用户名: 密码: 验证码:
农药环保新剂型—水分散粒剂(WDG)的研制、特性研究及机理的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药传统的老剂型乳油(EC)、可湿性粉剂(WP)和粉剂(D),因含有大量甲苯、二甲苯等有机溶剂及粉尘问题,可对生产者和使用者造成伤害,并对环境造成严重的污染。因此,目前以高效、安全、经济和方便为目标的绿色环保型农药新剂型的研制是农药加工领域的研究热点之一,农药水分散粒剂WDG(Water Dispersible Granule)是近年来开发出的此类新剂型。由于它具有高含量、无溶剂、低粉尘、易计量、倾倒不粘壁等优点,在国外市场上已成为最受欢迎的剂型,也被认为是21世纪最具生命力的剂型之一。多年来该制剂加工领域的研发重点都放在品种混配和工艺改造方面,对制剂的共性规律及机理研究还不够。本论文在分析总结现有的相关研究的基础上,制得符合质量控制指标的模型农药WDG(即80%乙氧氟草醚WDG),并对该制剂的制备和性能表征作了研究。采用激光粒度衍射分析仪、压汞仪、扫描电镜(SEM)等测试手段探讨了影响WDG物化性能的主要因素;采用扫描电镜(SEM)、X-射线粉末衍射仪(XRD)、差示扫描量热仪(DSC)、傅立叶变换红外光谱分析仪(FT-IR)等手段表征了WDG的结构和性能,研究了WDG的微观形态、表面结构、WDG中各组分间的相互作用,并探讨了WDG可能的形成机理;通过研究WDG在水中分散情况,探讨了WDG在水中可能的润湿崩解机理、分散机理、悬浮机理和凝聚机理,并建立了WDG崩解过程的数学模型;通过对模型农药WDG的研制,得出WDG制剂制备关键技术共性规律,在此基础上对其它几种农药除草剂、杀菌剂和杀虫剂WDG进行了研制。实验研究得出的主要结论如下:
     用挤压造粒工艺,对填料、润湿剂、分散剂、崩解剂和粘结剂的类型及其用量进行了优化选择,制备了模型农药WDG,并对该制剂的润湿性、崩解性、分散性和悬浮率等性能进行了检测,研制出了符合质量指标的模型农药WDG。该制剂的悬浮率在90%以上,崩解时间在3min以内,在(54±2)℃下贮存4周后的分解率小于5%,各项性能均符合WDG质量控制指标(浙江某企业企标Q/CZH26-2002)。通过对模型农药WDG的研制,得出WDG制剂制备的关键共性规律是助剂以阴离子与非离子表面活性剂间或以高分子聚合物阴离子间的配合使用为佳,否则难以制备出高浓度的WDG制剂。
     研究了原药粒度、WDG分散在水中形成悬浮液微粒粒径及其分布、悬浮液Zeta电位及其分布、WDG的粒径和WDG中孔特征等因素如何影响WDG的物化性能。研究表明,在同一配方中,原药粒径及其分布对WDG在水中的润湿崩解性影响不明显:原药越细、粒径分布越窄、越均匀制得的WDG分散在水中形成的悬浮液微粒粒径越小,粒径分布也越窄、越均匀:原药粒度对WDG悬浮液Zeta电位及其分布影响不大。
     WDG分散在水中形成悬浮液时,微粒粒径及其分布对悬浮率的影响没有规律可寻。一般在粒径相差不大时,Zeta电位的绝对值越高、Zeta电位分布越宽,则悬浮率越高。因此悬浮率的高低由悬浮液微粒粒度和Zeta电位共同影响。研究还发现,WDG悬浮液Zeta电位受pH值影响显著,因此在测Zeta电位时,必须在一定的pH值时才有意义。
     挤压造粒得圆柱状WDG,研究表明,在同一制剂中决定崩解时间的主要因素是颗粒粒径,随着粒径的增大,则崩解时间增长,但并不能认为WDG粒径越小越好,因为颗粒粒径还决定其它的性能,如粉尘和易碎性,综合考虑各因素,所制得WDG粒径大小以0.8mm左右为佳。研究WDG孔特性对性能的影响表明,粘结强度随孔隙度的增加而变弱,崩解时间随孔隙度的增加而变短,孔隙越大,WDG越易破碎。
     通过扫描电镜(SEM)、X-射线粉末衍射仪(XRD)、差示扫描量热仪(DSC)、傅立叶变换红外光谱分析仪(FT-IR)等现代分析手段对模型农药WDG微观形态和性能进行了研究。模型农药及其WDG的扫描电镜结果显示,模型农药原药为针状晶体,而在其WDG中均未见原药的单一结晶,说明模型农药原药和助剂间可能存在着较强的理化作用:对于性能优良的WDG而言,颗粒混合均匀,颗粒表面粗糙、孔隙多,是多个小颗粒的聚集体,相对应的崩解时间短,但是对于性能较差的WDG,颗粒表面镶嵌程度大,孔隙少,相对应的崩解时间长。X-射线粉末衍射曲线证实,模型农药WDG中,原药的晶型未改变;从差示扫描量热仪得到的DSC曲线分析表明,模型农药原药的特征峰与WDG中它的出峰位置几乎一致,揭示了模型农药与助剂之间未发生化学作用;红外光谱研究结果进一步证实了,模型农药WDG中原药与各个助剂、各助剂相互间不存在化学作用。综合以上结果,它们之间可能存在某种较强的物理作用。
     通过扫描电镜(SEM)对WDG的形貌研究,探讨了WDG可能的形成机理,用数码相机以及CCD放大40倍分别观察了WDG在水中分散的宏观和微观情况,再结合第三章的研究结果分别探讨了WDG在水中可能的润湿崩解机理、分散悬浮机理和凝聚机理。
     从研制模型农药WDG并得出关键共性规律的基础上又成功研制了几个农药的WDG,除草剂类如90%的莠去津WDG和80%的莠灭净WDG、杀菌剂类如80%灭菌丹WDG和80%克菌丹WDG、杀虫剂类如36%啶虫脒WDG,且90%的莠去津WDG已在某企业实现年产量达1500吨的工业化生产。
