用户名: 密码: 验证码:
表面活性剂辅助制备金纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在纳米材料研究领域,金纳米材料的制备和性能是最受关注,也是研究得最为深入的课题之一。这主要是由于金纳米材料不仅具有普通纳米材料的一般性质,还具备自己独特的光学、电学性质以及良好的生物相容性。这些性质与应用都与金纳米材料的尺寸和形貌有着密切联系。
     在过去的十几年中,在金纳米晶体形貌与尺寸可控合成的研究方面取得了相当大的进展。在已发展的众多的制备方法中,以胶体方法制备金纳米晶体逐步受到人们的重视,而其中绝大部分涉及到了表面活性剂的使用。表面活性剂可作为包覆剂以精确控制金纳米晶体的成核及生长,也可与金粒子之间相互结合或形成配合物。带有不同头基、疏水长链、反离子及分子构型的多种表面活性剂都应用于金纳米晶体的可控合成。但同时,在这方面,仍有相当多的问题研究得不够深入,有待进一步解决。本论文从胶体化学的角度出发,研究表面活性剂参与调控的金纳米材料的生长与组装,主要内容分为三个部分:
     1、聚氧乙烯醚类非离子表面活性剂辅助制备金纳米颗粒。主要包括两个方面:硅表面活性剂诱导金纳米颗粒一维组装并用于表面增强拉曼光谱及非离子生物表面活性剂制备金纳米材料及其催化性能的研究。
     (1)将一种硅表面活性剂用于合成金纳米颗粒并诱导其自发组装成一维结构。研究发现,可以通过调节硅表面活性剂的浓度来改变金纳米链的长度且硅表面活性剂与金纳米颗粒之间的多重作用使得其在纳米颗粒表面非对称性分布并使金纳米颗粒组装成一维结构。借助经典的Derjaguin-Landau-Verwey-Overbeek (DLVO)理论解释了包覆机理与颗粒稳定性之间的关系。金纳米链作为表面增强拉曼光谱的基底被用于罗丹明6G的微量检测,获得了较强的信号。
     (2)使用典型的非离子生物表面活性剂植物甾醇(BPS-30),通过较为简单环保的反应步骤制备了单分散的金纳米颗粒。BPS-30包覆的金纳米颗粒溶液保存几个月后依然稳定存在,并且在较高浓度的电解质溶液中,仍能够表现出良好的稳定性。紫外-可见光谱定性地证明了所制备的金纳米颗粒具有较高的产率。最后,利用所得到的金纳米颗粒作为催化剂,发现可催化水溶液中4-硝基苯胺的还原反应。
     2、咪唑类表面活性离子液体气/液界面辅助制备金纳米结构。主要包括以下两个方面:使用长链离子液Langmuir单层膜一步法制备及组装金纳米链状结构并应用于表面增强拉曼光谱;利用Langmuir单层膜两步法制备多种金纳米结构。主要包括:
     (1)借助于长链离子液1-十六烷基-3-甲基溴化铵(C16mimBr)所形成的Langmuir单层膜,在气/液界面上通过紫外光照还原一步制备并还原了链状的金纳米结构。研究表明,链状结构是由粒径15nm左右的金纳米颗粒组装而成。且链状结构主要受到反应时间的调控。C16mimBr所特有的π-π相互作用及空间位阻效应对于形貌的控制起到了重要作用。
     (2)通过两步法生长制备了带状、楔形、球形金纳米结构。利用β-环糊精的还原和包覆作用,首先在水溶液中制得了多种预金纳米结构。借助1-十六烷基-3-甲基咪唑溴在气/液界面上所形成的Langmuir(?)单层膜,多种预金纳米结构在界面上继续生长,最终得到了带状、楔形及球形金纳米结构。基于β-环糊精与预金纳米结构之间的相互作用,我们提出了可能的形成机理。
     3、在气/液界面上,N-十六烷基-N,N-二甲基苄基氯化铵(BHDC)包覆的金纳米颗粒在低温条件下自组装形成了环状结构,而在高温条件下则形成蜂窝状结构。我们认为BHDC分了间存在π-π堆积作用有利于包覆剂分子在金纳米粒子表面的有序排列,进而形成了类似的核/壳杂合纳米材料,而在蒸发过程中存在的“Marangoni-Benard"对流效应进一步促进了不同图案化结构的形成。通过使用其他四种表面活性剂进一步在分子水平上证明了所提出机理的正确性。
Among many kinds of nanomaterials, gold nanomaterials have attracted wide attention and have been studied extensively. This is mainly due to their unique physical, chemical, and biocompatible properties, besides the common properties for the nanomaterials. Furthermore, the properties and applications of gold nanocrystals largely depend on their sizes and shapes.
     Over the past decade, there has been tremendous progress in the shape-controlled synthesis of gold nanocrystals. In particular, a variety of colloidal chemical methods have been developed to fabricate gold nanocrystals, and there is a growing emphasis on these methods. In the synthesis of gold nanocrystals by colloidal chemical methods, various surfactants have been widely employed as capping agents to exert exquisite control over the nucleation and growth of gold nanocrystals. In addition to the role of capping agents, surfactants which undergo strong interactions with gold, and can even form coordination complexes. All in all, a variety of surfactants with different headgroups, hydrophobic chains, counterions, and molecular architectures, have been used for the shape-controlled synthesis of gold nanocrystals. Meanwhile, there are also many key points which are needed further investigation. In this thesis, we studied the preparation of gold nanostructures with various shapes using surfactants as the capping agents. The thesis is divided into three sections, which are summarized as following:
     Section Ⅰ, Control synthesis and assembly of gold nanoparticles using the typical nonionic surfactants:Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS; The high yield synthesis and characterization of gold nanoparticles with superior stability and their catalytic activity. The work can be divided into two parts:
     1. A siloxane surfactant was used for the mild synthesis and simultaneous1D assembly of gold nanoparticles. The lengths of the gold nanochains could be tuned by facile adjustment of the surfactant concentration. The multiple interactions between the siloxane surfactant and gold nanoparticles made the nonuniform spatial distribution of stabilizers at the nanoparticle surfaces and then led to the1D assembly. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was introduced to interpret the relationship between the capping mechanism and the excellent stability of the nanoparticles. These gold nanochains were shown to yield a large SERS enhancement for Rhodamine6G.
     2. The typical nonionic biosurfactant ethoxylated sterol (BPS-30) is used to the facile, green, and high yield approach for the synthesis and stabilization of relatively monodispersed gold nanoparticles. The obtained gold nanoparticles capped by BPS-30not only showed remarkable stability after several months of storage under ambient conditions, but also exhibited exciting stability in the high concentrations of electrolyte aqueous solutions. The UV-vis absorption spectrum was used to determine the yield of the gold nanoparticle. Moreover, the catalytic efficiency of the gold nanoparticles was evaluated by using the reduction of4-nitroaniline by potassium borohydride in aqueous solutions.
     Section Ⅱ, Control synthesis and assembly of gold nanoparticles using imidazolium ionic liquid surfactants at the air/water surface:One-step synthesis and assembly of gold nanochains using Langmuir monolayer of long-chain ionic liquid and their applications to SERS; Novel two-step synthesis of various gold nanostructures using Langmuir monolayers. The work can be divided into two parts:
     1. gold nanochains were prepared at the air/water interface under the Langmuir monolayer of a long-chain ionic liquid1-hexadecyl-3-methylimidazolium bromide (C16mimBr) through the reduction of AuCl4-ions by UV-light irradiation. It is revealed that these nanochains are self-assembled from gold nanoparticles about an average diameter of15nm. The synthesis and assembly of the Au nanoparticles can be achieved in one step. Both the π-π interactions and the steric hindrance play important roles in the formations of the nanochains.
     2. Ribbon-like, wedge-shaped, and spherical gold nanostructures were prepared via a novel two-step growth method. Various gold nanostructures were first pre-formed in aqueous solution by using β-cyclodextrin (β-CD) as both reducing and capping agent. Due to the continuous growth of the pre-formed gold nanostructures at the air/water interface with the help of the Langmuir monolayers of1-hexadecyl-3-methylimidazolium bromide (C16mimBr), morphology changes can be observed obviously. A possible mechanism based on the interaction between β-CD and the pre-formed gold nanostructures is proposed.
