用户名: 密码: 验证码:
非稳态条件铸坯质量与结晶器钢液行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规板坯连铸技术经过几十年的发展,已日渐成熟,高速化、高效化成为当今板坯连铸技术发展的目标。由于低拉速常规稳态浇注相对容易控制,铸坯质量能够得到保证,但高拉速非稳态条件的产品质量还存在很多问题。因此,针对高拉速和非稳态条件铸坯质量的研究具有重要意义。
     结晶器作为连铸机的心脏,对连铸表面质量的控制起着至关重要的作用。本文以梅钢2#板坯连铸机为研究对象,针对结晶器非稳态和高拉速下存在的铸坯质量问题,进行了现场调研,获取了铸机基本参数及相关浇注条件的控制标准。在取了大量铸坯样离线进行低倍硫印检测之后,对铸坯表面及皮下取金相样进行显微观察,统计单位面积夹杂物含量。为进一步评估铸坯质量水平,对其全氧量进行了分析。此外,本文针对梅钢2#铸机建立了结晶器内的钢液流动的数学模型。在对模型进行验证的基础上,对不同断面、拉速、水口插入深度下的钢液流动形态,结晶器内气泡与液渣层分布及偏流状态下的流动行为进行了模拟,为铸坯质量的控制提供理论及实践依据。
     铸坯质量研究表明,梅钢铸坯质量整体处于中等水平,表现出来的缺陷主要是夹杂和气孔。其中,夹杂物多为50μm以下的球状Al2O3或者铝酸盐,而气孔则主要是由吹氩导致,多分布于铸坯窄面。开浇、浇注末期、拉速变化等非稳态过程对铸坯质量影响很大,换大包、换浸入式水口等对铸坯质量的影响相对较小。非稳态夹杂物含量是稳态条件的2~6倍,全氧量比稳态条件铸坯高三分之一。头尾坯质量都差于正常坯,夹杂物含量比正常坯高26%以上,但越接近正常坯,质量越好。根据评估结果,尾坯倒数第二块坯可不用降级处理。
     数值模拟显示,拉速为1.8m/min时,常规断面窄面附近较大面积无液渣分布,在1300mm×210mm断面条件下,结晶器液面流速达到0.34m/s,须采用电磁制动或降低拉速来控制液面流速。当拉速达到1.2m/min时,结晶器窄面液渣很薄,此时需要采取电磁制动等措施以保证必要的液渣层厚度。偏流易导致液面流动不对称,从而形成漩涡,并导致卷渣。小粒径气泡、50μm及以下脱落的结瘤物和夹杂物,其跟随性好,容易随流股到达结晶器窄面和下部形成缺陷。
After several decades' development, the conventional slab continuous casting technology has been sophisticated gradually. High casting speed and high efficiency become the goal. Due to the easier control in low casting speed, the slab quality can meet the requirement. However, high casting speed and unsteady casting easily lead to product quality problems. Therefore, it's significant to research the slab quality on high casting speed and unsteady conditions.
     As the heart of a caster, continuous casting mold plays a crucial role in slab surface quality control. No.2 caster of Meishan Steel was regarded as the research object in the paper. And the industrial investigation was executed to handle the slab quality on unsteady and high casting speed conditions. It also obtained the basic caster parameter and control criterion of the related casting processing. After an amount of slab samples were detected off line by sulfur print and macroscopic examination, small samples were taken from the slab surface, and the quantity of inclusions per unit area ware counted. In order to evaluate the quality of slab, the total oxygen(T[O]) content was measured. Furthermore, this paper constructed the mathematic model,which would be used to simulate the liquid steel flow in mold of Meishan Steel No.2 caster. Based on the model, this paper simulated the flow behavior of liquid steel, including in different section, casting speed, SEN depth, distribution of bubbles and molten slag layer, and the bias flow etc. It would provide a theoretical and practical foundation for the slab quality control.