The environment is polluted and Human beings are harmed by the organic solvents and high dust in traditional pesticide formulations such as Emulsifiable Concentrate (EC), Wettable Powders (WP) and Powders. Therefore, at the present time, it's so necessary to research and develop the novel green pesticide formulations which are high-effective, safe, economical and convenient. Water dispersible granules (WDG) which are considered environmentally friendly because of no need for solvents, low in dust, possible volumetric measurement, easy to pour and so on may be the consequence of this atmosphere. In recent years WDG have become the most popular formulations and also are regard as the best sharp rise in 2000s because of many advantages. However, at present WDG are still in the developmental stage. In previous study, the research emphases were put on the design and development of new formulations. Don't attach importance to formulations theory. On the basis of previous formulation and technology on related formulations and WDG, in present dissertation WDG of model pesticide were prepared by the selection of various adjuvant and fillers with the method of extrusion granulating. WDG which had eminent properties were obtained and investigated by system study. The main several factors which influenced the physical properties were discussed by Zetasizer Nano particle analyzer, mercury porosimeter and scanning electronic microscopy. The microstructure, surface characterization and reaction mechanism between model pesticide and adjuvant in WDG were characterized by using modern physical and chemical techniques such as scanning electronic microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Fourier transformation infra-red spectra(FT-IR). The possible mechanism of formed WDG and that of wetting disintergration, suspension and agglomeration on WDG in water were discussed. Moreover, the WDG of other several pesticides, fungicides and insecticides were prepared. Several main results and conclusions can be drawn as follows.
     WDG of the model pesticide oxyfluorfen were investigated by selection the type and the proper dosage of filler, wetting agent, suspending-dispersant, disintegrant and binder with the extrusion granulation. Moreover, the wetting quality, disintegrative property, suspended rate were examined. The 80% oxyfluorfen WDG which had better properties were attained. The experimental results of the products indicated that suspension rate was over 90%, the dispersion time was less than three minutes and the decomposition rate of its active ingredient was less than 5% at (54±2)℃for four weeks. All of this results conformed to the requirement for the formulations. It's also found that the combination between anionic surfactants and non-ionic surfactants or anionic surfactants on macromolecule polymer availed to the good physical properties of WDG.