     Section Ⅲ, The benzyl-n-hexadecyl dimethylammonium chloride-stabilized gold nanoparticles were found to self-assemble into ringlike structures at low temperature and honeycomb-shaped patterns at high temperature. The π-π stacking interactions between the BHDC molecules contribute to the ordered arrangement of the capping agents at the surface of gold nanoparticles. Then the similar core/shell hybrid nanomaterials are obtained and the organic shell plays a key role in the formation of the unique patterns. These varied structures are suggested to be a result of Marangoni-Benard convection in evaporating droplets and π-π stacking interactions of the nanoparticle suspension. Other four surfactants are also used to further verify the mechanism from the molecule interactions level between capping agents.
引文
[1]曹茂盛,曹传宝,徐甲强,纳米材料学,哈尔滨:哈尔滨工业大学出版社,2002,13-14;
    [2]C. Joachim, To be nano or not to be nano, Nat. Mater. 2005,4,107-109;
    [3]S. Eustis, M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev.2006,35,209-217;
    [4]S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications, Chem. Rev.2007, 107,4797-4862;
    [5]C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, Gold nanoparticles in biology:beyond toxicity to cellular imaging, Acc. Chem. Res.2008,41,1721-1730;
    [6]E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev.2009,38, 1759-1782;
    [7]D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Gold nanoparticles for biology and medicine, Angew. Chem., Int. Ed. 2010,49,3280-3294;
    [8]J. Y. Xiao, L. M. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale 2011,3,1383-1396;
    [9]S. Kundu, S. Lau, H. Liang, Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms, J. Phys. Chem. C 2009,113,5150-5156;
    [10]H. Wu, X. Huang, M. M. Gao, X. P. Liao, B. Shi, Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction, Green Chem.2011,13,651-658;
    [11]C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, M. H. Huang, Facet-dependent catalytic activity of gold nanocubes, octahedra,and rhombic dodecahedra toward 4-nitroaniline reduction, J. Phys. Chem. C 2012,116,23757-23763;
    [12]T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, J. Feldmann, Properties and applications of colloidal nonspherical noble metal nanoparticles, Adv. Mater. 2010,22,1805-1825;
    [13]A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, S. S. Gambhir, Gold nanoparticles:a revival in precious metal administration to patients, Nano Lett. 2011,11,4029-4036;
    [14]Shape control in gold nanoparticle synthesis, M. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Liz-Marzan, Chem. Soc. Rev.2008,37,1783-1791;
    [15]C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, P. Hankins, Chemical sensing and imaging with metallic nanorods, Chem. Commun.2008,544-557;
    [16]T. K. Sau, A. L. Rogach, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control, Adv. Mater.2010,22, 1781-1804;
    [17]Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002,298,2176-2179;
    [18]S. H. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals,J. Am. Chem. Soc.2003,125, 16186-16187;
    [19]X. W. Zheng, L. Y. Zhu, X. J. Wang, A. H. Yan, Y, Xie, A simple mixed surfactant route for the preparation of noble metal dendrites, Journal of Crystal Growth 2004,260,255-262;
    [20]B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, Y. N. Xia, Shape-controlled synthesis of silver and gold nanostructures, MRS Bulletin 2005, 30,356-361;
    [21]T. H. Ha, H. J. Koo, B. H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions,J. Phys. Chem. C 2007,111,1123-1130;
    [22]P. R. Sajanlal, T. S. Sreeprasad, A. S. Nair, T. Pradeep, Wires, plates, flowers, needles, and core-shells:diverse nanostructures of gold using polyaniline templates, Langmuir 2008,24,4607-4614;
    [23]P. S. Kumar, I. Pastoriza-Santos, B. Rodrguez-Gonzalez, F. Garcade Abajo, L. M. Liz-Marzan, High-yield synthesis and optical response of gold nanostars, Nanotechnology 2008,19,015606;
    [24]X. T. Bai, L. Q. Zheng, A facile synthesis of two-dimensional dendritic gold nanostructures at the air/water interface, Cryst. Growth Des.2010,10, 4701-4705;
    [25]C. H. Zhu, G. W. Meng, Q. Huang, Z. L. Huang, Z. Q. Chu, Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration, Cryst. Growth Des.2011,11,748-752;
    [26]J. Turkevitch, P. C. Stevenson, J. Hillier, Nucleation and growth process in the synthesis of colloidal gold, Discuss Faraday Soc.1951,11,55-75;
    [27]G. Frens, Controlled Nucleation for the regulation of the particle sSize in monodisperse gold suspensions, Nature:Phys Sci.1973,241,20-22;
    [28]S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Gold nanocages:synthesis, properties, and applications, Acc. Chem. Res.2008,41, 1587-1595;
    [29]X. T. Bai, Y. A. Gao, L. Q. Zheng, Galvanic replacement mediated growth of dendritic gold nanostructures with a three-fold symmetry and their applications to SERS, CrystEngComm 2011,13,3562-3568;
    [30]J. M. Zhu, Y. H. Shen, A. J. Xie, L. G. Qiu, Q. Zhang, S Y. Zhang, Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature inic liquid, J. Phys. Chem. C 2007,111,7629-7633;
    [31]Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu, Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids, Angew. Chem. Int. Ed.2004,43,1410-1414;
    [32]J. L. Gardea-Torresdey, J. G. Parsons, K. Dokken, J. Peralta-Videa, H. E. Troiani, P. Santiago, M. Jose-Yacaman, Nano Lett.2002,2,397-401;
    [33]A. R. Tao, S. Habas, P. D. Yang, Shape control of colloidal metal nanocrystals, Small 2008,4,310-325;
    [34]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, Anisotropic metal nanoparticles:synthesis, assembly, and optical applications,J.Phys. Chem.B 2005,109,13857-13870;
    [35]M. Liu, P. Guyot-Sionnest, Mechanism of silver(Ⅰ)-assisted growth of gold nanorods and bipyramids,J. Phys. Chem. B 2005,109,22192-22200;
    [36]A. Halder, N. Ravishankar, Ultrafine single-crystalline gold nanowire arrays by oriented attachment, Adv. Mater.2007,19,1854-1858;
    [37]Y. N. Xia, Y. J. Xiong, B. K. Lim, S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angew. Chem. Int. Ed.2009,48,60-103;
    [38]Y. Xiong, Y. Xia, Shape-controlled synthesis of metal nanostructures:The case of palladium, Adv. Mater.2007,19,3385-3391;
    [39]B. Viswanath, P. Kundu, A. Halder, N. Ravishankar, Mechanistic aspects of shape selection and symmetry breaking during nanostructure growth by wet chemical methods,J. Phys. Chem. C 2009,113,16866-16883;
    [40]Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li, L. M. Qi, Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry, Chem. Mater.2008,20,3965-3972;
    [41]J. M. Zhu, Y. H. Shen, A. J. Xie, L. G. Qiu, Q. Zhang, S. Y. Zhang, Photo induced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,J. Phys. Chem. C 2007,111,7629-7633;
    [42]H. G. Liao, Y. X. Jiang, Z. Y. Zhou, S. P. Chen, S. G. Sun, Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angew. Chem. Int. Ed. 2008,47,9100-9103;
    [43]J. Gao, C. M. Bender, C. J. Murphy, Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution, Langmuir 2003, 19,9065-9070;
    [44]C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, J. Huang, The many faces of gold nanorods, J. Phys. Chem. Lett.2010,1,2867-2875;
    [45]X. S. Kou, S. Z. Zhang, C. K. Tsung, M. H. Yeung, Q. H. Shi, G. D. Stucky, L. D. Sun, J. F. Wang, C. H. Yan, Growth of gold nanorods and bipyramids using CTEAB surfactant, J. Phys. Chem.B 2006,110,16377-16383;
    [46]X. Kou, S. Zhang, C. K. Tsung, Z. Yang, M. H. Yeung, G. D. Stucky, L. Sun, J. Wang, C. Yan, One-step synthesis of large-aspect-ratio single-crystalline gold nanorods using CTPAB and CTBAB surfactants, Chem. Eur. J.2007,13, 2929-2936;
    [47]T. K. Sau, C. J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, J. Am. Chem. Soc.2004,126, 8648-8649;
    [48]W. Niu, S. Zheng, D. Wang, X. Liu, H. Li, S. Han, J. Chen, Z. Tang, G. Xu, Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals, J. Am. Chem. Soc.2009,131,697-703;
