfaces A 2006,288, 144-150.
    26. Sole, I.; Pey, C. M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J. M., Nano-emulsions prepared by the phase inversion composition method:Preparation variables and scale up. Journal of Colloid and Interface Science 2010,344,417-423.
    27. Sole, I.; Maestro, A.; Pey, C. M.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids and Surfaces A 2006,288,138-143.
    28. Morales, D.; Gutierrez, J. M.; Garcia-Celma, M. J.; Solans, Y. C., A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 2003,19,7196-7200.
    29. Izquierdo, P.; Esquena, J.; Tadros, T. F.; Dederen, J. C.; Feng, J.; Garcia-Celma, M. J.; Azemar, N.; Solans, C., Phase Behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 2004,20,6594-6598.
    30. Uson, N.; Garcia, M. J.; Solans, C., Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A 2004,250,415-421.
    31. Sole, I.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006,22,8326-8332.
    32. Maestro, A.; Sole, I.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. Journal of Colloid and Interface Science 2008,327, 433-439.
    33. Gutierrez, J. M.; Gonzalez, C.; Maestro, A.; Sole, I.; Pey, C. M.; Nolla, J., Nano-emulsions:New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science 2008,13,245-251.
    34. Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, H., Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science 2006,303,557-563.
    35. Yu, L.; Li, C.; Xu, J.; Hao, J.; Sun, D., Highly Stable Concentrated Nanoemulsions by the Phase Inversion Composition Method at Elevated Temperature. Langmuir 2012, 28,14547-14552.
    36. Li, C.; Mei, Z.; Liu, Q.; Wang, J.; Xu, J.; Sun, D., Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids and Surfaces A 2010,356,71-77.
    37. Anton, N.; Vandamme, T. F., The universality of low-energy nano-emulsification. International Journal of Pharmaceutics 2009,377,142-147.
    38. Ee, S. L.; Duan, X.; Liew, J.; Nguyen, Q. D., Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal 2008,140,626-631.
    39. Rao, J.; McClements, D. J., Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. Journal of Agricultural and Food Chemistry 2010,58,7059-7066.
    40. Anton, N.; Gayet, P.; Benoit, J.-P.; Saulnier, P., Nano-emulsions and nanocapsules by the PIT method:An investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics 2007,344,44-52.
    41. Hessien, M.; Singh, N.; Kim, C.; Prouzet, E., Stability and Tunability of O/W Nanoemulsions Prepared by Phase Inversion Composition. Langmuir 2011,27, 2299-2307.
    42. Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C., Formation and stability of nano-emulsions in mixed nonionic surfactant systems. Trends in Colloid and Interface Science 2001,118,184-189.
    43. Izquierdo, P.; Feng, J.; Esquena, J.; Tadros, T. F.; Dederen, J. C.; Garcia, M. J.; Azemar, N.; Solans, C., The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science 2005,285, 388-394.
    44. Forster, T.; Von Rybinski, W.; Wadle, A., Influence of microemulsion phases on the preparation of fine-disperse emulsions. Advances in Colloid and Interface Science 1995, 58,119-149.
    45. Morales, D.; Solans, C.; Gutierrez, J. M.; Garcia-Celma, M. J.; Olsson, U., Oil/water droplet formation by temperature change in the water/C16E6/mineral oil system. Langmuir 2006,22,3014-3020.
    46. Izquierdo, P.; Esquena, J.; Tadros, T. F.; Dederen, C.; Garcia, M. J.; Azemar, N.; Solans, C., Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 2002,18,26-30.
    47. Roger, K.; Cabane, B.; Olsson, U., Formation of 10-100 nm Size-Controlled Emulsions through a Sub-PIT Cycle. Langmuir 2009,26,3860-3867.
    48. Mei, Z.; Xu, J.; Sun, D., O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A 2011,375,102-108.
    49. Mei, Z.; Liu, S.; Wang, L.; Jiang, J.; Xu, J.; Sun, D., Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science 2011,361,565-572.
    50. Wang, L.; Li, X.; Zhang, G.; Dong, J.; Eastoe, J., Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science 2007,314,230-235.
    51. Wang, L.; Mutch, K. J.; Eastoe, J.; Heenan, R. K.; Dong, J., Nanoemulsions prepared by a two-step low-energy process. Langmuir 2008,24,6092-6099.
    52. Pons, R.; Carrera, I.; Caelles, J.; Rouch, J.; Panizza, P., Formation and properties of miniemulsions formed by microemulsions dilution. Advances in Colloid and Interface Science 2003,106,129-146.
    53. Bouchemal, K.; Briancon, S.; Perrier, E.; Fessi, H., Nano-emulsion formulation using spontaneous emulsification:solvent, oil and surfactant optimisation. International Journal of Pharmaceutics 2004,280,241-251.
    54. Kabalnov, A., Ostwald ripening and related phenomena. Journal of Dispersion Science and Technology 2001,22,1-12.
    55. Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C., Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004,108,303-318.
    56. Taylor, P., Ostwald ripening in emulsions:estimation of solution thermodynamics of the disperse phase. Advances in Colloid and Interface Science 2003,106,261-285.
    57. Wooster, T. J.; Golding, M.; Sanguansri, P., Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008,24,12758-12765.
    58. Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I., Drug Delivery by Soft Matter: Matrix and Vesicular Carriers. Angewandte Chemie-International Edition 2009,48, 274-288.
    59. Schwarz, J. C.; Klang, V.; Karall, S.; Mahrhauser, D.; Resch, G. P.; Valenta, C., Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. International Journal of Pharmaceutics 2012,435,69-75.