     In the dissertation, the effect of the particle size of the technical grade material (TC), the particle size and particle size distribution, Zeta potential and Zeta potential distribution of the suspension of WDG in water, size of WDG and the porosity in WDG on the physical properties were researched. The results of analysis revealed that the effect of particle size of TC on wetting-disintegration and Zeta potential and Zeta potential distribution of the suspension system of WDG in water was unconspicuous. The finer was particle size of TC and the shallower was that of particle size distribution, the finer was particle size in suspension of WDG in water and the more symmetrical was particle size distribution in suspension.
     It's found that there was the effect of the particle size and particle size distribution on suspensibility, but it's difficult to find the rule. Generally, the smaller particle size was, the higher suspensibility in suspension was under the little discrepancy of particle size in different formulation. As far as the Zeta potential and Zeta potential distribution of the suspension, the higher of Zeta potential absolute value was and the wider of Zeta potential distribution was, the higher suspensibility in suspension was. Therefore both the particle size and Zeta potential in suspension of WDG have important effect on the suspensibility. Furthermore, the results showed that the effect of the pH on the Zeta potential was obvious, thus it's only significative under the stated pH.
     The shape of WDG was cylinder by extrusion. The results indicated the size of the granule was very important in determining the physical properties of WDG. The time taken for granules to disperse in water was related to how large they were. It has been found that for the same formulation the key parameter in determining the dispersion time was the diameter of the granule. The dispersion time became length with the increasing of the granule size. But the granule also can't too small. Because granule size and shape also affected other properties such as dustiness and strength, the size of WDG was about 0.8 millimetres. The other factor, the pore size distribution within the granule structure has also been examined. It has been shown that faster dispersion was possible where a more open structure was present. The porosity and bond strength were important factor in determining physical properties.
     It is necessary to study the structure, reaction mechanism between model pesticide and adjuvants in WDG. The microstructure, surface characterization and reaction mechanism between model pesticide and adjuvant of WDG were characterized by using modern physical and chemical techniques such as scanning electronic microscopy(SEM), X-ray diffraction(XRD), Differential Scanning Calorimetry(DSC) and Fourer transformation infra-red spectra (FT-IR). Scanning Electron Microscopy(SEM) images revealed oxyfluorfen was acicular crystal, granule was an aggregate that was coarse surface with much porosity, non-crystal under the good properties, granules also were an aggregate that was inlaid surface with little porosity, non-crystal. X-ray powder diffraction (XRD) curve certified pesticide crystal form was not changed. Differential Scanning Calorimetry(DSC) showed that characteristic peak of oxyfluorfen appear in almost same position. Fourier transformation infra-red spectra (FT-IR) analysis suggested Infrared(IR) analysis suggested that interaction happened among adjuvant and pesticides or adjuvant each other caused by some physical action.
     The possible forming mechanism of WDG and possible mechanism of wetting-disintegration, dispersion-suspension and agglomeration in suspension which was formed by putting the WDG into the water were discussed by the scanning electronic microscopy (SEM), Charge Coupled Device (CCD) and numeral camera.
     Based on common disciplinarian obtained from the preparation on the model pesticide WDG, the WDG on other several pesticides, fungicides and insecticides were prepared such as the 90% high concentration Atmzine WDG, 80% Ametryne WDG, 80% flopet WDG, 80% captan WDG and 36% acetarniprid WDG and 90% Atrazine WDG was already industrialized production by the output of 1500T/Y.