    [49]A. Safavi, S. Zeinali, Synthesis of highly stable gold nanoparticles using conventional and geminal ionic liquids, Colloids Surf. A 2010,362,121-126;
    [50]L. Zhong, X. Zhai, X. Zhu, P. Yao, M. Liu, Vesicle-directed generation of gold nanoflowers by gemini amphiphiles and the spacer-controlled morphology and optical property, Langmuir 2009,26,5876-5881;
    [51]L. Li, Z. Wang, T. Huang, J. Xie, L. Qi, Porous gold nanobelts templated by metal-surfactant complex nanobelts, Langmuir 2010,26,12330-12335;
    [52]D. P. Huang, X. T. Bai, L. Q. Zheng, Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS, J. Phys. Chem. C 2011,115,14641-14647;
    [53]J. Q. Hu, Y. Zhang, B. Liu, J. X. Liu, H. H. Zhou, Y. F. Xu, Y. X. Jiang, Z. L, Yang, Z. Q. Tian, Synthesis and properties of tadpole-shaped gold nanoparticles, J. Am. Chem. Soc.2004,126,9470-9471;
    [54]K. S. Rao, T. J. Trivedi, A. Kumar, Aqueous-biamphiphilic ionic liquid systems: self-assembly and synthesis of gold nanocrystals/microplates, J. Phys. Chem. B 2012,116,14363-14374;
    [55]R. Tatumi, H. Fujihara, Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid, Chem. Commum.2005,83-85;
    [56]L. L. Rouhana, J. A. Jaber, J. B. Schlenoff, Aggregation-resistant water-soluble gold nanoparticles, Langmuir 2007,23,12799-12801;
    [57]Q. Jin, J. P. Xu, J. Ji, J. C. Shen, Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles, Chem. Commun. 2008,3058-3060;
    [58]H. Yang, X. P. Heng, W. Y. Wang, J. W. Hu, W. Q. Xu, Salt-induced size-selective separation, concentration, and preservation of zwitterion-modified gold nanoparticles, RSC Adv.2012,2,2671-2674;
    [59]A. Mohanty, N. Garg, R. Jin, A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties, Angew. Chem., Int. Ed.2010, 49,4962-4966;
    [60]G. Lin, W. Lu, W. Cui, L. Jiang, A simple synthesis method for gold nano- and microplate fabrication using a tree-type multiple-amine head surfactant, Cryst. Growth Des.2010,10,1118-1123;
    [61]S. Goy-Lopez, J. Juarez, A. Cambon, J. Botana, M. Pereiro, D. Baldomir, P. Taboada, V. Mosquera, Block copolymer-regulated synthesis of gold nanocrystals with sharp tips and edges,J. Mater. Chem.2010,20,6808-6814;
    [62]Y. G. Sun, Y. N. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater.2002,14,833-837;
    [63]X. W. Zheng, L. Y. Zhu, A. H. Yan, X. J. Wang, Y. Xie, Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions,J. Colloid Interface Sci.2003,268,357-361;
    [64]X. W. Zheng, L. Y. Zhu, X. J. Wang, A. H. Yan, Y. Xie, A simple mixed surfactant route for the preparation of noble metal dendrites, Journal of Crystal Growth 2004,260,255-262;
    [65]L. Fan, R. Guo, Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions, Cryst. Growth Des.2008,8,2150-2156;
    [66]N. N. Zhao, L. M. Qi, Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants, Adv. Mater.2006,18,359-362;
    [67]Y. C. Jiao, X. Y. Gao, J. X. Lu, Y. S. Chen, J. P. Zhou, X. L. Li, A novel method for PbS quantum dot synthesis, Mater. Lett.2012,72,116-118;
    [68]N. N. Zhao, Y. Wei, N. J. Sun, Q. Chen, J. W. Bai, L. P. Zhou, Y. Qin, M. X. Li, L. M. Qi, Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions, Langmuir 2008,24,991-998;
    [69]S. Y. Moon, T. Kusunose, T. Sekino, CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution, Mater. Lett.2009, 63,2038-2040;
    [70]G. P. Sahoo, H. Bar, D. K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, A. Misra, Synthesis and photo physical properties of star shaped gold nanoparticles, Colloids Surf. A 2011,375,30-34;
    [71]C. Wang, Y. Hu, C. M. Lieber, S. Sun, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc.2008,130,8902-8903;
    [72]B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater.2003,15, 1957-1962;
    [73]X. T. Bai, H. C. Ma, X. W. Li, B. Dong, L. Q. Zheng, Patterns of gold nanoparticles formed at the air/water interface:effects of capping agents, Langmuir 2010,26,14970-14974;
    [74]T. Piao, K. H. Lee, W. J. Kwon, S. H. Kim, S. Yoon, The simple and facile methods to improve dispersion stability of nanoparticles:Different chain length alkylcarboxylate mixtures,J. Colloid Interface Sci.2009,334,208-211;
    [75]M. S. Bakshi, G. Kaur, P. Thakur, T. S. B. F. Possmayer, N. O. Petersen, Surfactant selective synthesis of gold nanowires by using a DPPC-surfactant mixture as a capping agent at ambient conditions, J. Phys. Chem. C 2007,111, 5932-5940;
    [76]A. Douhal, Ultrafast guest dynamics in cyclodextrin nanocavities, Chem. Rev. 2004,104,1955-1976;
    [77]Z. Liu, M. Jiang, Reversible aggregation of gold nanoparticles driven by inclusion complexation, J. Mater. Chem.2007,17,4249-4254;
    [78]C. Park, H. Youn, H. Kim, T. Noh, Y. H. Kook, E. T. Oh, H. J. Park, C. Kim, Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug,J. Mater. Chem.2009,19,2310-2315;
    [79]T. Huang, F. Meng, L. M. Qi, Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering, J. Phys. Chem. C 2009,113,13636-13642;
    [80]S. Pande, S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, T. Pal, Synthesis of normal and inverted gold-silver core-shell architectures in β-cyclodextrin and their applications in SERS,J. Phys. Chem. C 2007,111,10806-10813;
    [81]B. Jing, X. Chen, X. D. Wang, Y. R. Zhao, H. Y. Qiu, Sol-gel-sol transition of gold nanoparticle-based supramolecular hydrogels induced by cyclodextrin inclusion, ChemPhysChem 2008,9,249-252;
    [82]D. Joseph, K. E. Geckeler, Surfactant-directed multiple anisotropic gold nanostructures:synthesis and surface-enhanced raman scattering, Langmuir 2009, 25,13224-13231;
    [83]T. Huang, F. Meng, L. Qi, Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin, Langmuir 2010,26,7582-7586;
    [84]J. L. Gardea-Torresdey, J. G. Parsons, K. Dokken, J. Peralta-Videa, H. E. Troiani, P. Santiago, M. Jose-Yacaman, Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett.2002,2,397-401;
    [85]J. L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, J. G. Parsons, H. E. Troiani, M. Jose-Yacaman, Alfalfa sprouts:a natural source for the synthesis of silver nanoparticles, Langmuir 2003,19,1357-1361;
    [86]A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Extra-cellular biosynthesis of nano-gold using extremophilic actinomycetes, Langmuir 2003,19, 3550-3553;
    [87]S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci.2004,275,496-502;
    [88]A. A. Umar, M. Oyama, High-yield synthesis of tetrahedral-like gold nanotripods using an aqueous binary mixture of cetyltrimethylammonium bromide and hexamethylenetetramine, Cryst. Growth Des.2009,9,1146-1152;
    [89]A. A. Umar, M. Oyama, M. M. Salleh. B. Y. Majlis, Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly (vinyl pyrrolidone), and poly (ethylene glycol), Cryst. Growth Des.2010,10,3694-3698;
    [90]R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, W. J. Parak, Biological applications of gold nanoparticles, Chem. Soc. Rev.2008,37,1896-1908;
    [91]M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett.1974,26,163-166;
    [92]D. F. Zhang, L. Y. Niu, L. Jiang, P. G. Yin, L. D. Sun, H. Zhang, R. Zhang, L. Guo, C.-H. Yan, Branched gold nanochains facilitated by polyvinylpyrrolidone and their SERS effects on p-aminothiophenol, J. Phys. Chem. C 2008,112, 16011-16016;
    [93]H. J. Chen, Y. L. Wang, S. J. Dong, Synthesis of different gold nanostructures by solar radiation and their SERS spectroscopy, J. Raman Spectrosc.2009,40, 1188-1193;
    [94]W. B. Li, Y. Y. Guo, P. Zhang, General strategy to prepare TiO2-core gold-shell nanoparticles as sers-tags, J. Phys. Chem. C 2010,114,7263-7268;
    [95]W. C. Ye, D. A.Wang, H. Zhang, F. Zhou, W. M. Liu, Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application, Electrochim. Acta 2010,55,2004-2009;
    [96]L. Polavarapu, Q. H. Xu, Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS, Langmuir 2008, 24,10608-10611;
    [97]S. Boca, D. Rugina, A. Pintea, L. Barbu-Tudoran, S. Astilean, Flower-shaped gold nanoparticles:synthesis, characterization and their application as SERS active tags inside living cells, Nanotechnology 2011,22,055702;