    60. Muschiolik, G., Multiple emulsions for food use. Current Opinion in Colloid & Interface Science 2007,12,213-220.
    61. Sagalowicz, L.; Leser, M. E., Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science 2010,15,61-72.
    62. Garti, N., Double emulsions-scope, limitations and new achievements. Colloids and Surfaces A 1997,123-124,233-246.
    63. Goubault, C.; Pays, K.; Olea, D.; Gorria, P.; Bibette, J.; Schmitt, V.; Leal-Calderon, F., Shear rupturing of complex fluids:Application to the preparation of quasi-monodisperse water-in-oil-in-water double emulsions. Langmuir 2001,17, 5184-5188.
    64. Wang, Y. F.; Tao, Z.; Gang, H., Structural evolution of polymer-stabilized double emulsions. Langmuir 2006,22,67-73.
    65. Bonnet, M.; Cansell, M.; Berkaoui, A.; Ropers, M. H.; Anton, M.; Leal-Calderon, F., Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids 2009,23,92-101.
    66. Ficheux, M. F.; Bonakdar, L.; Leal-Calderon, F.; Bibette, J., Some stability criteria for double emulsions. Langmuir 1998,14,2702-2706.
    67. Sameh, H.; Wafa, E.; Sihem, B.; Fernando, L.-C., Influence of diffusive transport on the structural evolution of w/o/w emulsions. Langmuir:the ACS journal of surfaces and colloids 2012,28,17597-17608.
    68. Zhao, C.-X.; Middelberg, A. P. J., Microfluidic Mass-Transfer Control for the Simple Formation of Complex Multiple Emulsions. Angewandte Chemie-International Edition 2009,48,7208-7211.
    69. Chu, L.-Y.; Utada, A. S.; Shah, R. K.; Kim, J.-W.; Weitz, D. A., Controllable monodisperse multiple emulsions. Angewandte Chemie-International Edition 2007,46, 8970-8974.
    70. Shum, H. C.; Kim, J.-W.; Weitz, D. A., Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society 2008,130,9543-9549.
    71. Shum, H. C.; Zhao, Y.-j.; Kim, S.-H.; Weitz, D. A., Multicompartment Polymersomes from Double Emulsions. Angewandte Chemie-International Edition 2011,50,1648-1651.
    72. Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A., Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308,537-541.
    73. Kim, S.-H.; Shum, H. C.; Kim, J. W.; Cho, J.-C.; Weitz, D. A., Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society 2011,133,15165-15171.
    74. Kim, S.-H.; Weitz, D. A., One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie-International Edition 2011, 50,8731-8734.
    75. Galindo-Alvarez, J.; Sadtler, V.; Choplin, L.; Salager, J.-L., Viscous Oil Emulsification by Catastrophic Phase Inversion:Influence of Oil Viscosity and Process Conditions. Industrial & Engineering Chemistry Research 2011,50,5575-5583.
    76. Salager, J. L.; Marquez, N.; Graciaa, A.; Lachaise, J., Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems:Influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 2000,16,5534-5539.
    77. Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S., Temperature-induced inversion of nanoparticle-stabilized emulsions. Angewandte Chemie-International Edition 2005, 44,4795-4798.
    78. Salager, J. L.; Forgiarini, A.; Marquez, L.; Pena, A.; Pizzino, A.; Rodriguez, M. P.; Rondo-Gonzalez, M., Using emulsion inversion in industrial processes. Advances in Colloid and Interface Science 2004,108,259-272.
    79. Allouche, J.; Tyrode, E.; Sadtler, V.; Choplin, L.; Salager, J. L., Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method. Langmuir 2004,20,2134-2140.
    80. Zambrano, N.; Tyrode, E.; Mira, I.; Marquez, L.; Rodriguez, M. P.; Salager, J. L Emulsion catastrophic inversion from abnormal to normal morphology.1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier. Industrial & Engineering Chemistry Research 2003,42,50-56.
    81. Rondon-Gonzalez, M.; Sadtler, V.; Choplin, L.; Salager, J. L., Emulsion catastrophic inversion from abnormal to normal morphology.5. Effect of the water-to-oil ratio and surfactant concentration on the inversion produced by continuous stirring. Industrial & Engineering Chemistry Research 2006,45,3074-3080.
    82. Salager, J. L.; Marquez, L.; Pena, A. A.; Rondon, M.; Silva, F.; Tyrode, E., Current phenomenological know-how and modeling of emulsion inversion. Industrial & Engineering Chemistry Research 2000,39,2665-2676.
    83. Paruta-Tuarez, E.; Sadtler, V.; Marchal, P.; Choplin, L.; Salager, J.-L., Making Use of the Formulation-Composition Map To Prepare Highly Concentrated Emulsions with Particular Rheological Properties. Industrial & Engineering Chemisry Research 2011, 50,2380-2387.
    84. Morais, J. M.; Rocha-Filho, P. A.; Burgess, D. J., Relationship between Rheological Properties and One-Step W/O/W Multiple Emulsion Formation. Langmuir 2010,26, 17874-17881.
    85. Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 2003,100,503-546.
    86. Wang, J.; Yang, F.; Tan, J.; Liu, G.; Xu, J.; Sun, D., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles. Langmuir 2010,26, 5397-5404.
    87. Binks, B. P.; Rodrigues, J. A., Inversion of emulsions stabilized solely by ionizable nanoparticles. Angewandte Chemie-International Edition 2005,44,441-444.