     The slab quality study shows that, as a whole, the slab quality at Meishan Steel is placed at a mid-level. The main defects are inclusions and pinholes. The most of inclusions are indigenous Al2O3 and aluminate, and the pinholes caused by argon injection mostly distribute in narrow face. Several unsteady conditions, such as casting start, end and casting speed variation, affect the slab quality greatly, and the influence of laddle exchange ,SEN change, SEN clogging is relative low. The content of inclusion on unsteady conditions is 2-6 times of that on steady conditions. And the T[O] on unsteady conditions is 1.33 times of that on steady ones. Otherwise, the quality of beginning and tail slab is worse than normal ones. The former inclusion content is 26% higher than the latter. Based on the evaluation, the last second slab needn't to be degrade.
     Numerical simulation shows, when casting speed is 1.8m/min, normal section, near narrow face, there is not flux layer in a large area. And in section 1300mm×210mm, the flow rate in surface level reaches 0.34m/s. So, it should control the surface flow rate by EMBr or decrease casting speed. when casting speed is 1.2m/min, molten slag layer is thin in narrow face, and need to be improved by EMBr. Bias flow is easy to generate asymmetry flow and vortices. What’s worse, it will induce slag entrapment. The fine bubbles, desquamation clogging and inclusions easily follow the stream and reach the narrow face and bottom of mold. It's easy to induce defects.
引文
[1] 殷瑞钰.关于 21 世纪发展连续铸钢的若干认识[A].连铸技术论文集(全国炼铁、炼钢、连铸新技术交流会)[C],成都,2004,4.
    [2] L.卡瓦纳(AISI).张静涛等译.钢铁工业技术开发指南[M].北京:科学出版社.2000.1.
    [3] 蒲海清.从 15.8 万吨到 1.14 亿吨─50 年来我国钢铁工业的发展[J].求是,1999(22):39~42.
    [4] 董志洪.关于中国钢铁工业发展战略的思考[J].冶金管理,2006(6):5~10.
    [5] 殷瑞钰.中国钢铁工业的回顾与展望[J]. 鞍钢技术,2004(4):1~6.
    [6] 蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [7] 熊毅刚.板坯连铸[M].北京:冶金工业出版社,1994.12.
    [8] 曹广畴.现代板坯连铸[M].北京:冶金工业出版社,1994.
    [9] 杨拉道,谢东钢.常规板坯连铸技术[M].北京:冶金工业出版,2002,7.
    [10] 中国金属学会连续铸钢学会编译.第四届国际连铸会议文集.北京:中国金属学会连铸学会,1990:290-292.
    [11] 蔡开科.连铸技术发展[J].山东冶金,2004,1(26):1-9.
    [12] 赵兴武.国外板坯高速连铸技术[J].钢铁钒钛,1996, Vol.17(2): 42~50.
    [13] P·Thomas. Variations in steel cleanness during transient continuous casting practices [J]. Ironmaking & Steelmaking. 2005, 21(3): 334-338.
    [14] Kuang-Oscar Yu. Modeling for Casting and Solidification Processing [M]. New York: CRC Press, 2002.
    [15] 张彩军,王琳,蔡开科.非稳态浇铸对钢水洁净度的影响[J].特殊钢,2002.12,23(6)pp46~23.
    [16] 赵紫锋,李宏,张炯明等.拉速变化过程中连铸坯皮下夹杂物的研究[A].王新华.冶金研究[C].北京:冶金工业出版社,2005:237~241.
    [17] Lifeng Zhang, Brian G. Thomas. Inclusions in Continuous Casting of Steel. XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, 26-28, Nov.2003, pp 138-183.
    [18] 张乔英,王立涛,王新华等.非稳态浇铸时 IF 钢铸坯表层夹杂物粒径的分布[J].特殊钢,2006.9,27(5)pp9-11.
    [19] 刘中柱,蔡开科.纯净钢生产技术[J].钢铁,2000,35(2):64~69.
    [20] Qiaoying Zhang, Litao Wang, Xinhua Wang. Influence of Casting Speed Variation during unsteady Continuous Casting on Non-Metallic Inclusions in IF Steel Slabs [J]. ISIJ International, Vol. 46 (2006), No. 10, pp. 1421~1426.
    [21] 唐学林,钱忠东,吴玉林.连铸结晶器内钢液涡流现象的大涡模拟[J].清华大学学报(自然科学版)2003,Vol43(6):802-804.
    [22] 钱忠东,吴玉林. 连铸结晶器内钢液涡流现象的大涡模拟及控制[J] .金属学报.2004,Vol40(1):88-93.