引文
[1] 石元春.现代农业与农业科技产业[A].共同走向科学[C].北京:新华出版社,2001
    [2] 屠予钦.化学防治技术研究进展[M].乌鲁木齐:新疆科技卫生出版社,1992
    [3] 胡木成.化学农药命当休矣[N].科技日报:绿色周刊,1995,1,17
    [4] 屠豫钦.农药剂型和制剂与农药的剂量转移[J].农药学学报,1999,1(1):1-6
    [5] 雷得漾译.农药化学和合成的发展趋势[J].农药译丛,1993,15(1):1-7
    [6] 史应编译.植物保护—化学与生物的结合[J].农药译丛,1992,13(5):1-4
    [7] 刘步林.农药剂型加工技术[M].北京:化学工业出版社,1998
    [8] 郑铁军.农药新剂型的研究[J].黑龙江农业科学,2003,1:35-37
    [9] 成家壮.农药水性化剂型的前景[J].广州化工,2001,29(3):1-3
    [10] 凌世海.农药剂型加工工业现状和发展趋势[J].安徽化工,2006,3:3-9
    [11] 冷阳,仲苏林,吴建兰等.农药水基化制剂的开发近况和有关深层次问题的讨论[J].农药科学与管理,2005,26(4):29-33
    [12] 郭武棣.液体制剂[M].北京:化学工业出版社,2003,11
    [13] Knowles D. A.. Chemistry and Technology of Agrochemical Formulations[M]. Netherlands: Kluwer Academic UK Publishers, 1998, 41-43
    [14] 华乃震.增强活性和降低环境影响的农药剂型新进展[J].精细与专用化学品.2002,25:181-196
    [15] 王以燕.农药剂型名称及代码[J].农药科学与管理,2004,25(6):1—5
    [16] Wada Y.. Solid pesticide formulations[J]. Funtai to Kogyo, 1986, 18(8): 34-44
    [17] Lloyd J. M., Baker K. Ro. Water-dispersible granules of liquid pesticides[P]. WO: 9314631, 19930805
    [18] Knowles D. A.. Trends in Pestcide FormUlations[M]. London: UK Publishers, 2001, 80-95
    [19] Bell G. A.. Water-dispersible granules[J]. Chemistry and Technology of Agrochemical Formulations, 1998, 80-120
    [20] Doering I.W., Delli Colli H. T.. The physical chemistry of water dispersible granules, part Ⅱ: The influence of dispersant molecular weight and paste rheology on the physical properties of extruded WDGs[A]. Pesticide Formulations and Application Systems: A New Century for Agricultural Formulation [C]. ASTM Special Technical Publication, 2001, 21:99-111
    [21] Croze E., Gautier M.. Agrochemical compositions in the form of dispersible granules[P]. EP: 0661000, 19950705
    [22] Graber G., Bossy A.. Mixtures of two different water-dispersible pesticide granules[P], WO: 9424861, 19941110
    [23] Gouge S. T., Shue J.. Soluble container for agricultural chemicals-comprises outer soluble bag containing and inner bag containing different chemical [P]. WO: 9308095, 19930429
    [24] Littler C.. Herbicidal Pellets[P]. US: 2992090, 19610711
    [25] Martin H., Worthing C. R.. Pesticide Manual: Basic Information on the Chemicals Used as Active Components of Pesticides. 4th Ed[M]. Droitwich, Engl: British Crop Protection Council, 1974
    [26] 王早骧.农药助剂[M].北京:化学工业出版社.1994,881-894
    [27] Dutzman S., Feucht D., Feyen, P. et al.. Solid agrochemical formulations for plant protection-contain polyethoxyisotridecyl alcohol, alkylarylpolyethoxy ethanol phosp- hate ester, N-alkyl lactam or tertiary amide[P]. US: 5230892, 19930727
    [28] Fu E., Narayanan K.. Free flowing water dispersible agriculturally active granules[P]. WO: 95/12974, 19930518
    [29] Lo R., Huang C. W.. Solid herbicidal compositions containing N- phosphornomethyl glycine[P]. US: 5514641, 19960507
    [30] Forbes J. C., Hewitt S., Henriet M. M, et·al.. Improved glyphosate formulations containing lipophilic ethoxylated fatty amines[P]. EP:290416, 19881109
    [31] Schaefer T., Taagegaard B., Thomsen L. et al.. Melt pelletization in a high shear mixer.V. Effects of apparatus variables[J]. European Journal of Pharmaceutical Sciences, 1993, 1(3): 133-41
    [32] Schaefer T., Taagegaard B., Thomsen L. et al.. Melt pelletization in a high shear mixer. Ⅳ. Effects of process variables in a laboratory scale mixer[J]. European Journal of Pharmaceutical Sciences, 1993, 1 (3): 125-31
    [33] Sandell L. S., Wysong R. D.. Water dispersible agricultural compositions made by heat extrusion[P]. WO: 9508265 A1, 19950330