    88. Hanson, J. A.; Chang, C. B.; Graves, S. M.; Li, Z. B.; Mason, T. G; Deming, T. J., Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 2008,455,85-U54.
    89. Fryd, M. M.; Mason, T. G., Nanoinclusions in cryogenically quenched nanoemulsions. Langmuir:the ACS journal of surfaces and colloids 2012,28, 12015-21.
    90. Zhao, Y.; Zhang, J.; Wang, Q.; Li, J.; Han, B., Water-in-oil-in-water double nanoemulsion induced by CO2. Physical Chemitry Chemical Physics 2011,13, 684-689.
    91. Lee, B.; Podsiadlo, P.; Rupich, S.; Talapin, D. V.; Rajh, T.; Shevchenko, E. V., Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering. Journal of the American Chemical Society 2009,131,16386-16388.
    92. Ilavsky, J.; Jemian, P. R., Irena:tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallograph 2009,42,347-353.
    93. Kuchibhatla, A.; Rasheed, A. S. A.; Narayanan, J.; Bellare, J.; Panda, D., An Analysis of FtsZ Assembly Using Small Angle X-ray Scattering and Electron Microscopy. Langmuir 2009,25,3775-3785.
    94. Zhang, J.; Han, B.; Zhao, Y.; Li, W.; Liu, Y., Emulsion inversion induced by CO2. Physical Chemistry Chemical Physics 2011,13,6065-6070.
    95. Li, N.; Gao, Y. a.; Zheng, L.; Zhang, J.; Yu, L.; Li, X., Studies on the micropolarities of bmimBF(4)/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy. Langmuir 2007,23,1091-1097.
    96. Zhang, J.; Zhao, Y.; Li, J.; Yang, G.; Han, B.; Wu, Z.; Li, Z., CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. Soft Matter 2010,6, 6200-6205.
    97. Zhao, Y.; Zhang, J.; Li, W.; Zhang, C.; Han, B., Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO2 induced nanoemulsion. Chemical Communications 2009,2365-2367.
    98. Zhang, J.; Han, B.; Zhang, C.; Li, W.; Feng, X., Nanoemulsions induced by compressed gases. Angewandte Chemie-International Edition 2008,47,3012-3015.
    99. Zhao, Y.; Zhang, J.; Han, B.; Hu, S.; Li, W., CO2-controlled reactors:epoxidation in emulsions with droplet size from micron to nanometre scale. Green Chemistry 2010,12, 452-457.
    100. Anton, N.; Mojzisova, H.; Porcher, E.; Benoit, J.-P.; Saulnier, P., Reverse micelle-loaded lipid nano-emulsions:New technology for nano-encapsulation of hydrophilic materials. International Journal of Pharmaceutics 2010,398,204-209.
    101. Vrignaud, S.; Anton, N.; Gayet, P.; Benoit, J.-P.; Saulnier, P., Reverse micelle-loaded lipid nanocarriers:A novel drug delivery system for the sustained release of doxorubicin hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics 2011,79,197-204.
    102. Morais, J. M.; Santos, O. D. H.; Nunes, J. R. L.; Zanatta, C. F.; Rocha-Filho, P. A., W/O/W multiple emulsions obtained by one-step emulsification method and evaluation of the involved variables. Journal of Dispersion Science and Technology 2008,29, 63-69.
    103. Roger, K.; Cabane, B.; Olsson, U., Emulsification through Surfactant Hydration: The PIC Process Revisited. Langmuir 2011,27,604-611.
    104.梁治齐;李金华,功能性乳化剂与乳状液,中国轻工业出版社2000,10-12.
    105. Capek, I., Degradation of kinetically-stable o/w emulsions. Advances in Colloid and Interface Science 2004,107,125-155.
    106. Kawada, H.; Kume, T.; Matsunaga, T.; Iwai, H.; Sano, T.; Shibayama, M., Structure and Rheology of a Self-Standing Nanoemulsion. Langmuir 2010,26, 2430-2437.
    107. Stachurski, J.; Michalek, M., The Effect of the zeta Potential on the Stability of a Non-Polar Oil-in-Water Emulsion. Journal of Colloid and Interface Science 1996,184, 433-436.
    108. Nakabayashi, K.; Amemiya, F.; Fuchigami, T.; Machida, K.; Takeda, S.; Tamamitsu, K.; Atobe, M., Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications 2011,47,5765-5767.
    109. Beattie, J. K.; Djerdjev, A. M., The pristine oil/water interface:Surfactant-free hydroxide-charged emulsions. Angewandte Chemie-International Edition 2004,43, 3568-3571.
    110.Roger, K.; Cabane, B., Why Are Hydrophobic/Water Interfaces Negatively Charged? Angewandte Chemie International Edition 2012,51,5625-5628.
    111.Roger, K.; Cabane, B., Uncontaminated Hydrophobic/Water Interfaces Are Uncharged:A Reply. Angewandte Chemie-International Edition 2012,51, 12943-12945.
    112.Ho, C. C.; Ahmad, K., Electrokinetic Behavior of Palm Oil Emulsions in Dilute Electrolyte Solutions. Journal of Colloid and Interface Science 1999,216,25-33.
    113.Hsu, J.-P.; Nacu, A., Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science 2003,259,374-381.
    114.蓝强;苏长明;刘伟荣;杨飞;郭宝雨;孙德军,乳液和乳化技术及其在钻井液完井液中的应用.钻井液与完井液2006,23,62-69.
    115.虎增福;曾赟;张浩明;沈金安,乳化沥青及稀浆封层技术,人民交通出版社,2001,3-7.