    [23] X.HUANG,B.G.THOMAS. Modeling of Transient Flow Phenomena in Continuous Casting of Steel [J]. Canadian Metallurgical Quarterly, Vol. 37, No. 304, 1998, pp. 197-212.
    [24] B.G. Thomas, S.P. Vanka. Study of Transient Flow Structures in the Continuous Casting of Steel[C]. 1999 NSF Design & Manufacturing Grantees Conference, Long Beach, CA, Jan. 5-8.
    [25] Thomas, B.G., P. Vanka. Study of Transient Flow Structures in the Continuous Casting of Steel[C], 2000 NSF Design & Manufacturing Grantees Conference, Vancouver, Canada, Jan. 5-8 2000, 14p.
    [26] S.P. Vanka, B.G. Thomas. Study of Transient Flow Structures in the Continuous Casting of Steel[C], 2001 NSF Design & Manufacturing Grantees Conference, Tampa, Florida, January 7-10, 2001
    [27] Vincent GUYOTJ, Jean-Francois MARTINA, Alain RUELLE et al. Control of Surface Quality of 0.08 %< C<0.12% Steel Slabs in Continuous Casting [J]. ISIJ International, Vol. 36 (1996). Supplement pp. S227-S230.
    [28] Kazuhiro Arai.王淑玲译.鹿岛炼钢厂非稳态板坯生产采用的先进技术[J].武钢技术,1998.8:24-26.
    [29] Sang-IK Chung, Oh-Duk Kwon. Improvement of Tundish by the Analysis of Molten Steel Flow during Ladle Exchange at Pohang Works [A]. ISS, eds. 83rd Steelmaking Conference Proc [C]. Warrendale, PA: ISS, 1999. 191-198.
    [30] 蔡开科. 浇注与凝固[M]. 北京: 冶金工业出版社, 1987: 32-34.
    [31] 马范军,文光华,李刚.板坯连铸结晶器内钢液流动数值模拟[J].金属学报,2000,36(4):399-401.
    [32] Brian G. Thomas. Chapter 15 in Modeling for Casting and Solidification Processing, O. Yu, editor, Marcel Dekker, New York, NY, 2001, pp. 499-540.
    [33] YinZhang, Liguo Cao, Youduo He et al. Flow and Temperature Fields in Slab Continuous Casting Molds [J]. Journal Of University Of Science And Technology Beijing, 2000, Vol.7 (2):103-106.
    [34] 赵兴武.国外板坯高速连铸技术[J].钢铁钒钛,1996, Vol.17(2): 42~50.
    [35] Y. VERMEULEN, B. COLETTI, B. BLANPAIN, et al. Material Evaluation to Prevent Nozzle Clogging during Continuous Casting of Al Killed Steels [J]. ISIJ International, Vol. 42 (2002), No. 11, pp. 1234–1240.
    [36] 文光华、唐萍,何俊范等.板坯连铸结晶器深入式水口数理模拟研究及应用[J].炼钢,2000,18(1):44-47.
    [37] Shintaro YAMASHITA, Manabu IGUCHI. Mechanism of Mold Powder Entrapment Caused by Large Argon Bubble in Continuous Casting Mold[J]. ISIJ International, 2001,Vol. 41 (12)pp. 1529–1531.
    [38] Youjong KWON, Jian ZHANG, Hae-Geo LEE. Water Model and CFD Studies of Bubble Dispersion and Inclusions Removal in Continuous Casting Mold of Steel [J]. ISIJ International, Vol.46(2006), No.2, pp.257-266.
    [39] Manabu IGUCHI, Norifumi KASAI K. Water model study of horizontal molten steel-Ar two-phase jet in a continuous casting mold [J]. Metallurgical And Materials Transactions B. 2000, 31(6): 453-460
    [40] 卢盛意.连铸坯质量(第二版)[M].北京:冶金工业出版社,2000.12.
    [41] R·Dekkers, B. Blanpain P W. Steel Cleanliness at Sidmar[C]. ISSTech2003 Conference Proceedings, eds., ISS Warrandale, PA, 2003:197-209.
    [42] 蔡开科,张立峰,刘中柱.纯净钢生产技术及现状[J].河南冶金,2003,11(3):3~10,2003,11(4):3~8.