    [34] Geigle W. L., Sandell L. S., Wysong R. D.. Water-dispersible or water-soluble pe sticide granules from heat-activated binders [P]. US: 5714157, 19980203
    [35] Freeman R. Q., Sandell L.. Rapidly-disintegrating water-dispersible pesticide granules[P], WO: 9325074, 19931223
    [36] Freeman R. Q.. Melt granulation with dielectric heating of agricultural or pharmaceutical compositions[P]. WO: 9509044, 19950406
    [37] Hill A. C.. Water-dispersible solid pesticide formulation[P]. EP: 638235, 19950215
    [38] Jang C. G., Pasarela N.. Solid compositions of a liquid surfactant and a pyrazolium herbicide[P]. US: 4183 740, 19800115
    [39] France P. A. R. G., Schmitt J. C., Wilkinson L. P. D.. Granular detergent cornpos- itions comprising nonionic surfactant and process for making such compositions[P]. EP: 643130, 19950315
    [40] Trinh T.. Polyalkylene glycols and derivatives as carders for cyclodextrin complexes during processing[P]. US: 5384186, 19950124
    [41] Kuroda M.. Sustained release composition for agrochemical containing oil absorbing material, hydrophobic agent and active agent, useful for water soluble insecticide [P]. WO: 95/09532, 19950413
    [42] Kimler J., Kubisch R.. Water-dispersible granular herbicidal compositions comprising dinitroaniline herbicides, montmodllonite carder and water-swellable polymer[P]. US: 5294594, 19940315
    [43] Doms J. R. P., Gillis M. J. E. G., Lambert P. M. et al.. Bentonite containing particulate fabric softening compositinons[P]. EP: 570237 A2, 19930514
    [44] Jaeger K. F., Kilbride T. J., Lisa R. E.. High concentrated, solid mepiquat chloride and chlormequat chloride[P]. WO: 95/02963 A1, 19950202
    [45] Oelmueller R., Ferch H.. Synthetic silicas in pesticide formulation with special emphasis on water dispersible granules[A]. Pesticide Formulations and Application Systems: A New Century for Agricultural Formulations[C]. ASTM Special Technical Publication, 1989, 9:85-97
    [46] Wegmann J.. Concentrated powder or granular formulations dispersible in aqueous media[P]. US: 4202815, 19800513
    [47] Kokai T. K.. Floating agrochemical preparation[P]. JP: 56030901, 19810328
    [48] Balliello P.. Cold water-dispersible dye granules[P]. EP: 124866, 19841114
    [49] Oelmueller R., Ferch, H.. Synthetic silicas in pesticide formulation with special emphasis on water dispersible granules[J]. Pestic. Formulations Appl. Syst, 1989, 9:85-97
    [50] Chamberlain P., Harden E.. Granular pesticidal compositions[P]. GB: 2218634, 19891122
    [51] Alderman D. A., Schulz G. J.. Method of making a granular, cold water dispersible coating composition for tablets[P]. US: 4816298, 19890328
    [52] 坂本彬,河村静夫.水中分散性優粒状蕽药和剂[P].昭57-163303,19810331
    [53] Anon. Bendiocarb granules[J]. Research Disclosure, 1982, 219:265
    [54] Anon. Bendiocarb granules[J]. Research Disclosure, 1982, 213:470-471
    [55] Junginger G., Spicer L. D.. Water - dispersible granulated herbicide composition [P]. US: 286936, 19810727
    [56] 千枽馨,米村伸二.物理性改良颗粒状水和剂[P].昭59-193803,19841102
    [57] Mookerjee P. K., Misselbrook J.. Water - dispersible granular herbicidal compositions with increased thermal stability[P]. EP: 112438, 19840704
    [58] Rochling H., Kocur J., Albrecht K.. Water-dispersible glufosinate granules[P]. US: 5543385. 19960806
    [59] Fersch K. E., Miner A. J.. Method of reducing container residue of water dispersible agricultural chemical granules by water-soluble film coating[P]. US: 5643593, 19970701