    116.Yang, S. C.; Benita, S., Enhanced absorption and drug targeting by positively charged submicron emulsions. Drug Development Research 2000,50,476-486.
    117.Yilmaz, E.; Borchert, H. H., Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-An in vivo study. International Journal of Pharmaceutics 2006,307,232-238.
    118.Yilmaz, E.; Borchert, H. H., Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. European Journal of Pharmaceutics and Biopharmaceutics 2005,60, 91-98.
    119.Piemi, M. P. Y.; Korner, D.; Benita, S.; Marty, J. P., Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. Journal of Controlled Release 1999,58,177-187.
    120. Benita, S., Prevention of topical and ocular oxidative stress by positively charged submicron emulsion. Biomedicine & Pharmacotherapy 1999,53,193-206.
    121. Hagigit, T.; Nassar, T.; Behar-Cohen, F.; Lambert, G.; Benita, S., The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions. European Journal of Pharmaceutics and Biopharmaceutics 2008,70,248-259.
    122.孙德军;李财富;梅贞;刘伟荣;苏长明;于培志;徐健;刘尚营,一种带正电石蜡纳米乳液及其制备方法,2008,CN 101168686 A.
    1. Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J., Nano-emulsions. Current Opinion in Colloid & Interface Science 2005,10,102-110.
    2. Fryd, M. M.; Mason, T. G., Advanced Nanoemulsions. Annual Review of Physical Chemistry 2012,63,493-518.
    3. Nakabayashi, K.; Amemiya, F.; Fuchigami, T.; Machida, K.; Takeda, S.; Tamamitsu, K.; Atobe, M., Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications 2011,47,5765-5767.
    4. Graves, S.; Meleson, K.; Wilking, J.; Lin, M. Y.; Mason, T. G., Structure of concentrated nanoemulsions. Journal of Chemical Physics 2005,122,137703.
    5. Mason, T. G.; Graves, S. M.; Wilking, J. N.; Lin, M. Y., Effective structure factor of osmotically deformed nanoemulsions. Journal of Physical Chemistry B 2006,110, 22097-22102.
    6. Wooster, T. J.; Golding, M.; Sanguansri, P., Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008,24,12758-12765.
    7. Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M., Nanoemulsions:formation, structure, and physical properties. Journal of Physics-Condensed Matter 2006,18,635-666.
    8. Wilking, J. N.; Chang, C. B.; Fryd, M. M.; Porcar, L.; Mason, T. G., Shear-Induced Disruption of Dense Nanoemulsion Gels. Langmuir 2011,27,5204-5210.
    9. Meleson, K.; Graves, S.; Mason, T. G., Formation of concentrated nanoemulsions by extreme shear. Soft Materials 2004,2,109-123.
    10. Roger, K.; Cabane, B.; Olsson, U., Emulsification through Surfactant Hydration: The PIC Process Revisited. Langmuir 2011,27,604-611.
    11. Maestro, A.; Sole, I.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. Journal of Colloid and Interface Science 2008,327, 433-439.
    12. Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C., Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Trends in Colloid and Interface Science 2000,115,36-39.
    13. Forgiarini, A.; Esquena, J.; Gonzalez, C.;Solans, C., Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 2001,17, 2076-2083.
    14. Sole, I.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006,22,8326-8332.
    15. Taylor, P., Ostwald ripening in emulsions:estimation of solution thermodynamics of the disperse phase. Advances in Colloid and Interface Science 2003,106,261-285.
    16. Galindo-Alvarez, J.; Sadtler, V.; Choplin, L.; Salager, J.-L., Viscous Oil Emulsification by Catastrophic Phase Inversion:Influence of Oil Viscosity and Process Conditions. Industrial & Engineering Chemistry Research 2011,50,5575-5583.
    17. Gutierrez, J. M.; Gonzalez, C.; Maestro, A.; Sole, I.; Pey, C. M.; Nolla, J., Nano-emulsions:New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science 2008,13,245-251.
    18. Mei, Z.; Xu, J.; Sun, D., O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A 2011,375,102-108.
    19. Mei, Z.; Liu, S.; Wang, L.; Jiang, J.; Xu, J.; Sun, D., Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science 2011,361,565-572.
    20. Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, H., Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science 2006,303,557-563.
    21. Sole, I.; Pey, C. M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J. M., Nano-emulsions prepared by the phase inversion composition method:Preparation variables and scale up. Journal of Colloid and Interface Science 2010,344,417-423.
    22. Hessien, M.; Singh, N.; Kim, C.; Prouzet, E., Stability and Tunability of O/W Nanoemulsions Prepared by Phase Inversion Composition. Langmuir 2011,27, 2299-2307.
    23. Rondon-Gonzalez, M.; Madariage, L. F.; Sadtler, V.; Choplin, L.; Marquez, L Salager, J. L., Emulsion catastrophic inversion from abnormal to normal morphology.6. Effect of the phase viscosity on the inversion produced by continuous stirring. Industrial & Engineering Chemistry Research 2007,46,3595-3601.
    24. Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C., Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004,108,303-318.
    25. Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C., Formation and stability of nano-emulsions in mixed nonionic surfactant systems. Trends in Colloid and Interface Science 2001,118,184-189.
    26. Izquierdo, P.; Feng, J.; Esquena, J.; Tadros, T. F.; Dederen, J. C.; Garcia, M. J.; Azemar, N.; Solans, C., The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science 2005,285, 388-394.
    27. Pey, C. M.; Maestro, A.; Sole, I.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids and Surfaces A 2006,288, 144-150.