    [98]M. S. Chenab, D. W. Goodman, Catalytically active gold on ordered titania supports, Chem. Soc. Rev.2008,37,1860-1870;
    [99]A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chem. Soc. Rev.2008,37,2096-2126;
    [100]C. D. Pina, E. Falletta, L. Prati, M. Rossi, Selective oxidation using gold, Chem. Soc. Rev.2008,37,2077-2095;
    [101]X. Y. Han, D. W. Wang, J. S. Huang, D. Liu T. Y., You, Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering,J. Colloid Interface Sci.2011,354, 577-584;
    [102]B. K. Jena, C. R. Raj, Synthesis of Flower-like Gold Nanoparticles and Their Electrocatalytic Activity Towards the Oxidation of Methanol and the Reduction of Oxygen, Langmuir 2007,23,4064-4070;
    [103]S. J. Guo, E. K. Wang, Synthesis and electrochemical applications of gold nanoparticles, Anal Chim. Acta 2007,598,181-192;
    [104]Y. C. Cao, R. C. Jin, J.-M. Nam, C. S. Thaxton, C. A. Mirkin, Raman dye-labeled nanoparticle probes for proteins J. Am. Chem. Soc.2003,125, 14676-14677;
    [105]Y. J. Kang, J. W. Oh, Y. R. Kim, J. S. Kim, H, Kim, Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine, Chem. Commun.2010,46,5665-5667;
    [106]C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett.2005,5,709-711;
    [107]C. S. Thaxton, W. L. Daniel, D. A. Giljohann, A. D. Thomas, C. A. Mirkin, Templated spherical high density lipoprotein nanoparticles,J. Am. Chem. Soc. 2009,131,1384-1385;
    [108]D. P. Cormode, T. Skajaa, M. M. van Schooneveld, R. Koole, P. Jarzyna, M. E Lobatto, C. Calcagno, A. Barazza, R. E. Gordon, P. Zanzonico, E. A. Fisher, Z. A. Fayad, W. J. Mulder, Nanocrystal core high-density lipoproteins:a multimodality contrast agent platform, Nano Lett.2008,8,3715-3723;
    [109]C. V. Durgadas, C. P. Sharmaa, K. Sreenivasan, Fluorescent gold clusters as nanosensors for copper ions in live cells, Analyst 2011,136,933-940;
    [110]Y.-W. Lin, C.-C. Huang, H.-T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions, Analyst 2011,136,863-871.
    [1]C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, Gold nanoparticles in biology:beyond toxicity to cellular imaging, Acc. Chem. Res.2008,41,1721-1730;
    [2]R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Gold nanoparticles:past, present and future, Langmuir 2009,25,13840-13851;
    [3]C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, Y. Xia, Gold nanostructures:a class of multifunctional materials for biomedical applications, Chem. Soc. Rev. 2011,40,44-56;
    [4]J. Y. Xiao, L. M. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale 2011,3,1383-1396;
    [5]I. Hussain, M. Brust, J. Barauskas, A. I. Cooper, Controlled step growth of molecularly linked gold nanoparticles:from metallic monomers to dimers to polymeric nanoparticle chains, Langmuir 2009,25,1934-1939;
    [6]R. deWaele, A. F. Koenderink, A. Polman, Tunable nanoscale localization of energy on plasmon particle arrays, Nano Lett.2007,7,2004-2008;
    [7]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater.2003,2, 229-232;
    [8]A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, J. Z. Zhang, Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,J. Phys. Chem. B 2004,108, 19191-19197;
    [9]M. W. Shao, L. Lu, H. Wang, S. Wang, M. L. Zhang, D. D. Ma, S. T. Lee, An ultrasensitive method:surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper, Chem. Commun.2008,2310-2312;
    [10]Z. H. Lin, H. T. Chang, Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced Raman spectroscopy, Langmuir 2008,24,365-367;
    [11]K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules, Science 2002,297,72-75;
    [12]M. Fischler, A. Sologubenko, J. Mayer, G. Clever, G. Burley, J. Gierlich, T. Carell, U. Simon, Chain-like assembly of gold nanoparticles on artificial DNA templates via click chemistry, Chem. Commun.2008,169-171;
    [13]R. Sardar, J. S. Shumaker-Parry, Asymmetrically-functionalized nanoparticles organized in one-dimensional chains, Nano Lett.2008, 8,731-736;
    [14]S. Lin, M. Li, E. Dujardin, C. Girard, S. Mann, One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks, Adv. Mater.2005,17,2553-2559;
    [15]A. Murugadoss, A. Chattopadhyay, Surface area controlled differential catalytic activities of one-dimensional chain-like arrays of gold nanoparticles, J. Phys. Chem. C 2008,112,11265-11271;
    [16]L. Polavarapu, Q. H. Xu, Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS, Langmuir 2008, 24,10608-10611;
    [17]Y. Wang, Y. F. Li, C. Z. Huang, A one-pot green method for one-dimensional assembly of gold nanoparticles with a novel chitosan-ninhydrin bioconjugate at physiological temperature, J. Phys. Chem. C2009,113,4315-4320;
    [18]T. Huang, F. Meng, L. M. Qi, Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering, J. Phys. Chem. C 2009,113,13636-13642;
    [19]M. Li, S. Johnson, H. T. Guo, E. Dujardin, S. Mann, A generalized mechanism for ligand-induced dipolar assembly of plasmonic gold nanoparticle chain networks, Adv. Funct. Mater.2011,21,851-859;
    [20]H. Zhang, D. Y. Wang, Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion, Angew. Chem. Int. Ed.2008,47, 3984-3987;
    [21]M. Yang, G. Chen, Y. Zhao, G. Silber, Y. Wang, S. Xing, Y Han, H. Chen, Mechanistic investigation into the spontaneous linear assembly of gold nanospheres, Phys. Chem. Chem. Phys.2010,12,11850-11860;
    [22]X. G. Han, J. Goebl, Z. D. Lu, Y D. Yin, Role of salt in the spontaneous assembly of charged gold nanoparticles in ethanol, Langmuir 2011,26, 5282-5289;
    [23]L. L. Wu, C. S. Shi, L. F. Tian, J. Zhu, A one-pot method to prepare gold nanoparticle chains with chitosan, J. Phys. Chem. C 2008,112,319-324;
    [24]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. F. Gou, S. E. Hunyadi, T. Li, Anisotropic metal nanoparticles:synthesis, assembly, and optical applications,J. Phys. Chem.B 2005,109,13857-13870;
    [25]A. A. Umar, M. Oyama, M. M. Salleh, B. Y. Majlis, Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly (vinyl pyrrolidone), and poly (ethylene glycol), Cryst. Growth Des.2010,10,3694-3698;
    [26]T. Huang, F. Meng, L. M. Qi, Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin, Langmuir 2010,26,7582-7589;
    [27]L. S. Li, Z. J. Wang, T. Huang, J. L. Xie, L. M. Qi, Porous gold nanobelts templated by metal-surfactant complex nanobelts, Langmuir 2010,26, 12330-12335;
    [28]H. Yoo, J. Sharma, H. Yeh, J. Martinez, Solution-phase synthesis of Au fibers using rod-shaped micelles as shape directing agents, Chem. Commun.2010, 6813-6815;
    [29]X. T. Bai, L. Q. Zheng, N. Li, B. Dong, H. G. Liu, Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid, Cryst. Growth. Des.2008,8,3840-3846;
    [30]X. T. Bai, Y. A. Gao, H, G, Liu, L. Q. Zheng, Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds,J. Phys. Chem. C 2009,113,17730-17736;
    [31]X. T. Bai, X. W. Li, L. Q. Zheng, Chiral ionic liquid monolayer-stabilized gold nanoparticles:synthesis, self-assembly, and application to SERS, Langmuir 2010,26,12209-12214;
    [32]X. T. Bai, H. C. Ma, X. W. Li, B. Dong, L. Q. Zheng, Patterns of gold nanoparticles formed at the air/water interface:effects of capping agents, Langmuir 2010,26,14970-14974;
    [33]Y. Kondo, H. Fukuoka, S. Nakano, K. Hayashi, T. Tsukagoshi, M. Matsumoto, N. Yoshino, Formation of wormlike aggregates of fluorocarbon-hydrocarbon hybrid surfactant by Langmuir-Blodgett transfer and alignment of gold nanoparticles, Langmuir 2007,23,5857-5860;
    [34]X. T. Bai, L. Q. Zheng, H. G. Liu, M. W. Zhao, Synthesis of tadpole-shaped Au nanoparticles using a Langmuir monolayer of fluorocarbon surfactant, Mater. Lett.2009,63,1156-1158;
    [35]J. Y. Pang, G. Y. Xu, S. L. Yuan, Y. B. Tan, F. He, Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant:experimental and molecular dynamics simulation study, Colloids Surf. A 2009,350,101-108;
    [36]N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzan, Layer-by-layer assembled mixed spherical and planar gold nanoparticles:control of interparticle interactions, Langmuir 2002,18, 3694-3697;
    [37]J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, N. Gu, Linear aggregation of gold nanoparticles in ethanol, Colloids Surf. A 2003,223,177-183;