    [43] 易卫东,赵继宇.夹杂物对钢帘线断丝的影响及其控制[J].钢铁,2002,37(增刊):676~678.
    [44] Minoru.S. Recent Japanese Studies on Control of Non-metallic Inclusions in Steel[C].The 1st International Congress on Science and Technology of Steelmaking. Chiba, Japan, 1996.68.
    [45] 陈雷.连续铸钢[M].北京:冶金工业出版社,1993.
    [46] B.G Thomas. Continuous Casting: Complex Models, The Encyclopedia of Materials: Science and Technology, K.H. J. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, eds., (J. Dantzig, subject ed.) Elsevier Science Ltd., Oxford, UK, Vol. 2, 2001, pp:1599-1609.
    [47] 汪洪峰,郭振和.结晶器电磁制动技术在梅山高效连铸中的应用[J].冶金标准化与质量, 2003(04): 33-35.
    [48] 汪洪峰,郭振和.结晶器电磁制动技术在高效连铸中的应用[J]. 钢铁研究,2003(06): 43-44.
    [49] 张立峰,王新华.连铸钢中的夹杂.山东冶金,2005,27(1):1~5.
    [50] 张彩军,王琳,蔡开科等. 非稳态浇铸对钢水洁净度的影响[C].第十二届全国炼钢学术会议论文集.2004,北京:337~341.
    [51] ZHANG Li-feng. Inclusion and Bubble in Steel ——A Review. Journal of Iron and Steel Research, International, 2006 , 13 (3) : 0~8.
    [52] 董履仁,刘新华等.钢中大型非金属夹杂.北京:冶金工业出版社,1991.1.
    [53] 张德堂,施炳弟.钢中非金属夹杂物图谱.北京:国防工业出版社,1980,7.
    [54] Lifeng ZHANG, Brian G?THOMAS. State of the Art in Evaluation and Control of Steel Cleanliness. ISIJ International, Vol. 43 (2003), No.3:271–291.
    [55] ZHANG Li-feng. Indirect Methods of Detecting and Evaluating Inclusions in Steel-A Review. Journal of Iron and Steel Research, International. 2006, 13(4): 1-8.
    [56] 张立,王俊,孙宝德. 转炉-连铸工序生产低碳铝镇静钢中夹杂物的研究. 铸造技术,2004,25(12)pp908~911.
    [57] 史国敏,张立,郑贻裕等.转炉-CAS-连铸工艺生产低碳铝镇静钢中非金属夹杂物的研究.钢铁,2000,35(3)pp12~15.
    [58] 朱立新,蒋晓放,许春雷等. 宝钢纯净钢生产技术进展.钢铁,2000,35(11):15~18.
    [59] 袁晓鹏,李 宏,王新华等. 转炉-ANS-连铸工艺生产低碳铝镇静钢洁净度研究.钢铁,2003,33(11)pp15~17.
    [60] Tsai H T,Sammon W J,Hazelton J E.Characterization and countermeasures for sliver defects in cold rolled products[A].Steelmaking Conference Proceedings[C]. Detroit, Michigan, USA,1990:45-59.
    [61] Pielet H M, Tsai H T, Gass R T. Characterization of inclusions in TiSULC steels from degasser to mold [A]. ISS, eds. ISSTech2003 Conference Proceedings, Electirc Furnace and Steelmaking [C]. Warrandale, PA: ISS, 2003:241-253.
    [62] Burns M T, Schade J, Newkirk C. Recent Developments in Measuring Steel Cleanliness at Armco Steel Company, L.P [A]. ISS. eds. 74th Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, eds,1991:513-523.
    [63] Brown W A, Kinney M A. Schade J. Knowledge Engineering an Expert System to Trouble-Shoot Quality Problems in Continuous Casting of Steel Billets [J]. Iron and Steel Maker, 1993, 20(6): 29-36.
    [64] Turkdogan E T, Ebgan R S, Gilbert S. [A]. ISS, eds. 74th Steelmaking Conference Proceedings [C]. Warrendale, PA:ISS,eds,1991:423-434.
    [65] Chakraborty S, Hill W. [A]. ISS, eds. 77th Steelmaking Conf Proc [C]. Warrendale, PA: ISS, 1994:389-395.