    [60] Esperanza M., Hans R.. Water-dispersible granules of spores or live Beauveria bassiana[P]. US: 5730973, 19980324
    [61] Oelmueller R., Ferch H.. Synthetic silicas in pesticide formulation with special emphasis on water dispersible granules[J]. Pestic. Formulations Appl. Syst, 1989, 9:85-97
    [62] Hausmarm H., Neumaier H.. Water-dispersible or water -soluble granules and their use [P]. DE: 3203443, 1983081
    [63] 千枽馨,米村伸二.物理性改良颗粒状水和剂[P].昭59-193803,19841102
    [64] Mookerjee P. K., Misselbrook J.. Water-dispersible granular herbicidal compositions with increased thermal stability[P]. EP: 112438, 19840704
    [65] 金原昌臣,铃木宗毫.水分散性颗粒状有害生物防除组成物及制造方法[P].昭60—258101,19851220
    [66] Ventouras K.. Water-dispersible tablet[P]. EP: 273005, 19880629
    [67] Deming J. M., Surgant J. M.. Water dispersible granules comprising encapsulated and non- encapsulated pesticides[P], EP: 252897, 19880113
    [68] Lloyd J. M., Baker K. R.. Water dispersible granules of liquid pesticides[P]. US: 5739081, 19980414
    [69] Fu E., Chaudhuri R. K., Narayanan K. S.. Grafted polymers and copolymers of vinyl pyrrolidone for improved water dispersible granules[A]. Pesticide Formulations and Application Systems[C]. ASTM Special Technical Publication, 1993, 13:404-412
    [70] Roechling Hans., Kocur J., Albrecht K.. Water-dispersible granules comprising fenoxaprop-ethyl and/or fenchlorazole[P]. US: 5364832, 19941115
    [71] Fu E., Narayanan K. S., Hall F. R. et al., Water soluble and water dispersible granules with spreader-sticker incorporated[A]. Pèsticide Formulations and Application Systems[C]. ASTM Special Technical Publication, 1995, 14:179-89
    [72] Kimura O. S., Takeshi I. K.. N-Pyridyltoluidine-contalning fungicidal water disperseble granules[P]. US: 5723141, 19980303
    [73] Narayanan K. S., Fu E.. Free-flowing, non-dusting water-dispersible granules of a water-insoluble, hydrophobic agriculturally active chemical[P], WO: 9705777, 19970220
    [74] Surgant S., Deming J. M.. Formulations of water-dispersible granules and process for preparation thereof [P]. US: 4936901, 19900626
    [75] Derning J. M., Surgant J. M.. Water-dispersible granules comprising encapsulated and nonencapsulated pesticides[P]. EP: 252897, 19880113
    [76] Lloyd J. M.. Water dispersible granules of low melting point pesticides[P]. US: 5846903, 19980908
    [77] Rochling Hans., Kocur Jean., Albrecht K.. Water-dispersible granules comprising fenoxaprop-ethyl and/or fenchlorazole[P]. US: 5364832, 19941115
    [78] Yamada M., Otsuka T.. Water dispersible granules[P]. US: 6723682, 20040420
    [79] Kimura T., Shindo T., Ikeda K.. Fungicidal fluazinam water-dispersible granules [P]. WO: 9504460, 19950216
    [80] Yamada M., Otsuka T.. Herbicidal water dispersible granules containing flumioxazin[P]. US: 2003064896, 20030403
    [81] Chung B. J., Kim S. H. Chung K. J.. Preparation of water dispersible granules containing paraquat dichloride[P]. WO: 2001020984, 20010329
    [82] Barazani A.. Water-dispersible granules containing benzoylphenylurea pesticides[P]. WO: 2003049540, 20030619
    [83] Joseph P., Jumes L.. Development of Water-Dispersible Granule Systems[A]. Pesticide Formulation and Application System: Third Symposium[C]. ASTM Special Technical Publication, I982, 141-146
    [84] Doering I. W., Delli Colli H. T.. The physical chemistry of water dispersible granules, part II: The influence of dispersant molecular weight and paste rheology on the physical properties of extruded WDGs[A]. Pesticide Formulations and Application Systems: A New Century for Agricultural Formulations[C]. ASTM Special Technical Publication, 2001, 21: 99-111
