用户名: 密码: 验证码:
低过热度浇铸的连铸中间包温度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸钢水过热度是保证连铸产量和铸坯质量的关键工艺参数之一,低过热度浇铸不仅可以实现高拉速,减少溢漏事故,提高铸坯内外部质量,同时也可以降低出钢温度,提高炉衬使用寿命等。为了降低中间包钢水过热度,目前主要通过中间包烘烤及中间包等离子加热等钢水温度补偿措施实现。针对中间包低过热度浇铸存在的问题,本文以常规板坯连铸中间包为原型,建立了中间包烘烤过程及中间包等离子加热浇铸过程的三维传热数学模型,研究内容和已获得的结果如下:
     (1)新设计了两种中间包烘烤方案,通过计算对比烘烤终点包衬温度分布发现,新设计的72min烘烤制度和81min烘烤制度的烘烤终点温度比传统的120min烘烤制度的烘烤温度均匀性好,高温区域明显扩大。由中间包烘烤瞬态温度分布曲线看出,新设计的烘烤方案升温速率快且升温较为平稳,并未出现较大的温度波动。0~20min为快速升温阶段,20min后升温速度相对减缓。
     (2)新设计的两种烘烤制度煤气用量少,且烘烤时间缩短,烘烤效果优于传统烘烤方式。其中81min烘烤方案煤气用量比传统烘烤方案煤气用量节省162Nm~3,约占燃料总量的14%,烘烤时间缩短39min。72min烘烤方案煤气用量比传统烘烤方案煤气用量节省192Nm~3,约占燃料总量的16.5%,烘烤时间缩短48min。新设计的烘烤制度可为现场实际烘烤过程提供指导。虽然72min烘烤的效果优于81min烘烤,但其烘烤燃料流量跳跃性较大,对中间包包衬的材料提出更严格的要求,因此在采用此方案时应当慎重考虑。
     (3)以最佳的中间包烘烤方案为基础计算了中间包等离子加热过程,由于在中间包等离子加热浇铸中引入了底吹氩,使得中间包浇铸的流场发生了变化,中间包流场变的更为复杂。由出口钢液温度变化可知,普通浇铸过程中,中间包钢液温度波动较大,每包次浇铸的温差各不相同,浇铸的第一包钢液温降达到40℃左右,随着浇铸包次的增加,最终每包的温差稳定在10℃以下。等离子加热过程中,除了第一包浇铸不够稳定,温降约为26℃,其余四包的温度基本控制在同一个水平,最终每包的温差稳定在2-3℃左右。可见等离子加热可有效控制中间包出钢温度。
     (4)与普通浇铸过程对比可以看出,在开浇,换包及终浇阶段应用等离子加热后,中间包内钢液的温度得到了及时的补偿。出钢温度显著提高。因此,在相同的目标出钢温度要求下,可适当降低转炉出钢温度。
The superheat of casting molten steel is one of crucial technical parameters of continuous casting which can guarantee the output and quality of the strand. Low superheat casting not only can realize the performance of the high casting speed, and low breakout and improve the quality of strand, but also can decrease the tapping temperature. Improve the lining service life and decrease the content of the gas in the steel. In order to decrease the superheat of tundish, tundish baking and plasma heating casting are used to realize the low superheat in tundish. Regarding the problems of existing for the low superheat casting in tundish, slab continuous casting tundish was considered as prototype in present study, and to represent the process of the tundish baking and plasma heating casting, 3-D heat transfer mathematical model was established. The main research work and results are described as follows:
     (1) In the study, there exist two newly designed baking methods, after compared the temperature changes of the terminal point discovered that the newly designed 72min and 81min baking is better than the 120min baking in temperature uniformity, also the high temperature region is obviously enlarged. From the diagram of temperature change it can get that rate of elevating temperature is fast and the temperature is stable in the newly designed baking methods and not appeared violent temperature fluctuate. The 0~20min is the stage of rapid elevating the temperature. After this period the temperature rising is slow down.
     (2) Two newly designed methods of baking use less fuel than the traditional baking, also use less time than the traditional baking. The 81min baking is saved 162Nm~3 fuel in baking process, about 14% of total quantity fuel. It is also saved 39min of baking time. The 72min baking is saved 192Nm~3 fuel in baking process, about 16.5% of total quantity fuel. It is also saved 48min of baking time. The two newly designed baking methods can provide guidance to practical production. Although the results of 72min baking is better than 81min baking, due to the great variation of fuel flow rate of 72min baking , it has strict demand to the material of the tundish lining, so it must be cautiously considered to use this method.