    [38]M. Giersig, I. Pastoriza-Santos, L. M. Liz-Marzan, Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide, J. Mater. Chem.2004,14,607-610;
    [39]L. Wang, G. Wei, L. Sun, Y. Song, T. Yang, Y. Sun, C. Guo, Z. Li, Self-assembly of cinnamic acid-capped gold nanoparticles, Nanotechnology 2006,17, 2907-2912;
    [40]T. Teranishi, M. Miyake, Size control of palladium nanoparticles and their crystal structures, Chem. Mater.1998,10,594-600;
    [41]Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, C. J. Lin, Shape controlled growth of gold nanoparticles by a solution synthesis, Chem. Commun.2005, 4181-4183;
    [42]H. Huang, X. Yang, One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid, Colloid Surf. A 2005,255,11-17;
    [43]P. Raveendran, J. Fu, S. L. Wallen, Completely "green" synthesis and stabilization of metal nanoparticles, J. Am. Chem. Soc.2003,125, 13940-13941;
    [44]J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers, Chem. Mater.2003,15,4401-4406;
    [45]A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 1988,38,3098-3100;
    [46]C. T. Lee, W. T. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 1988,37,785-789;
    [47]P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,J. Phys. Chem.1994,98,11623-11627;
    [48]A. N. Shipway, M. Lahav, R. Gabai, I. Willner, Investigations into the electrostatically induced aggregation of Au nanoparticles, Langmuir 2000,16, 8789-8795;
    [49]G. X. Zhao, B. Y. Zhu. Principles of Surfactant Action; China Light Industry Press:Beijing,2003.
    [50]H. Zhang, K. H. Fung, J. Hartmann, C. T. Chan, D. Y. Wang, Controlled chainlike agglomeration of charged gold nanoparticles via a deliberate interaction balance,J. Phys. Chem. C2008,112,16830-16839;
    [51]P. C. Hiemenz, R. R. Marcel Dekker, Principles of Colloid and Surface Chemistry, New York,3rd edn,1997;
    [52]H. Yang, X. P. Heng, W. Y. Wang, J. W. Hu, W. Q. Xu, Salt-induced size-selective separation, concentration, and preservation of zwitterion-modified gold nanoparticles, RSC Advances,2012,2,2671-2674;
    [53]S. J. Guo, S. J. Dong, E. K. Wang, Rectangular silver nanorods:controlled preparation, liquid-liquid interface assembly, and application in surface-enhanced Raman scattering, Cryst. Growth Des.2009,9,372-377.
    [54]H. W. Liang, S. Liu, S. H. Yu, Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates, Adv. Mater.2010,22,3925-3937;
    [55]C. H. Cui, J. W. Yu, H. H. Li, M. R. Gao, H. W. Liang, S. H. Yu, Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes, ACS Nano 2011,5,4211-4218;
    [56]H. J. Chen, L. Shao, T. Ming, Z. H. Sun, C. M. Zhao, B. C. Yang, J. F. Wang, Understanding the photothermal conversion efficiency of gold nanocrystals, Small,2010,6,2272-2280;
    [57]R. Xu, Y. Sun, J. Y. Yang, L. He, J. C. Nie, L. L. Li, Y. D. Li, Inhibited single-electron transfer by electronic band gap of two-dimensional Au quantum dot superlattice, Appl. Phys. Lett.,2010,97,113101;
    [58]M. A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res.,2001,34,257-264;
    [59]M. Dekker, Metal Nanoparticles:Synthesis Characterization and Applications, ed. D. L. Feldheim and C. A. Foss, Jr, New York,2002.
    [60]H. Jia, X. T. Bai, L. Q. Zheng, Novel two-step synthesis of various gold nanostructures using Langmuir monolayers, Colloid Surf. A 2011,384,75-79;
    [61]H. Jia, X. T. Bai, L. Q. Zheng, One-step synthesis and assembly of gold nanochains using Langmuir monolayer of long-chain ionic liquid and their applications to SERS, CrystEngComm,2012,14,2920-2925;
    [62](a) J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc.,1951,11, 55-75; (b) G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci.,1973,241,20-22;
    [63]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc., Chem. Commun.,1994,7,801-802;
    [64]J. A. Dahl, B. L. S. Maddux, J. E. Hutchison, Toward greener nanosynthesis, Chem. Rev.,2007,107,2228-2269;
    [65]P. T. Anastas, M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res.,2002,55,686-694;
    [66]C. J. Murphy, Sustainability as a design criterion in nanoparticle synthesis and applications,J. Mater. Chem.,2008,18,2173-2176;
    [67]J. L. Gardea-Torresdey, J. G. Parsons, K. Dokken, J. Peralta-Videa, H. E. Troiani, P. Santiago, M. Jose-Yacaman, Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett.,2002,2,397-401;
    [68]J. L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, J. G. Parsons, H. E. Troiani, M. Jose-Yacaman, Alfalfa sprouts:a natural source for the synthesis of silver nanoparticles, Langmuir,2003,19,1357-1361;
    [69]A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Extra-cellular biosynthesis of nano-gold using extremophilic actinomycetes, Langmuir,2003, 19,3550-3553;
    [70]S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci.,2004,275,496-502;
    [71]J. C. Liu, G. G. Qin, P. Raveendran, Y. Ikushima, Facile "green" synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals, Chem. Eur. J.,2006,12,2131-2138;
    [72]S. Pande, S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, T. Pal, Synthesis of normal and inverted gold-silver core-shell architectures in [3-cyclodextrin and their applications in SERS, J. Phys. Chem. C,2007,111,10806-10813;
    [73]H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne, A. Misra, Green synthesis of silver nanoparticles using seed extract of Jatropha curcas, Colloid Surf. A,2009, 348,212-216;
    [74]Y. Qiao, H. F. Chen, Y. Y. Lin, J. B. Huang, Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering, Langmuir,2011,27,11090-11097;
    [75]A. Gangula, R. Podila, M, Ramakrishna, L. Karanam, C. Janardhana, A. M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir,2011,27,15268-15274;
    [76]L. L. Rouhana, J. A. Jaber, J. B. Schlenoff, Aggregation-resistant water-soluble gold nanoparticles, Langmuir,2007,23,12799-12801;
    [77]D. R. V. K. Aswal, Optimization of components in high-yield synthesis of block copolymer-mediated gold nanoparticles,J Nanopart Res,2012,14,778;
    [78]R. Tatumi, H. Fujihara, Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid, Chem. Commun.,2005, 83-85;
    [79]Q. Jin, J. P. Xu, J. Ji, J. C. Shen, Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles, Chem. Commun., 2008,3058-3060;
    [80]X. Yue, X. Chen, X. D. Wang, Z. H. Li, Lyotropic liquid crystalline phases formed by phyosterol ethoxylates in room-temperature ionic liquids, Colloid Surf. A,2011,392,225-232;
    [81]H. Jia, X. T. Bai, L. Q. Zheng, Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS, CrystEngComm 2011,13, 6179-6184;
    [82]X. S. Liu, H. Y. Huang, Q. Jin, J. Ji, Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles, Langmuir, 2011,27,5242-5251;
    [83]R. Narayanan, M. A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability, J. Phys. Chem. B,2005,109,12663-12676;
    [84]P. Kannan, S. A. John, Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates, Nanotechnology,2008, 19,085602;
    [85]B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, Y. N. Xia, Shape-controlled synthesis of silver and gold nanostructures, MRS Bull,2005, 30,356-361;
    [86]S. Kundu, S. Lau, H. Liang, Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms, J. Phys. Chem. C,2009,113,5150-5156;
    [87]M. H. Rashid, T. K. Mandal, Template-less synthesis of polygonal gold nanoparticles:An unsupported and reusable catalyst with superior activity, Adv. Funct. Mater.,2008,18,2261-2271;
    [88]H. Wu, X. Huang, M. M. Gao, X. P. Liao, B. Shi, Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction, Green Chem.,2011,13,651-658;
    [89]L. J. Chen, H. H. Ma, K. C. Chen, H. R. Cha, Y. I. Lee, D. J. Qian, J. C. Hao, H. G. Liu, Synthesis and assembly of gold nanoparticle-doped polymer solid foam films at the liquid/liquid interface and their catalytic properties, J. Colloid Interface Sci.,2011,362,81-88;
    [90]A. M. Azevedo, J. M. S. Cabral, T. D. Gibson, L. P. Fonseca, Operation and performance of analytical packed-bed reactors with an immobilised alcohol oxidase, J. Mol. Catal. B,2004,28,45-53.