    [66] Chakraborty S, Hill W. [A]. ISS, eds. 78th Steelmaking Conf Proc [C]. Warrendale, PA: ISS, 1995. 401-413.
    [67] Stolte G, Teworte R, Wahle H J. Experience with Advanced Secondary Steelmaking Technologies [A]. ISS, eds. 74th Steelmaking Coneference Proceedings [C]. Warrendale, PA: ISS, 1991. 471-480.
    [68] Glaws P C, Fryan R V, Keener D M. The Influence of Electronmagentic Stirring on InclusionDistribution as Measured by Ultrasonic Inspection [A]. ISS, eds. 74th Steelmaking Conference Proceedings [C]. Warrendale, PA:ISS,1991.247-264.
    [69] Schade J. Measurement of Steel Cleanliness. Steel Technology International, 1993: 149-155.
    [70] Cameron S R. [A]. ISS, eds. 75th Steelmaking Conference Proc [C]. Warrendale, PA: ISS, 1992. 327-332.
    [71] Rasmussem P. [A]. ISS, eds. 77th Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, 1994. 219-224.
    [72] Vert T, Byrne J. [A]. ISS, eds. ISSTechZOO3 [C]. Warrandale, PA: ISS, 2003. 989-994.
    [73] Crowley R W, Lawson G D, Jardine B R. [A]. ISS, eds. 78th Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, eds, 1995.629-635.
    [74] Bonilla C. [A]. ISS, eds. 78th Steelmaking Conference Prcrceedings [C]. Warrendale. PA: ISS, 1995. 743-752.
    [75] Hughes K P, Schade C T, Shepherd M A. [J]. Iron and Steel Maker, 1995, 22(6): 35-41.
    [76] Melville S D, Brinkmeyer L. [A]. ISS, eds. 78th Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, 1995.563-569.
    [77] Marique C, Dony A, Nyssen P. [A]. I S , eds. Steelmaking Conf Proc. 73 [C]. Warrendale, PA: ISS, 1990. 461-467.
    [78] Burns M T, Schade J, Newkirk C. [A]. ISS. eds. 74th Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, 1991. 513-523.
    [79] Coessens C, Ruytings J P, Quinet J P. [J]. La Revue de MetallurgieCIT, 1991, 88(5): 461-467.
    [80] Hoh B, Jacobi H, Wiemer H, et al. [A]. 4th International Conference Continuous Casting [C]. Brussels: Verlag Stahl Eisen mbH, Dusseldorf, Germany, 1988. 211-222.
    [81] Kuchar L, Holappa L. Prevention of Steel Melt Reoxidation by Covering Powders in Tundish[A]. ISS, eds. 76th Steelmaking Conference Proceeding [C]. Warrendale, PA: ISS, 1993:495-502.
    [82] Jacobi H, Ehrenberg H J , Wunnenberg K. [J]. Stahl und Eisen, 1998, 118(11): 87-94.
    [83] Bannenberg N, Harste K. [J]. Rev Met, 1993, 90(1):71-76.
    [84] Bannenberg N, Lachmund H, Prothmann B. [A]. ISS, eds. 77th Steelmaking Conference Proceedings, 77 [C]. Warrendale, PA: ISS, 1994. 135-143.
    [85] Bannenberg N, Bruckhaus R, Hiilen M, et al. [J]. Stahl und Eisen, 2000, 120(9): 67-72.
    [86] Tiekink W K, Brockhoff J P, Maes R. [A]. IS, eds. 77th Steelmaking Conference Proceeding [C]. Warrendale, PA: ISS, 1994. 49-51.
    [87] McPherson N A. [A]. I S , eds. Steelmaking Conference Proceedings, 68 [C]. Warrendale. PA: ISS, 1985. 13-25.
    [88] Barradell D V. [A]. VDEh, eds. 2nd European Continuous Casting Conference/6th International Rolling Conference [C]. Dusseldorf: VDEh, 1994. 1-8.
    [89] Nartz H. [A]. VDEh, eds. 2nd European Continuous Casting Conference/6th International Rolling Conference [C]. Dusseldorf: VDEh, 1994. 63-70.
    [90] Flobholzer H, Jandl K, Jungreithmeier A, et al. [J]. Stahl und Eisen, 1998, 118(8): 63-66.