    [85] Delli Colli H. T., Doering I. W.. The physical chemistry of WDGs: Porosity and surfactant dissolution as a function of disersant molecular weight[A]. Pesticide Formulations and Application System, Twentieth Volume[C]. ASTM Special Technical Publication, 2001, 141-151
    [86] Bell G. A.. Herbicide granules revue of processes and products[A], in Brighton Crop Protection Conference-Weeds[C]. 1989, 2:745-752
    [87] Holley C. A.. Water dispersible granule development process and equipment[A]. in Pesticide Formulation and Application Systems: Fourth Symposium[C]. Philadelphia: American Socitey for Testing and Materials, 1985, 144-157
    [88] Rettig G.. Granulation, its place in chemical engineering[P]. BE: 10608, 1965
    [89] Neumaier H., Hausmann H.. Water dispersible granulates[P]. DE: 3246493, 19840620
    [90] Anon. Die extrusion process for the manufacture of water dispersible granules[J]. Research Disclosure, 1995, 690
    [91] Sherrington P. J., Oliver R.. Granulation[P]. AN: 571779, 1981
    [92] Witter R.. Production of water-dispersible granules by extrusion with a Twindome extruder[J]. Forschung, Technik und Innovation, 1997, 23: 45-47
    [93] Lloyd J. M., Stuart A. G.. Water-dispersible agrochemical granules [P]. WO: 8900079, 19890112
    [94] Scott M.W., Liebermann H. A., Rankell A. S. et al.. Continuous product of tablet granulations in a fluidized bed; theory and design considerations[J]. J. Pharm. Sci., 1964, 53:314-320
    [95] Schlicht R., Roechling H., Albrecht K.. Water dispersible agrochemical granules[P]. EP: 388867, 19900926
    [96] Belcher D.W., Simth D.A., Cook E. M.. Design and use of spray driers (Ⅰ), principles and application[J]. Chem. Eng., 1963, 68:83-88
    [97] Raff A. M., Robinson M. J., Svedres E. V.. Spray-drying of tablet granulations (Ⅰ), a preliminary report [J]. J. Pharm. Sci., 1961, 50:76-79
    [98] 黄文飞,毕韶红.高含量乙氧氟草醚合成方法的研究[J].辽宁化工,2002,31(12):518-519
    [99] 范莲生,舒文光等.2%乙氧氟草醚颗粒剂的研制[J].农药,1999,38(9):9-11
    [100] 法国 RHONE POULENC公司.水分散粒剂[J].农药译丛,1986,8(4):33-36
    [101] Hans M.. Grubenmann A.. Formulatoin Technology: Emulsions, Suspensions, Solid forms[M]. New York: WILEY-VCH, 2001
    [102] 王早骧.农药助剂[M].北京:化学工业出版社.1994,881-894
    [103] Utz C., Sekmistrz J. M., Hollis R. P.. Effects of non-inonie surfactants on properties of water dispersible granule formulations[A]. Pesticide Formulations and Application System[C]. ASTM Special Technical Publication, 1995, 14: 191-200
    [104] Parker M. D., York P., Rowe R. C.. Binder-substrae interactions in wet granulation 1: the effect of binder characteristics[J]. International Journal of Pharmaceutics, 1990, 64(2-3): 207-16
    [105] Parker M. D., Rowe R. C.. Source variation in the wet massing (granulation) of some microcrystalline celluloses[J]. Powder Technology, 1991, 65(1-3): 273-81
    [106] Parker M. D., Rowe R. C.. Binder substrate interactions in wet granulation 2: the effect of binder molecular weight[J]. International Journal of Pharmaceutics, 1991, 72(3): 243-9
    [107] Horisawa E., Komura A., Danjo K. et al.. Effect of binder characteristics on the strength of agglomerates prepared by the wet method Ⅱ[J]. Chemical & Pharmaceutical Bulletin, 1995, 43(3): 488-92
    [108] Sheskey P. J., Dasbach, T. E. Evaluation of various polymers as dry binders in the preparation of an immediate release tablet formulation by roller compaction [J]. Pharmaceutical Technology, 1995, 19 (10): 98-112