    [1]C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, Y. Xia, Gold nanostructures:a class of multifunctional materials for biomedical applications, Chem. Soc. Rev. 2011,40,44-56;
    [2]J. Y. Xiao, L. M. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale 2011,3,1383-1396;
    [3]C. H. Cui, J. W. Yu, H. H. Li, M. R. Gao, H. W. Liang, S. H. Yu, Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes, ACS Nano 2011,5,4211-4218;
    [4]W. P. Xu, L. C. Zhang, J. P. Li, Y. Lu, H. H. Li, Y. N. Ma, W. D. Wang, S. H. Yu, Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties,J.Mater. Chem.2011,21,4593-4597;
    [5]A. Murugadoss, A. Chattopadhyay, Surface area controlled differential catalytic activities of one-dimensional chain-like arrays of gold nanoparticles, J. Phys. Chem. C 2008,112,11265-11271;
    [6]H. W. Liang, S. Liu, S. H. Yu, Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates, Adv. Mater.2010,22,3925-3937;
    [7]H. Jia, X. T. Bai, L. Q. Zheng, Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS, CrystEngComm 2011,13, 6179-6184;
    [8]M. W. Shao, L. Lu, H. Wang, S. Wang, M. L. Zhang, D. D. Ma, S. T. Lee, An ultrasensitive method:surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper, Chem. Commun.2008,2310-2312;
    [9]L. Polavarapu, Q. H. Xu, Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS, Langmuir 2008, 24,10608-10611;
    [10]R. De Waele, A. F. Koenderink, A. Polman, Tunable energy localization in plasmon particle arrays, Nano Lett.2007,7,2004-2008;
    [11]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater.2003,2, 229-232;
    [12]C. J. Kiely, J. Fink, J. G. Zheng, M. Brust, D. Bethell, D. J. Schiffrin, Ordered colloidal nanoalloys, Adv. Mater.2000,12,640-643;
    [13]M. P. Pileni, Nanocrystal self-assemblies:□fabrication and collective properties, J. Phys. Chem. B 2001,105,3358-3371;
    [14]M. Kanehara, Y. Oumi, T. Sano, T. Teranishi, Formation of low symmetric 2D superlattices of gold nanoparticles through surface modification by acid-base interaction,J. Am. Chem. Soc.2003,125,8708-8709;
    [15]Z. Tang, N. A. Kotov, One-dimensional assemblies of nanoparticles:preparation, properties, and promise, Adv. Mater.2005,17,951-962;
    [16]Y. Wang, Y. F. Li, C. Z. Huang, A one-pot green method for one-dimensional assembly of gold nanoparticles with a novel chitosan-ninhydrin bioconjugate at physiological temperature,J. Phys. Chem. C 2009,113,4315-4320;
    [17]J. H. Fendler, F. C. Meldrum, The colloid chemical approach to nanostructured materials, Adv. Mater.1995,7,607-632;
    [18]A. Swami, A. Kumar, P. R. Selvakannan, S. Mandal, M. Sastry, Langmuir-Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air-water interface,J. Colloid Interface Sci.2003, 260,367-373;
    [19]A. Swami, A. Kumar, M. Sastry, Lamellar multilayer hexadecylaniline-modified gold nanoparticle films deposited by the Langmuir-Blodgett technique, Proc. Indian Acad. (Chem.Sci.) 2003,115,185-193;
    [20]S. Huang, K. Minami, H. Sakaue, S. Shingubara, T. Takahagi, Effects of the surface pressure on the formation of Langmuir-Blodgett monolayer of nanoparticles, Langmuir 2004,20,2274-2276;
    [21]T. Hassenkam, K. N(?)rgaard, L. Iversen, C. J. Kiely, M. Brust, T. Bj(?)rnholm, Fabrication of 2D gold nanowires byself-assembly of gold nanoparticles on water surfaces in the presence of surfactants, Adv. Mater.2002,14, 1126-1130;
    [22]S. Lefebure, C. Menager, V. Cabuil, M. Assenheimer, F. Gallet, C. Flament, Langmuir monolayers of monodispersed magnetic nanoparticles coated with a surfactant, J. Phys. Chem. B 1998,102,2733-2738;
    [23]A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy, Nano Lett.2003,3,1229-1233;
    [24]C. R. Hansen, F. Westerlund, K. Moth-Poulsen, R. Ravindranath, S. Valiyaveettil, T. Bjornholm, Polymer templated self-assembly of a 2-dimensional gold nanoparticle network, Langmuir 2008,24,3905-3910;
    [25]W. H. Binder, Supramolecular assembly of nanoparticles at liquid-liquid interfaces, Angew. Chem. Int. Ed.2005,44,5172-5175;
    [26]H. Zhang, C. L. Wang, M. J. Li, X. L. Ji, J. H. Zhang, B. Yang, Fluorescent nanocrystal-polymer composites from aqueous nanocrystals:methods without ligand exchange, Chem. Mater.2005,17,4783-4788;
    [27]W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. M. Donega, K. Nicolay, A. W. Griffioen, Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe, Nano Lett.2006, 6,1-6;
    [28]S. Kinge, M. Crego-Calama, D. N. Reinhoudt, Self-assembling nanoparticles at surfaces and interfaces, ChemPhysChem 2008,9,20-42;
    [29]M. Giersig, I. Pastoriza-santos, L. M. Liz-Marzan, Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide, J. Mater. Chem.2004,14,607-610;
    [30]R. X. Li, Green SolVent:synthesis and application of ionic liquids; Chemistry Technology Press:Beijing,2004.