    [91] Jungreithmeier A, Pissenberger E, Burgstaller K, et al. [A]. ISS, eds. ISSTech2003 Conference Proceedings, Electric Furnace and Steelmaking [C]. Warrandale, PA: ISS, 2003. 227-240.
    [92] Burty M, Dunand P, Pitt J P. [A]. ISS, eds. 80th Steelmaking Conference Proceedings, 80 [Cl. Warrendale, PA: ISS, 1997.647-653.
    [93] Vermeulen Y, Coletti B, Wollants P, et al. [J]. Steel Res, 2000, 71(10): 391-395.
    [94] R. Dekkers, B. Blanpain, P. Wollants. Steel Sampling to Study Inclusions. ISSTech 2003 Conference Proceedings[C]. Warrandale ,PA: ISS,2003:19~209.
    [95] Thomas P, Thomas A H, Jefford M. [A]. TMS and AIST, eds. Materials Science and Technology 2004, I [C]. Warrandale, PA: TMS and AIST, 2004. 685-693.
    [96] Conference Report. [J]. Ironmaking and Steelmaking, 2002, 29(2) : 83-89.
    [97] Kitamura M, Kojima S, Onishi T, et al. [A]. Institute of Metals, eds. Continuous Casting '82 Proceedings [C]. London, UK: Institute of Metals, 1982. 19/11-19/15.
    [98] Kondo H, Kameyama K, Nishikawa H, et al. [A]. ISS, eds. 1989 Steelmaking Conference Proceedings [C]. Warrendale, PA: ISS, 1989. 191-197.
    [99] Nadif M, Neyret D. [J]. La Revue de Metallurgie-CIT, 1990,87(2):146-155.
    [100] Nadif M, Neyret D. Manufacturing of ultra low carbon and nitrogen steels [J]. Rev Met, 1990, 87(1): 63-77.
    [101] Bessho N, Yamasaki H, Fujii T, et al. Removal of Inclusion from Molten Steel in Continuous Casting Tundish [J]. ISIJ International, 1992,32(1):157-163.
    [102] Ehara T, Kurose Y, Fujimura T. [A]. ISS, eds. 79th Steelmaking Conference Proceeding, 79 [C]. Warrendale, PA: ISS, 1996. 485-486.
    [103] Matsuno M, Kikuchi Y, Komatsu M, et al. [J]. Iron and Steel Maker, 1993, 20(7) : 35-38.
    [104] Hatakeyama T, Mizukami Y, Iga K, et al. [A]. ISS, eds. 72nd Steelmaking Conference Proceedings [C]. Warrendale, PA:ISS, 1989.219-225.
    [105] Okohira K, Sato N, Mori H. [J]. Trans ISIJ, 1974, 14(2):103-109.
    [106] Stolte G. [J]. Stahl und Eisen, 1989, 109(22) : 1089-1094.
    [107] Lee C M, Choi I S, Bak B G, et al. [J]. Rev Met, 1993, 90(4):501-506.
    [108] Li J. [A]. China Society of Metal, eds. 7th China Steel Quality and Inclusion Symposium Proceedings [C]. Beijing, China Society of Metal, 1995. 12-16.
    [109] 张立峰,蔡开科. [R]. 上海:宝钢 l, 1997.
    [110] Zhang L, Zhi J, Mei F, et al. Basic oxygen furnace based steelmaking processes and cleanliness control at Baosteel[J]. Ironmaking and Steelmaking. 2006, 33(2): 129-139.
    [111] WANG X. WISCO-China Metal Society Report [R]. Beijing, China: China Metal Society (CSM), 2000. 1-10 (in Chinese).
    [112] WANG L. Cleanliness Investigation of Low Carbon Al-killed Steel [D]. Beijing: University of Science and Technology Beijing, 1996 (in Chinese).
    [113] 刘建功,张钊,刘良田.武钢 RH 多功能真空精炼技术开发.钢铁,1999,34(10)(增刊):527-530.
    [114] 周有预,袁凡成,马勤学. 转炉 RH 连铸工艺生产高压气瓶用钢洁净度的研究.钢铁,2001,36(2): 16-19.
    [115] 余志祥.武钢第三炼钢厂生产技术的发展现状.钢铁,1999,34(10)(增刊):316-318.