    [109] Wan L. S. C., Jeyabalan T.. Effect of binders on the formation of pellets Ⅱ. Polyvinylpyrrolidone[J]. Chemical &Pharrnaeeutieal Bulletin, 1987, 35(4): 1624-8
    [110] Danjo K., Kozaki K., Sunada H., Otsuka A.. Effect of the molecular weight of binding agents on the physical properties of granulaes and tablets[J]. Chem. Chemical & Pharmaceutical Bulletin, 1994, 42 (10): 2121-5
    [111] Symecko C. W.. The fimctional evaluation of binders in the wet granulation process[J]. Dissertation Abstracts lntenational, 1995, 55(12): 5299B
    [112] Narayanan K. S., Ianniello R.M., Benning M. J., Goehner R.. Value added binders for solid formulations via polybasic acid complexation with vinyl pyrrolidone homo and copolymers[A]. In Fourth International Symposium on Adjuvants for Agrochemicals[C]. Melbourne FRI Bulletin, 1995, 42-7
    [113] Rowe, R. C.. Imeractons in powders and granules.A reappraisal[J]. International Journal of Pharmaceutics, 1992, 79(2-3): 257-61
    [114] Symecko C. W., Rhodes C. T.. Binding performance of pregelatinized starches [J]. Biopharmaceutics and Pharmaceutical Technology, 1995, 1: 145-6
    [115] 刘程,米裕民等.表面活性剂性质理论与应用[M].北京:北京工业大学出版社,2004,34-44
    [116] 陈宗,王光信,徐桂英.胶体与界面化学[M].高等教育出版社,2001,150-159
    [117] 胡纪华,杨兆禧,郑忠.胶体与界面化学[M].华南理工大,1999,199-230
    [118] 郑忠,李宁.分子力与胶体的稳定和聚沉[M].高等教育出版社,1995,44-55
    [119] 王国庭.胶体稳定性[M].科学出版社,1990,20-33
    [120] Tatsuo S., Richard R.. Stabilization of colloidal dispersions by polymer adsorption [M]. NewYork: Marcel Dekker, 1980, 9:37-43
    [121] Hiroyuki O.. Electrophoresis of charged particles and drops. In international electrokinetics and electrophoresis [M]. New York: Marcel Dekker, 2002, 106: 127-130
    [122] Hunter R. J.. Zeta potential in colloid science: principle and applications[M]. New York: Academic Press, 1981
    [123] Heywood H.. Symposium on the Interaction between Fluids and Particles[J]. Inst. Chem. Eng., 1962, 1
    [124] Bell G. A., Formstone C. A., Skelton S. E.. The dustiness of water dispersible granule formulations[A], poster presented at the 8th International Congress on Pesticide Chemistry[C]. Washington, 1994
    [125] Nadia P., Beatrice A., Gonzalez-RodrigUez M. L.. Preparation and eharacterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation [J]. Eur. J. Pharm. Sci., 2002, 15:71-78
    [126] Fukunaka T., Yaegashi Y., Nunoko T. et al.. Dissolution characteristics of cylindrical particles and tablets international[J]. Journal of pharrnaceutics, 2006, 310: 146-153
    [127] 陆彬编著.药物新剂型与新技术[M].北京:人民卫生出版社,1998
    [128] 黄修柱.乙氧氟草醚原药及其主要杂质的气质联用分析研究[J].农药科学与管理,2004,25(2):1-3
    [129] Bell G. A.. The structure/physical property Relationships of a Model Water dispersible granule[J]. Pestic. Sci., 1990, 29:467-473
    [130] 陆彬主编.药剂学[M].北京:人民卫生出版社,1998
    [131] Noyes A., Whitney W.. The rate of solution of solid substances in their own solutions [J]. J. Am. Chem. Soc., 1897, 19:930-934
    [132] Nemst W.. Theorie der reaktionsgeschwindigkeit in heterogenen systemen[J]. Z. Phys. Chem., 1904, 47:52-55
    [133] 周学良.精细化学品大全-农药卷[M].杭州:浙江科学技术出版社,2000.586-588
    [134] Ambrus A., Hargitai E., Karoly G. et al.. General method for determination of pesticide residues in samples of plant origin, soil, and water. Ⅱ. Thin layer chromatographic determination[J]. J. Assoc. off AnaI. Chem., 1981, 64(3): 743-8
    [135] Beilstein P., Cook A. M., Hutter R.. Determination of seventeen s-triazine he-rbicides and derivatives by high-pressure liquid chromatography[J]. J. Agric. Food chem., 1981, 29(6): 1132-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700