    28. Sole, I.; Maestro, A.; Pey, C. M.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids and Surfaces A 2006,288,138-143.
    29. Izquierdo, P.; Esquena, J.; Tadros, T. F.; Dederen, J. C.; Feng, J.; Garcia-Celma, M. J.; Azemar, N.; Solans, C., Phase Behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 2004,20,6594-6598.
    30. Morales, D.; Solans, C.; Gutierrez, J. M.; Garcia-Celma, M. J.; Olsson, U., Oil/water droplet formation by temperature change in the water/C16E6/mineral oil system. Langmuir 2006,22,3014-3020.
    31. McClements, D. J., Nanoemulsions versus microemulsions:terminology, differences, and similarities. Soft Matter 2012,8,1719-1729.
    32. Fernandez, P.; Andre, V.; Rieger, J.; Kuhnle, A., Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A 2004,251,53-58.
    33. Wang, L.; Li, X.; Zhang, G.; Dong, J.; Eastoe, J., Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science 2007,314,230-235.
    34. Morales, D.; Gutierrez, J. M.; Garcia-Celma, M. J.; Solans, Y. C., A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 2003,19,7196-7200.
    35. Wang, L.; Mutch, K. J.; Eastoe, J.; Heenan, R. K.; Dong, J., Nanoemulsions prepared by a two-step low-energy process. Langmuir 2008,24,6092-6099.
    36. Donev, A.; Cisse, I.; Sachs, D.; Variano, E.; Stillinger, F. H.; Connelly, R.; Torquato, S.; Chaikin, P. M., Improving the density of jammed disordered packings using ellipsoids. Science 2004,303,990-993.
    37. Roger, K.; Cabane, B.; Olsson, U., Formation of 10-100 nm Size-Controlled Emulsions through a Sub-PIT Cycle. Langmuir 2009,26,3860-3867.
    38. Rao, J.; McClements, D. J., Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. Journal of Agricultural and Food Chemistry 2010,58,7059-7066.
    39. Kabalnov, A., Ostwald ripening and related phenomena. Journal of Dispersion Science and Technology 2001,22,1-12.
    40. Izquierdo, P.; Esquena, J.; Tadros, T. F.; Dederen, C.; Garcia, M. J.; Azemar, N.; Solans, C., Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 2002,18,26-30.
    41. Taylor, P., Ostwald ripening in emulsions. Advances in Colloid and Interface Science 1998,75,107-163.
    42. Maali, A.; Mosavian, M. T. H., Preparation and Application of Nanoemulsions in the Last Decade (2000-2010). Journal of Dispersion Science and Technology 2013,34, 92-105.
    1. Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I., Drug Delivery by Soft Matter: Matrix and Vesicular Carriers. Angewandte Chemie-International Edition 2009,48, 274-288.
    2. Niu, Z.; He, J.; Russell, T. P.; Wang, Q., Synthesis of Nano/Microstructures at Fluid Interfaces. Angewandte Chemie-International Edition 2010,49,10052-10066.
    3. Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S., Temperature-induced inversion of nanoparticle-stabilized emulsions. Angewandte Chemie-International Edition 2005, 44,4795-4798.
    4. Schwarz, J. C.; Klang, V.; Karall, S.; Mahrhauser, D.; Resch, G. P.; Valenta, C., Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Inter national Journal of Pharmaceutics 2012,435,69-75.
    5. Muschiolik, G., Multiple emulsions for food use. Current Opinion in Colloid & Interface Science 2007,12,213-220.
    6. Sagalowicz, L.; Leser, M. E., Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science 2010,15,61-72.
    7. Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J., Nano-emulsions. Current Opinion in Colloid & Interface Science 2005,10,102-110.
    8. Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M., Nanoemulsions:formation, structure, and physical properties. Journal of Physics-Condensed Matter 2006,18,635-666.
    9. Vrignaud, S.; Anton, N.; Gayet, P.; Benoit, J.-P.; Saulnier, P., Reverse micelle-loaded lipid nanocarriers:A novel drug delivery system for the sustained release of doxorubicin hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics 2011,79,197-204.
    10. Anton, N.; Mojzisova, H.; Porcher, E.; Benoit, J.-P.; Saulnier, P., Reverse micelle-loaded lipid nano-emulsions:New technology for nano-encapsulation of hydrophilic materials. International Journal of Pharmaceutics 2010,398,204-209.
    11. Hanson, J. A.; Chang, C. B.; Graves, S. M.; Li, Z. B.; Mason, T. G.; Deming, T. J., Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 2008,455,85-89.
    12. Zhao, Y.; Zhang, J.; Wang, Q.; Li, J.; Han, B., Water-in-oil-in-water double nanoemulsion induced by CO2. Physical Chemistry Chemical Physics 2011,13, 684-689.
    13. Zhang, J.; Han, B.; Zhao, Y.; Li, W.; Liu, Y, Emulsion inversion induced by CO2. Physical Chemistry Chemical Physics 2011,13,6065-6070.
    14. Zhang, J.; Han, B.; Zhang, C.; Li, W.; Feng, X., Nanoemulsions induced by compressed gases. Angewandte Chemie-International Edition 2008,47,3012-3015.
    15. Sole, I.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006,22,8326-8332.
    16. Sole, I.; Pey, C. M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J. M., Nano-emulsions prepared by the phase inversion composition method:Preparation variables and scale up. Journal of Colloid and Interface Science 2010,344,417-423.