     (3) Use the best tundish baking method as the basis to compute the tundish plasma heating casting, Because introduced the bottom argon-blowing in tundish plasma heating casting, the flow field of the tundish has changed, it makes the flow field of the tundish more complex. From the temperature changes of outlet it can obtained that without plasma heating , the temperature of molten steel in tundish changes greatly, the temperature change of each new heat are different. When No.1 heat casting, the temperature drop of molten steel can reached to 40℃, with the pouring heats increase, the temperature drop reached to 10℃. During plasma heating casting, except the No.1 heat casting, the temperature drop of No.1 heat casting is 26℃, the temperature drop of other four heat nearly on the same level, the temperature drop of molten steel is about 2℃to 3℃. Though the plasma heating can effectively control the tapping temperature.
     (4) Compared the common casting with the plasma heating casting can get that using plasma heating during start-casting, ladle-change and end-casting can compensate the temperature drop in time. The tapping molten steel temperature is obviously increased, it also can derivation that at the same target tapping temperature, the temperature of converter tapping can be properly decreased.
引文
1.吴晓东,刘青,徐安军,等.宝钢炼钢厂连铸中间包钢水温度的研究[J],钢铁,2001,38(8):19-22.
    2.蔡开科.连铸中间包钢水温度控制,第一届全国炉外处理学术会议论文集.中国金属学会.1992.367-373.
    3.Cai Kaike,Yang Jichun.Investigation of Heat Transfer in Spray Cooling of Continuous Casting[J],Journal of University of Science and Technology Beijing,1989,11(6):510-515.
    4.Brody H D,Flemings M C.Solute Redistribution in Dendritic Solidification[J],Transactions of AIME,1966,236:615-623.
    5.Wolf M M,Kurz W.The Effect of Carbon Content on Solidification of in Steel in The Continuous Casting Mold[J].Metallurgical Transactions,1981,12(B):85-93.
    6.李桂军,张桂芳,陈永,等.连铸钢水过热度对大方坯凝固的影响[J],钢铁钒钛,2005,26(1):1-4.
    7.倪满森.降低出钢温度实现低过热度连铸[J],炼钢,1999,15(5):10-13.
    8.张广军,李占春.水平连铸拉坯稳定度和钢水过热度对铸坯质量的影响[J],特殊钢,2000,21(2):42-44.
    9.傅岳珍,张广军,阮小江.连铸钢液过热度和拉速对轧材纯净度影响的数理统计研究[J],连铸,2007,4:16-21.
    10.刘海啸,苗信成,薛志明.极低过热度连铸技术及水冷水口设计的研究探讨[J],炼钢,1998,4:26-30.
    11.王金平,蒋旭冬.高碳钢连铸钢液过热度的控制[J],武钢技术,2007,45(4):4-7.
    12.冯文圣,赵继宇,易卫东.低过热度浇铸工艺在高碳钢连铸生产中的应用[J],连铸,2005,2:15-16.
    13.潘学峰.连铸中间包浇注过程的热行为研究[D],沈阳:东北大学,2008,2.
    14.鲁路,鲁开嶷.钢液过热度控制对连铸工艺和铸坯质量的影响[J],特殊钢,2008,29(5):50-51.
    15.塔峰,石伟华,孙文泽.如何降低中包钢水的过热度[J],科技信息,87.
    16.朱兴元.中间包加热技术的现状及应用前景[J],钢铁研究,1993,75(6):43-49.
    17.曹娜.高拉速板坯连铸结晶器内钢/渣界面行为的数值仿真[D],沈阳:东北大学, 2007,12.
    18.Hintikka S,Konttinen J,Leiviska K.Optimization of Molten Steel Flow in Continuous Casting Mold[A],75~(th) Steelmaking Conference Proceedings[C],1992,887-891.
    19.朱苗勇.现代冶金学[M],北京:冶金工业出版社,2005,147.
    20.王建军,包燕平,曲英.中间包冶金学[M],北京:冶金工业出版社,2001,5.
    21.李勤.板坯连铸中间包烘烤过程仿真与优化设计[D],沈阳:东北大学,2008,6.
    22.李顶宜.冶金能源,1988,7(1):21-26.
    23.张再华等.冶金能源,1987,(6):43-48.
    24.Wiliam G Knoerlein.国际炼钢会议论文选,1989;105.
    25.依波.控制钢液过热度提高连铸坯质量与产量[J],中国冶金,2008,18(10):43-45.