    [31]Y. Zhao, Z. H. Chen, H. Y. Wang, J. J. Wang, Crystallization control of CaCO3 by ionic liquids in aqueous solution, Cryst. Growth Des.2009,9,4984-4986;
    [32]X. T. Bai, L. Q. Zheng, A facile synthesis of two-dimensional dendritic gold nanostructures at the air/water interface, Cryst. Growth Des.2010,10, 4701-4705;
    [33]X. T. Bai, X. W. Li, L. Q. Zheng, Chiral ionic liquid monolayer-stabilized gold nanoparticles:synthesis, self-assembly, and application to SERS, Langmuir 2010, 26,12209-12214;
    [34]X. T. Bai, H. C. Ma, X. W. Li, B. Dong, L. Q. Zheng, Patterns of gold nanoparticles formed at the air/water interface:effects of capping agents, Langmuir 2010,26,14970-14974;
    [35]H. Jia, X. T. Bai, L. Q. Zheng, Facile preparation of CaCO3 nanocrystals with unique morphologies controlled by supramolecular complexes, CrystEngComm 2011,13,7252-7257;
    [36]X. T. Bai, L. Q. Zheng, N. Li, B. Dong, H.G. Liu, Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid, Cryst. Growth Des.2008,8,3840-3846;
    [37]H. Jia, X. T. Bai, L. Q. Zheng, Novel two-step synthesis of various gold nanostructures using Langmuir monolayers, Colloid Surf. A 2011,384,75-79;
    [38]B. Dong, N. Li, L. Q. Zheng, L. Yu, T. Inoue, Adsorption and micelle formation of surface active ionic liquids in aqueous solution, Langmuir 2007,23, 4178-4182;
    [39]M. W. Zhao, L. Q. Zheng, Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution, Phys. Chem. Chem. Phys.2011,13,1332-1337;
    [40]T. Teranishi, M. Miyake, Size control of palladium nanoparticles and their crystal structures, Chem. Mater.1998,10,594-600;
    [41]Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, C. J. Lin, Shape controlled growth of gold nanoparticles by a solution synthesis, Chem. Commun.2005, 4181-4183;
    [42]N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzan, Layer-by-layer assembled mixed spherical and planar gold nanoparticles:control of interparticle interactions, Langmuir 2002,18, 3694-3697;
    [43]I. Hussain, M. Brust, J. Barauskas, A. I. Cooper, Controlled step growth of molecularly linked gold nanoparticles:from metallic monomers to dimers to polymeric nanoparticle chains, Langmuir 2009,25,1934-1939;
    [44]T. Huang, F. Meng, L.M. Qi, Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering, J. Phys. Chem. C 2009,113,13636-13642;
    [45]S. Link, M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 1999,103,8410-8426;
    [46]X. T. Bai, Y. A. Gao, H, G, Liu, L. Q. Zheng, Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds, J. Phys. Chem. C 2009,113,17730-17736;
    [47]R. C. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 2003,425,487-490;
    [48]Z. Tang, N. A. Kotov and M. Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science 2002,297,237-240;
    [49]K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles, J. Am. Chem. Soc. 2005,127,7140-7147;
    [50]L. Wang, G. Wei, L, L. Sun, Self-assembly of cinnamic acid-capped gold nanoparticles, Nanotechnology 2006,17,2907-2912;
    [51]T. Tlusty, S. A. Safran, Defect-induced phase separation in dipolar fluids, Science 2000,290,1328-1331;
    [52]A. Zilman, T. Tlusty, S. A. Safran, Entropic networks in colloidal, polymeric and amphiphilic systems, J. Phys.:Condens. Matter 2003,15, S57-S64;
    [53]T. Tlusty, S. A. Safran, Entropic networks in colloidal self-assembly, Philos. Trans. R. Soc. London, Ser. A 2001,359,879-881;
    [54]T. A. Witten, L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let.1981,47,1400-1403;
    [55]T. Vicsek, Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm, Phys. Rev. A 1985,32,3084-3095;
    [56]P. G. Saffman, G. I. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proc. Roy. Soc. A.1958,245, 312-329;
    [57]N. B. Ming, M. Wang, R. W. Peng, Nucleation-limited aggregation in fractal growth, Phys. Rev. E 1993,48,621-624;
    [58]Y. Lu, G. L. Liu, L. P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate, Nano Lett.2005,5,5-9;
    [59]S. J. Guo, S. J. Dong, E. K. Wang, Rectangular silver nanorods:controlled preparation, liquid-liquid interface assembly, and application in surface-enhanced Raman scattering, Cryst. Growth Des.2009,9,372-377;
    [60]G. Kawamura, Y. Yang, M. Nogami, Facile assembling of gold nanorods with large aspect ratio and their surface-enhanced Raman scattering properties, Appl. Phys. Lett.2007,90,261908;
    [61]Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002,298,2176-2179;
    [62]S. M. Chen, Y. D. Liu, G. Z. Wu, Stabilized and size-tunable gold nanoparticles formed in a quaternary ammoniumbased room-temperature ionic liquid under y-irradiation, Nanotechnology 2005,16,2360-2364;
    [63]T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science 1996, 272,1924-1925;
    [64]N. N. Zhao, Y. Wei, N. J. Sun, Q. Chen, J. W. Bai, L. P. Zhou, Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions, Langmuir 2008,24,991-998;
    [65]J. E. Millstone, G. S. Metraux, C. A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach, Adv. Funct. Mater.2006,16, 1209-1214;
    [66]H. G. Liu, C. W. Wang, J. P. Wu, Y. I. Lee, J. C. Hao, Gold and silver nanorings formed at the air/water interface, Colloid Surf. A 2008,312,203-208;
    [67]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. F. Gou, S. E. Hunyadi, Anisotropic metal nanoparticles:synthesis, assembly, and optical applications,J.Phys. Chem.B 2005,109,13857-13870;
    [68]J. H. Kim, T. R. Lee, Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites, Langmuir 2007,23,6504-6509;
    [69]L. Y. Wang, X. Chen, J. Zhan, Y. C. Chai, C. J. Yang, L. M. Xu, W. C. Zhuang, B. Jing, Synthesis of gold nano- and micro-plates in hexagonal liquid crystals, J. Phys. Chem. B 2005,109,3189-3194;
    [70]S. Ravaine, G. E. Fanucci, C. T. Seip, J. H. Adair, D. R.Talham, Photochemical generation of gold nanoparticles in Langmuir-Blodgett films, Langmuir 1998,14, 708-713;
    [71]C. N. Murthy, K. E. Geckeler, The water-soluble β-cyclodextrin-[60]fullerene complex, Chem. Commun.2001,13,1194-1195;
    [72]Y. L. Liu, K. B. Male, P. Bouvrette, J. H. T. Luong, Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins, Chem. Mater. 2003,15,4172-4180;
    [73]A. V. Kabashin, M. Meunier, C. Kingston, J. H. T. Luong, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,J.Phys. Chem.B 2003,107,4527-4531;
    [74]C. Park, H. Youn, H. Kim, T. Noh, Y. H. Kook, E. T. Oh, H. J. Park, C. Kim, Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug,J. Mater. Chem.2009,19,2310-2315;
    [75]Y. J. Huang, D. Li, J. H. Li, β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires, Chem. Phys. Lett.2004,389,14-18;
    [76]D. Joseph, K. E. Geckeler, Surfactant-directed multiple anisotropic gold nanostructures:synthesis and surface-enhanced Raman scattering, Langmuir 2009,25,13224-13231.
    [77]A. Swami, A. Kumar, P. R. Selvakannan, S. Mandal, R. Pasricha, M. Sastry, Highly oriented gold nanoribbons by the reduction of aqueous chloroaurate ions by hexadecylaniline Langmuir monolayers, Chem. Mater.2003,15,17-19;.
    [78]J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev.1998,98,1743-1753;
    [79]W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, T. Takaha, Structures of the common cyclodextrins and their larger analogues, Chem. Rev.1998,98,1787-1802;
    [80]L. Pei, K. Mori, M. Adachi, Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization, Langmuir 2004,20,7837-7843.