    17. Hessien, M.; Singh, N.; Kim, C.; Prouzet, E., Stability and Tunability of O/W Nanoemulsions Prepared by Phase Inversion Composition. Langmuir 2011,27, 2299-2307.
    18.肖进新;赵振国,表面活性剂应用原理,化学工业出版社,2003,201-202.
    19. Fryd, M. M.; Mason, T. G., Nanoinclusions in cryogenically quenched nanoemulsions. Langmuir:the ACS journal of surfaces and colloids 2012,28, 12015-12021.
    20. Graves, S.; Meleson, K.; Wilking, J.; Lin, M. Y.; Mason, T. G., Structure of concentrated nanoemulsions. Journal of Chemical Physics 2005,122,137703.
    21.庄文昌;陈晓;赵继宽;王庐岩;李志宏,胶体分散体系与有序分子组合体的小角X射线散射研究,化学进展2005,17,881-888.
    22.庄文昌,贵金属纳米溶胶与溶致液晶的小角X射线散射研究.山东大学博士学 位论文2009,60-64.
    23.朱育平,小角x射线散射——理论、测试、计算及应用,化学工业出版社2008,99-103.
    24. Zhao, Y.; Zhang, J.; Han, B.; Hu, S.; Li, W., CO2-controlled reactors:epoxidation in emulsions with droplet size from micron to nanometre scale. Green Chemistry 2010, 12,452-457.
    25. Ilavsky, J.; Jemian, P. R., Irena:tool suite for modeling and analysis of small-angle scattering, Journal of Applied Crystallography 2009,42,347-353.
    26. Lee, B.; Podsiadlo, P.; Rupich, S.; Talapin, D. V.; Rajh, T.; Shevchenko, E. V., Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering. Journal of the American Chemical Society 2009,131,16386-16388.
    27. Zhang, J.; Zhao, Y.; Li, J.; Yang, G.; Han, B.; Wu, Z.; Li, Z., CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. Soft Matter 2010,6, 6200-6205.
    28. Kuchibhatla, A.; Rasheed, A. S. A.; Narayanan, J.; Bellare, J.; Panda, D., An Analysis of FtsZ Assembly Using Small Angle X-ray Scattering and Electron Microscopy. Langmuir 2009,25,3775-3785.
    29. Li, N.; Gao, Y. a.; Zheng, L.; Zhang, J.; Yu, L.; Li, X., Studies on the micropolarities of bmimBF(4)/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy. Langmuir 2007,23,1091-1097.
    30. Garti, N., Double emulsions-scope, limitations and new achievements. Colloids and Surfaces A 1997,123-124,233-246.
    31. Goubault, C.; Pays, K.; Olea, D.; Gorria, P.; Bibette, J.; Schmitt, V.; Leal-Calderon, F., Shear rupturing of complex fluids:Application to the preparation of quasi-monodisperse water-in-oil-in-water double emulsions. Langmuir 2001,17, 5184-5188.
    32. Wang, Y. F.; Tao, Z.; Gang, H., Structural evolution of polymer-stabilized double emulsions. Langmuir 2006,22,67-73.
    33. Bonnet, M.; Cansell, M.; Berkaoui, A.; Ropers, M. H.; Anton, M.; Leal-Calderon, F., Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids 2009,23,92-101.
    34. Ficheux, M. F.; Bonakdar, L.; Leal-Calderon, F.; Bibette, J., Some stability criteria for double emulsions. Langmuir 1998,14,2702-2706.
    35. Zhao, C.-X.; Middelberg, A. P. J., Microfluidic Mass-Transfer Control for the Simple Formation of Complex Multiple Emulsions. Angewandte Chemie-International Edition 2009,48,7208-7211.
    36. Chu, L.-Y.; Utada, A. S.; Shah, R. K.; Kim, J.-W.; Weitz, D. A., Controllable monodisperse multiple emulsions. Angewandte Chemie-International Edition 2007,46, 8970-8974.
    37. Shum, H. C.; Kim, J.-W.; Weitz, D. A., Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society 2008,130,9543-9549.
    38. Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A., Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308,537-541.
    39. Shum, H. C.; Zhao, Y.-j.; Kim, S.-H.; Weitz, D. A., Multicompartment Polymersomes from Double Emulsions. Angewandte Chemie-International Edition 2011,50,1648-1651.
    40. Kim, S.-H.; Shum, H. C.; Kim, J. W.; Cho, J.-C.; Weitz, D. A., Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society 2011,133,15165-15171.
    41. Kim, S.-H.; Weitz, D. A., One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie-International Edition 2011, 50,8731-8734.
    42. Salager, J. L.; Marquez, L.; Pena, A. A.; Rondon, M.; Silva, F.; Tyrode, E., Current phenomenological know-how and modeling of emulsion inversion. Industrial & Engineering Chemistry Research 2000,39,2665-2676.
    43. Zambrano, N.; Tyrode, E.; Mira, I.; Marquez, L.; Rodriguez, M. P.; Salager, J. L., Emulsion catastrophic inversion from abnormal to normal morphology.1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier. Industrial & Engineering Chemistry Research 2003,42,50-56.
    44. Rondon-Gonzalez, M.; Sadtler, V.; Choplin, L.; Salager, J. L., Emulsion catastrophic inversion from abnormal to normal morphology.5. Effect of the water-to-oil ratio and surfactant concentration on the inversion produced by continuous stirring. Industrial & Engineering Chemistry Research 2006,45,3074-3080.
    45. Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 2003,100,503-546.