    26.岑永权,季文豪.连铸钢水过热度对铸坯凝固的影响[J],上海金属,1999,21(6):21-24.
    27.展军,康雯雯.连铸机中间罐烘烤改造[J],山东冶金,2004,26(1):29-30.
    28.刘学君,黄小东,黄国龙,等.中间罐烘烤装置的改进[J],冶金能源,2001,20(2):38-39.
    29.职建军,郑贻裕,崔健,等.宝钢连铸中间包热状态测试和分析[J],钢铁,2002,37(1):26-27.
    30.厉英,刘承军,姜茂发,等.中间包热状态分析及烘烤工艺优化[J],钢铁研究学报,2007,19(3):11-13.
    31.王立军,麻晓光,范德忠,等.连铸中间包烘烤制度的研究[J],包钢科技,2003,29:34-36.
    32.欧俭平,詹树华.蓄热式钢包烘烤器钢包内衬温度分布数值分析[J],矿冶,2003,12(4):40-43.
    33.欧俭平,蒋绍坚.蓄热式钢包烘烤过程中包内高温低氧特性的数值模拟[J],过程工程学报,2004,4(3):215-220.
    34.欧俭平,詹树华.蓄热式钢包烘烤的数值模拟[J],钢铁研究学报,2005,17(1):19-25.
    35.邹琳江,裘欣.钢包烘烤器的数值模拟[J],安徽工业大学学报,2005,22(4):611-616.
    36.杨湘,程素森.蓄热式加热炉流场的数值模拟[J],北京科技大学学报,2003,25(2):131-138.
    37.Stockwell N,Zhang Co Numerical simulations of turbulent non-premixed combustion in regenerative furnace[J],ISIJ International,2001,10:1272-1281.
    38o Gupta A K,Bolz S.Effect of air preheat temperature and oxygen concentration on flame structure and emission,Journal of energy resources technology[J],1999,121:209-216.
    39.Malikov G.K,Lisienko V G.A mathematical modeling and validation study of NOx Emissions in metal processing systems[J],ISIJ International,2002,42:1175-1181.
    40.J.de J.BARRETO-SANDOVAL,A.W.D.HILLS,M.A.BARRON-MEZA,et al.Physical Modelling of Tundish Plasma Heating and Its Mathematical Interpretation[J],ISIJ International,1996,36(9):1174-1183.
    41.橘高节生.八幡厂2号连铸机中间包感应加热装置[J],铁と钢,1995,(8):30-33.
    42.橘高节生.新日铁开发的双抢式中间包等离子加热装置“NS-Plasma Ⅱ”[J],鞍钢技术,2005,(6):50-53.
    43.樊俊飞,张清郎,朱苗勇,等.六流连铸中间包等离子加热过程的数值模拟[J],金属学报,2001,37(4):429-433.
    44.樊俊飞,刘俊江,卢金雄,等.等离子加热六流连铸中间包底吹气过程数值模拟优化研究[J],宝钢技术,2007,(5):67-70.
    45.王存,潘公平,杨春政,等.中间包钢水等离子体加热试验研究[J],钢铁,1997,32(9):21-24.
    46.Goodwill J E.Developing Plasma Applications in the USA.Ironmaking and Steelmaking [J],1990,17(5):350-354.
    47.王建军,杨洪亮,王进,等.小方坯连铸机中间包等离子枪加热三维温度场数模研究[J],钢铁,1995,30(6):22-26.
    48.李延辉,胡学军,李润生,等.连铸中间包钢水等离子加热工艺开发与实践[J],冶金能源,1998,17(5):11-17.
    49.周筠清,方建华.钢水在中间包内温降的数学模型[J],北京科技大学学报,1991,13(4):90-96.
    50.胡署名,王兴玉.宝钢1450板坯连铸中间包钢液等离子加热[J],重型机械,2004,(6):9-13.
    51.向顺华,刘应书,高仲龙.连铸中间包中钢水的加热[J],工业加热,1993,(6):8-12.
    52.欧俭平.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D],长沙:中南大学,2004,8.
    53.李润生,周大刚,胡学军,等.具有加热功能的连铸中间包研究[J],钢铁,1996,31(1):31-34.
    54.P.R.Austm,J.M.Camplin,J.Herbertson,et al.Mathematical Modelling of Thermal Stratification and Drainage of Steel Ladles[J],ISIJ international,1992,32(2):196-202.
    55.么秋杨.连铸中间包等离子加热技术国内外应用及发展[J],四川冶金,1997,(2):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700