    [1](a) Weinheim, Nanoparticles From Theory to Application (Ed.:G. Schmid), Wiley-VCH,2004; (b) Marcel Dekker, Metal Nanoparticles:Synthesis Characterization and Applications (Eds.:D. L. Feldheim, C. A. Foss, Jr.), New York,2002;
    [2]K. Sachin, C. Mercedes, N. R. David, Self-assembling nanoparticles at surfaces and interfaces, ChemPhysChem 2008,9,20-42;
    [3](a) C. P. Collier, T. Vossmeyer, J. R. Heath, Nanocrystal superlattices, Annu. Rev. Phys. Chem.1998,49,371-404; (b) C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci.2000,30,545-610; (c) S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, Controlled synthesis and assembly of. FePt nanoparticles, J. Phys. Chem. B 2003,107,5419-5425; (d) C. H. Cui, J. W. Yu, H. H. Li, M. R. Gao, H. W. Liang, S. H. Yu, Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes, ACS Nano 2011,5, 4211-4218; (e) H. W. Liang, S. Liu, S. H. Yu, Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates, Adv. Mater.2010,22,3925-3937;
    [4](a) S. W. Chung, D. S. Ginger, M. W. Morales, Z. F. Zhang, V. Chandrasekhar, M. A. Ratner, C. A. Mirkin, Top-down meets bottom-up:dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits, Small 2005,1, 64-69; (b) S. T. Liu, R. Maoz, J. Sagiv, Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality, Nano Lett.2004,4, 845-851; (c) J. Fendler, Chemical self-assembly for electronic applications, Chem. Mater.2001,13,3196-3210;
    [5]X. M. Li, J. Huskens, D. N. Reinhoudt, Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies, J. Mater. Chem.2004,14, 2954-2971;
    [6]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc., Chem. Commun.1994,801-802;
    [7](a) C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, Y. Xia, Gold nanostructures:a class of multifunctional materials for biomedical applications, Chem. Soc. Rev. 2011,40,44-56; (b) J. Y. Xiao, L. M. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale 2011,3,1383-1396; (c) H. Fan, Z. Q. Pan, H. Y. Gu, The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles, Microchim. Acta 2010,168,239-244; (d) B. Li, J. L. Liu, Self-assembled Ge/Si hetero-nanocrystals for nonvolatile memory application, Thin Solid Films 2010, 518, S262-S265; (e) Z. G. Cheng, S. Z. Wang, Q. Wang, B. Y. Geng, A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst, CrystEngComm 2010,12,144-149; (f) J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L.Wang, S. J. Shi, Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries,J. Power Sources 2010,195, 313-319; (g) M. N. Nadagouda, V. Polshettiwar, R. S. Varma, Self-assembly of palladium nanopartieles:synthesis of nanobelts, nanoplates and nanotrees using vitamin B1, and their application in carbon-carbon coupling reactions, J. Mater. Chem.2009,19,2026-2031; (h) H. Jia, X. T. Bai, L. Q. Zheng, Siloxane surfactant induced self-assembly of gold nanopartieles and their application to SERS, Cryst EngComm 2011,13,6179-6184;
    [8]T. Hassenkam, K. Norgaard, L. Iversen, C. J. Kiely, M. Brust, T. Bjornholm, Fabrication of 2-D gold nanowires by self-Assembly of gold nanopartieles /Surfactant mixtures on water surfaces, Adv. Mater.2002,14,1126-1130;
    [9]L. K. Nielsen, T. Bjornholm, O. G. Mouritsen, Alzheimer's disease:Apolipoprotein E and cognitive performance, Nature (London) 2000, 404,352-354;
    [10](a) K. L. Genson, J. Hoffman, J. Teng, E. R. Zubarev, D.Vaknin, V. V. Tsukruk, Interfacial micellar structures from novel amphiphilic star polymers, Langmuir 2004,20,9044-9052; (b) K. L. Genson, J. Holzmueller, C. Y. Jiang, J. Xu, J. D. Gibson, E. R. Zubarev, V. V. Tsukruk, Langmuir-Blodgett monolayers of gold nanopartieles with amphiphilic shells from V-shaped binary polymer arms, Langmuir 2006,22,7011-7015;
    [11]X. T. Bai, X. W. Li, L. Q. Zheng, Chiral ionic liquid monolayer-stabilized gold nanoparticles:synthesis, self-assembly, and application to SERS, Langmuir 2010, 26,12209-12214;
    [12]X. T. Bai, H. C. Ma, X. W. Li, B. Dong, L. Q. Zheng, Patterns of gold nanoparticles formed at the air/water interface:effects of capping agents, Langmuir 2010,26,14970-14974;
    [13]G. Lu, W. Li, J. M. Yao, G. Zhang, B. Yang, J. C. Shen, Fabricating ordered two-dimentional arrays of polymer rings with submicrometer-sized features on patterned self-assembled monolayers by dewetting, Adv. Mater.2002,14, 1049-1053;
    [14]Y. Jiang, D. Perahia, Y. Wang, U. H. F. Bunz, Side chain vs. main chain. Who dominates? A polyester-grafted poly (p-phenyleneethynylene) with two different morphologies", Macromolecules 2006,39,4941-4944;
    [15]Y. M. Gong, Z. J. Hu, Y. Z. Chen, H. Y. Huang, T. B. He, Ring-shaped morphology in solution-cast polystyrene-poly(methyl methacrylate) block copolymer thin films, Langmuir 2005,21,11870-11877;
    [16]J. K. Kim, E. Lee, Z. Huang, M. Lee, Nanorings from the self-assembly of amphiphilic molecular dumbbells, J. Am. Chem. Soc.2006,128,14022-14023;
    [17]A. P. H. J. Schenning, F. B. G. Benneker, H. P. M. Geurts, X. Y. Liu, R. J. M. Nolte, Porphyrin wheels, J. Am. Chem. Soc.1996,118,8549-8552;
    [18]P. C. Ohara, J. R. Heath, W. M. Gelbart, Bildung von submikrometer-groβen partikelringen beim verdunsten nanopartikelhaltiger losungen, Angew. Chem. 1997,109,1120-1122;
    [19]S. L. Tripp, R. Dunin-Borkowski, A. Wei, Flux closure in self-assembled cobalt nanoparticle rings, Angew. Chem. Int. Ed.2003,42,5591-5593;
    [20](a) P. C. Ohara, J. R. Heath, W. M. Gelbart, Self-assembly of submicrometer rings of particles from solutions of nanoparticles, Angew. Chem., Int. Ed.1997, 36,1078-1080; (b) B. P. Khanal, E. R. Zubarev, Rings of nanorods, Angew. Chem., Int. Ed.2007,46,2195-2198;
    [21]J. H. Fendler, F. C. Meldrum, The colloid chemical approach to nanostructured materials, Adv. Mater.1995,7,607-632;
    [22]H. G. Liu, C. W. Wang, J. P. Wu, Y. I. Lee, J. C. Hao, Gold and silver nanorings formed at the air/water interface, Colloid Surf. A 2008,312,203-208;
    [23]M. Maillard, L. Motte, M. P. Pileni, Rings and hexagons made of nanocrystals:a marangoni effect, J. Phys. Chem. B 2000,104,11871-11877;
    [24]R. H. Dong, H. M. Ma, J. L. Yan, Y. Fang, J. C. Hao, Tunable morphology of 2D honeycomb-patterned films and the hydrophobicity of ferrocenyl-based oligomer, Chem. Eur. J.2011,17,7674-7684;
    [25]H. M. Ma, J. C. Hao, Evaportion-induced ordered honeycomb structures of gold nanoparticles at the air/water interface, Chem. Eur.J.2010,16,655-660;
    [26]A. K. Tewari, R. Dubey, Emerging trends in molecular recognition:utility of weak aromatic, Bioorganic & Medicinal Chemistry 2008,1,126-143;
    [27]R. F. Dou, X. C. Ma, L. Xi, H. L. Yip, K. Y. Wong, W. M. Lau, J. F. Jia, Q. K. Xue, W. S. Yang, H. Ma, A. K.Y. Jen, Self-assembled monolayers of aromatic thiols stabilized by parallel-displaced π-π stacking interactions, Langmuir 2006, 22,3049-3056;
    [28]B. Song, H. Wei, Z. Q. Wang, X. Zhang, M. Smet, W. Dehaen, Supramolecular nanofibers by self-organization of bolaamphiphiles through combination of hydrogen bonding and pi-pi stacking interaction, Adv. Mater.2007,19,416-420;
    [29]Y. S. Zhao, J. S. Wu, J. X. Huang, Vertical organic nanowire arrays:controlled synthesis and chemical sensors, J. Am. Chem. Soc.2009,131,3158-3159;
    [30]M. W. Zhao, L. Q. Zheng, Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution, Phys. Chem. Chem. Phys.2011,13,1332-1337;
    [31]B. Dong, X. Y. Zhao, L. Q. Zheng, J. Zhang, N. Li, T. Inoue, Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and character ization of micellemicroenvironment, Colloid Surf. A 2008,317,666-672;
    [32]L. J. Shi, N. Li, H. Yan, Y. A. Gao, L. Q. Zheng, Aggregation behavior of long-chain N-aryl imidazolium bromide in aqueous solution, Langmuir 2011, 27,1618-1625;
    [33]L. Wang, F. Montagne, P. Hoffmann, R. Pugin, Gold nanoring arrays from responsive block copolymer templates, Chem. Commun.2009,3798-3800;
    [34]W. M. Gelbart, R. P. Sear, J. R. Heath, S. Chaney, Array formation in nano-colloids:theory and experiment in 2D, Faraday Discuss.1999,112, 299-307;
    [35](a) V. X. Nguyen, K. J. Stebe, Patterning of small particles by a surfactant-enhanced Marangoni-Benard instability, Phys. Rev. Lett.2002,88, 164501; (b) A. D. Nikolov, D. T. Wasan, Mechanisms of the assembly of nano-and microparticle two-dimensional structures in a wedge film, Ind. Eng. Chem. Res.2009,48,2320-2326;
    [36](a) S. M. Yuan, H. Yan, K. Lv, C. B. Liu, S. L. Yuan, Surface behavior of a model surfactant:A theoretical simulation study, J. Colloid Interface Sci.2010, 348,159-166; (b) M. L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science 1983,221,709-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700