    46. Wang, J.; Yang, F.; Tan, J.; Liu, G.; Xu, J.; Sun, D., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles. Langmuir 2010,26, 5397.5404.
    47. Binks, B. P.; Rodrigues, J. A., Inversion of emulsions stabilized solely by ionizable nanoparticles. Angewandte Chemie-International Edition 2005,44,441-444.
    48. Salager, J. L.; Forgiarini, A.; Marquez, L.; Pena, A.; Pizzino, A.; Rodriguez, M. P.; Rondo-Gonzalez, M., Using emulsion inversion in industrial processes. Advances in Colloid and Interface Science 2004,108,259-272.
    49. Galindo-Alvarez, J.; Sadtler, V.; Choplin, L.; Salager, J.-L., Viscous Oil Emulsification by Catastrophic Phase Inversion:Influence of Oil Viscosity and Process Conditions. Industrial & Engineering Chemistry Research 2011,50,5575-5583.
    50. Salager, J. L.; Marquez, N.; Graciaa, A.; Lachaise, J., Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems:Influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 2000,16,5534-5539.
    51. Allouche, J.; Tyrode, E.; Sadtler, V.; Choplin, L.; Salager, J. L., Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method. Langmuir 2004,20,2134-2140.
    52. Roger, K.; Cabane, B.; Olsson, U., Formation of 10-100 nm Size-Controlled Emulsions through a Sub-PIT Cycle. Langmuir 2009,26,3860-3867.
    53. Heunemann, P.; Prevost, S.; Grillo, I.; Marino, C. M.; Meyer, J.; Gradzielski, M., Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter 2011,7,5697-5710.
    54. Rondon-Gonzalez, M.; Madariage, L. F.; Sadtler, V.; Choplin, L.; Marquez, L.; Salager, J. L., Emulsion catastrophic inversion from abnormal to normal morphology.6. Effect of the phase viscosity on the inversion produced by continuous stirring. Industrial & Engineering Chemistry Research 2007,46,3595-3601.
    55. Maestro, A.; Sole, I.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. Journal of Colloid and Interface Science 2008,327, 433-439.
    56. Zhao, Y.; Zhang, J.; Li, W.; Zhang, C.; Han, B., Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO2 induced nanoemulsion. Chemical Communications 2009,2365-2367.
    57. Hessien, M.; Leone, P.; Suchaud, M.; LeBeau, B.; Nouali, H.; Guari, Y.; Prouzet, E., Nanocrystalline iron oxide synthesised within Hierarchical Porous Silica prepared by nanoemulsion templating. Chemical Communications 2012,48,10022-10024.
    1. Stachurski, J.; Michalek, M., The Effect of the zeta Potential on the Stability of a Non-Polar Oil-in-Water Emulsion. Journal of Colloid and Interface Science 1996,184, 433-436.
    2. Nakabayashi, K.; Amemiya, F.; Fuchigami, T.; Machida, K.; Takeda, S.; Tamamitsu, K.; Atobe, M., Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications 2011,47,5765-5767.
    3. Beattie, J. K.; Djerdjev, A. M., The pristine oil/water interface:Surfactant-free hydroxide-charged emulsions. Angewandte Chemie-International Edition 2004,43, 3568-3571.
    4. Roger, K.; Cabane, B., Why Are Hydrophobic/Water Interfaces Negatively Charged? Angewandte Chemie International Edition 2012,51,5625-5628.
    5. Roger, K.; Cabane, B., Uncontaminated Hydrophobic/Water Interfaces Are Uncharged:A Reply. Angewandte Chemie-International Edition 2012,51, 12943-12945.
    6.梁治齐;李金华,功能性乳化剂与乳状液,中国轻工业出版社,2000,10-12.
    7. Ho, C. C.; Ahmad, K., Electrokinetic Behavior of Palm Oil Emulsions in Dilute Electrolyte Solutions. Journal of Colloid and Interface Science 1999,216,25-33.
    8. Hsu, J.-P.; Nacu, A., Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science 2003,259,374-381.
    9.蓝强;苏长明;刘伟荣;杨飞;郭宝雨;孙德军,乳液和乳化技术及其在钻井液完井液中的应用,钻井液与完井液2006,23,62-69.
    10. Jeong, M. W.; Oh, S. G.; Kim, Y. C., Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloids and Surfaces A 2001,181,247-253.
    11. Yang, S. C.; Benita, S., Enhanced absorption and drug targeting by positively charged submicron emulsions. Drug Development Research 2000,50,476-486.
    12. Benita, S., Prevention of topical and ocular oxidative stress by positively charged submicron emulsion. Biomedicine & Pharmacotherapy 1999,53,193-206.
    13. Hagigit, T.; Nassar, T.; Behar-Cohen, F.; Lambert, G.; Benita, S., The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions. European Journal of Pharmaceutics and Biopharmaceutics 2008,70,248-259.
    14. Mei, Z.; Xu, J.; Sun, D., O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A 2011,375,102-108.
    15.孙德军;李财富;梅贞;刘伟荣;苏长明;于培志;徐健;刘尚营,一种带正电石蜡纳米乳液及其制备方法,2008,CN 101168686 A.
    16. Mei, Z.; Liu, S.; Wang, L.; Jiang, J.; Xu, J.; Sun, D., Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science 2011,361,565-572.
    17. Sole, L.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutierrez, J. M., Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006,22,8326-8332.
    18. Sole, I.; Pey, C. M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J. M., Nano-emulsions prepared by the phase inversion composition method:Preparation variables and scale up. Journal of Colloid and Interface Science 2010,344,417-423.