    [116] 张彩军,郭艳永,蔡开科等. 管线钢连铸坯洁净度研究.钢铁,2003,38(5):19~21.
    [117] 李扬洲,薛念福,汪明东. RH - MFB 的冶金效果.炼钢,2000,16(6):38-41.
    [118] 李扬洲,张大德,赵克文.高速板坯连铸的钢水净化技术及效果.钢铁,2000,35(8):21~23.
    [119] 范鼎东,刘国平. ASEA - SKF 钢包精炼炉脱氧工艺探讨.炼钢,2000,16(1):43~46.
    [120] 刘建功,张钊,刘良田.武钢 RH 多功能真空精炼技术开发.炼钢,1999,15(1):43-46.
    [121] Youjong KWON, Jian ZHANG, Hae-Geon LEE Water Model and CFD Studies of Bubble Dispersion and Inclusions Removal in Continuous Casting Mold of Steel. ISIJ Internation. Vol.46(2006).2:257~266.
    [122] Brian G. Thomas. Mathematical Modeling of The Continuous Slab Casting Mold: A State of the Art Review. Steelmaking Conference Proceedings. 1991: 105~117.
    [123] Yuji Mike, B.G..Thomas. Modeling of Inclusion Removal in a Tundish. Metallurgical and Materials Transaction B. 1999, vol. 30B: 639~654.
    [124] K. Tozawa, Y. Kato. CAMP-ISIJ, 1997,vol.10:105.
    [125] K.Asano, T. Nakano: Tetsu-to-Hagane, 1971, Vol.57: 1943~1951.
    [126] 薛伟锋. 马钢薄板坏连铸中间包和结晶器数理模拟研究[D]. 重庆大学硕士学位论文. 2005.5.
    [127] S.LOPEZ-RAMIREZ,J. de J.BARRETO. Modeling Study of the Influence of Turbulence Inhibitors on the Molten Steel Flow, Tracer Dispersion and Inclusion Trajectories in Tundishes. Metallurgical and Materials Transactions B. 2001,Vol.32B:615~527.
    [128] Thomas B G, Denissov A, Bai H. Steelmaking Conference Proceedings. 80, ISS, USA, 1997:375~384.
    [129] 文光华,李刚,张建春.高速板坯连铸结晶器内流场、温度场的数值模拟 重庆大学学报(自然科学版)1997,Vol.20(6):23-29.
    [130] 孙于萍,李杰,乐可襄,周兰聚. 板坯连铸结晶器钢液流场的数学模拟 特殊钢 2005,vol.26(2)12-15.
    [131] 文光华.薄板坯连铸结晶器内钢液行为的数值模拟仿真及实验研究[D],重庆大学博士学位论文,1996.
    [132] 李宝宽.高拉速时连铸结晶器内钢液湍流场及其电磁制动研究.钢铁,2005,40(7):33~36.
    [133] 朱苗勇,刘家奇,肖泽强.板坯连铸结晶器内钢液流动过程的模拟仿真.钢铁,1996,30(8):23~27.
    [134] X.HUANG, B.G.THOMAS and F.M.NAJJAR Modeling Superheat Removal during Continuous Casting of Steel Slabs METALLURGICAL TRANSACTIONS B 1992 Vol.23B:339~356.
    [135] 乔国林,童朝南,孙一康. 基于 FLUENT 的结晶器出钢温度控制的研究 冶金设备 2005 Vol.151(3): 21~28.
    [136] 李宝宽,李东辉. 连铸结晶器内钢液涡流现象的水模拟观察和数值模拟 金属学报 2002 Vol.38(3):315-320.
    [137] Herbertson J, He Q L, Flint P J, et al. Modeling of Metal Delivery to Continuous Casting Moulds[A]. Iron and Steel Society,eds.1991 Steelmaking Conference Proceedings[C]. Washington DC, USA: Iron and Steel Society,1991.171-185.
    [138] Yoshida, J., Iguchi, M., Yokoya, S.Water model experiment on mold powder entrapment around the exit of immersion nozzle in continuous casting mold. Tetsu-To-Hagane/ Journal of the Iron and Steel Institute of Japan, v 87, n 8, August, 2001, p 529-535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700