    19. Hessien, M.; Singh, N.; Kim, C.; Prouzet, E., Stability and Tunability of O/W Nanoemulsions Prepared by Phase Inversion Composition. Langmuir 2011,27, 2299-2307.
    20. Tiberg, F.; Joesson, B.; Lindman, B., Ellipsometry Studies of the Self-Assembly of Nonionic Surfactants at the Silica-Water Interface:Kinetic Aspects. Langmuir 1994,10, 3714-3722.
    21. Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, H., Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science 2006,303,557-563.
    22. Forster, T.; Von Rybinski, W.; Wadle, A., Influence of microemulsion phases on the preparation of fine-disperse emulsions. Advances in Colloid and Interface Science 1995, 58,119-149.
    23. Morales, D.; Gutierrez, J. M.; Garcia-Celma, M. J.; Solans, Y. C., A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 2003,19,7196-7200.
    24.虎增福;曾赞;张浩明;沈金安;乳化沥青及稀浆封层技术,人民交通出版社,2001,3-7.
    25.胡绍进;陈嘉川;杨桂花,造纸助剂的开发与发展,造纸化学品2012,43, 49-54.
    26.张红;周晓慧;陈照;柴仕淦;邹其超;闫翠娥;张金枝,纳米苯丙阳离子乳液型纸张表面施胶剂,粘接2012,9,36-38.
    27. Yilmaz, E.; Borchert, H. H., Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-An in vivo study. International Journal of Pharmaceutics 2006,307,232-238.
    28. Yilmaz, E.; Borchert, H. H., Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. European Journal of Pharmaceutics and Biopharmaceutics 2005,60,91-98.
    29. Piemi, M. P. Y.; Korner, D.; Benita, S.; Marty, J. P., Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. Journal of Controlled Release 1999,58,177-187.
    30.陈亮;王立峰;杨兴福,阳离子乳液聚合物在YK15H井的应用,钻井液与完并液2009,26,120-122.
    31.范落成;杨兴福;王华;孙明杰,阳离子乳液聚合物钻井液在页岩气井的应用,石油钻探技术2012,40,38-42.
    32.牛玉行,水在玻璃表面的润湿性被破坏的一些看法,玻璃与搪瓷2003,31,26-28.
    33.郭祥峰;贾丽华,阳离子表面活性剂及应用,化学工业出版社,2002,67-86.
    34.杜志平;王万绪,阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅱ)—稀溶液性质,日用化学工业2003,36,247-250.
    35.杜志平;王万绪,阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅳ)——应用性能.日用化学工业2006,36,388-391.
    36. Liu, T.; Seiffert, S.; Thiele, J.; Abate, A. R.; Weitz, D. A.; Richtering, W., Non-coalescence of oppositely charged droplets in pH-sensitive emulsions. Proceedings of the National Academy of Sciences of the United States of America 2012,109, 384-389.
    37. Sznitowska, M.; Janicki, S.; Dabrowska, E.; Zurowska-Pryczkowska, K., Submicron emulsions as drug carriers-Studies on destabilization potential of various drugs. European Journal of Pharmaceutical Sciences 2001,12,175-179.
    38. Mou, D.; Chen, H.; Du, D.; Mao, C.; Wan, H.; Xu, H.; Yang, X., Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. International Journal of Pharmaceutics 2008,353,270-276.
    39. Pal, R., Novel viscosity equations for emulsions of two immiscible liquids. Journal of Rheology 2001,45,509-520.
    40. Wilking, J. N.; Chang, C. B.; Fryd, M. M.; Porcar, L.; Mason, T. G., Shear-Induced Disruption of Dense Nanoemulsion Gels. Langmuir 2011,27,5204-5210.
    41. Barnes, H. A., Rheology of emulsions-a review. Colloids and Surfaces A 1994,91, 89-95.
    42. Wilking, J. N.; Mason, T. G., Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Physical Review E 2007,75,4.
    43. Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 2003,17,25-39.
    44. Bali, V.; Ali, M.; Ali, J., Nanocarrier for the enhanced bioavailability of a cardiovascular agent:In vitro, pharmacodynamic, pharmacokinetic and stability assessment. International Journal of Pharmaceutics 2011,403,46-56.
    45. Fryd, M. M.; Mason, T. G., Advanced Nanoemulsions. Annual Review of Physical Chemistry 2012,63,493-518.
    46. Kosmulski, M.; Gustafsson, J.; Rosenholm, J. B., Correlation between the zeta potential and rheological properties of anatase dispersions. Journal of Colloid and Interface Science 1999,209,200-206.
    47. Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; de Winter, D. A. M.; Verkleij, A. J.; Lekkerkerker, H. N. W., Sol-Gel Transitions and Liquid Crystal Phase Transitions in Concentrated Aqueous Suspensions of Colloidal Gibbsite Platelets. Journal of Physical Chemistry B 2009,113,11604-11613.
    48. Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; Lekkerkerker, H. N. W., Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. Journal of Physics-Condensed Matter 2008,20,494201.
    49. Levitz, P.; Lecolier, E.; Mourchid, A.; Delville, A.; Lyonnard, S., Liquid-solid transition of Laponite suspensions at very low ionic strength:Long-range electrostatic stabilisation of anisotropic colloids. Europhysics Letters 2000,49, (5),672-677.
    50. Kawada, H.; Kume, T.; Matsunaga, T.; Iwai, H.; Sano, T.; Shibayama, M., Structure and Rheology of a Self-Standing Nanoemulsion. Langmuir 2010,26, (4),2430-2437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700