用户名: 密码: 验证码:
水钢20MnSi钢水和铸坯洁净度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洁净钢的生产已成为21世纪钢铁材料发展的主流之一,对于大多数企业来说,在现有装备条件下开展各种工艺流程下的钢水洁净度调查和研究,据此优化生产工艺、确定产品发展战略,是比较经济合理的方法。
     20MnSi螺纹钢是常用的建筑材料,在混凝土材料中起着减震、支撑等作用。本论文以水钢“转炉—吹氩—小方坯连铸”工艺生产20MnSi螺纹钢为基础,对钢水及铸坯洁净度进行了研究,结论如下:
     ①通过过程系统取样,采用大样电解、氧氮分析、金相观测、扫描电镜、电子探针等手段,对现工艺条件下冶炼-连铸过程20MnSi钢水和铸坯的夹杂物行为进行了研究,明确了钢水及铸坯洁净度状况,为优化生产工艺,提高20MnSi钢洁净度提供了依据。
     ②研究表明:吹氩前钢液T[O]为157.73ppm,夹杂量平均为2550mg/10kg钢;吹氩后T[O]和夹杂量分别降低30.77ppm和850mg/10kg钢;中间包浇铸前期T[O]为130.33ppm,夹杂量为579.79mg/10kg钢,浇铸后期T[O]和夹杂量分别增加1.33ppm和53.39mg/10kg钢;铸坯中T[O]为74.79ppm,夹杂量平均为251.88mg/10kg钢。这说明水钢20MnSi与国内外洁净钢生产企业有较大差距,提高其洁净度还有较大的工艺改进空间。
     ③分析表明:影响现工艺下钢水及铸坯洁净度的主要影响因素有脱氧制度、吹氩制度、中间包结构,另外非稳态浇铸时钢包下渣、中包渣吸收夹杂能力差、结晶器卷渣也降低了钢水及铸坯洁净度。生产操作和工艺的波动也是不可忽略的因素。
     ④对影响钢水及铸坯洁净度的因素进行了分析,从改变夹杂物类型的角度和促进夹杂物上浮排除的角度分别对脱氧制度和吹氩制度、中间包结构进行了探讨;同时为避免大包下渣、钢液的二次氧化、结晶器卷渣等也提出建议,为炼钢-连铸的洁净化生产奠定了基础。
The manufacture of cleanliness steel has been the developing mainstream of the steel material in 21th century. For most corporations, putting forward the reasonable measures is a feasible way to meet the trend through the producing and technologic researches of typical steel.
     20MnSi reinforced steel is one of the construction materials in common use, which has the fuctions of damping and sustaining. The cleanliness of 20MnSi produced by the route of converter—ladle furnace—three strands billet caster in Shuicheng steel was studied and the factors affecting the cleanliness were found and discussed.
     ①By sampling in each process, combining large sample electrolysis, oxygen and nitrogen analysis, metallographical observation, SEM and EDS etc, the behavior of inclusions in liquid steel and billet was studied during smelting-casting, and the cleanliness level was educed, which provided proofs to optimize technology and improve the cleanliness of 20MnSi.
     ②Total oxygen contents are 157.73×10-6 and the total amount of the inclusions is 2550mg/10kg of the liquid steel before Ar stirring, 30.77×10-6 and 850mg/10kg decrease respectively after Ar stirring, 103.49×10-6 of liquid steel in tundish with 579.79mg/10kg for prophase, 1.33×10-6 and 53.39mg/10kg decrease respectively for anaphase, 74.79×10-6 T[O] and 251.88mg/10kg of inclusions in billet. The results showed that it had a large distance between 20MnSi in Shuicheng and other developed companies, however, there are improving space for 20MnSi cleanliness.
     ③Through the analysis upwards, the factors mostly affecting the cleanliness of 20MnSi liquid steel and billet were deoxidization system, Ar stiring system, the structure of tundish, and the slags down from ladle during unstable casting period, the low ablity of tundish slags for absorbing inclusions and the entanglement of mould fluxes accounting for the low cleanliness of 20MnSi, the fluctuation of operation and technology during the production could not be ignored.
     ④The factors influenting 20MnSi liquid steel and billet were analysed. The deoxidization system, Ar stiring system and the structure of tundish were discussed for changing the pattern of inclusions and boosting the removement of inclusions apart, and there ware some suggestions for avoiding the slags form ladle, the second oxidization of the liquid steel and the entanglement of mould fluxes, all of these bulit basement of clean steel production for shuicheng steel corporation.
引文
[1] 李世骏.中国钢铁工业现状及发展.第八届全国连铸学术年会报告.海口,2007.3
    [2] 翁宇庆.国内外钢铁材料发展的新动向.中国冶金, 2001(5): 2~5.
    [3] 刘东风,赵兴国.关于纯净化细晶化钢铁材料的探讨.机械管理开发,2003(6): 1~2.
    [4] 魏成富,李静媛.洁净钢与零夹杂物钢.钢铁研究学报,1996,8(5): 61~62.
    [5] L.F.K.Holappa.洁净钢的理论和生产手段. 90年代钢铁工业的的发展趋势-第六届国际钢铁大会译文集.北京:中国金属学会《钢铁》编辑部,1991,165.
    [6] 李静媛等.洁净钢和零夹杂物钢.全国第七届质量和夹杂的学术会议论文集.桂林,1991:112.
    [7] International Iron and Steel Institute.State of the Art and Process Technology in Clean Steelmaking.Brussels,Belgium,2004:3.
    [8] 潘秀兰,王艳红.洁净钢生产技术初探.鞍钢技术,2002(6):9~10.
    [9] Ibuki I et al.Technology to Reduce Non-metallic Inclusion for Clean Steel.Proceedings of the 122nd Report of the ISIJ Meeting.Hiroshima Japan: Zairyo to purosesu(Currency Advanced Meterail Process),1991:1210.
    [10] 潘秀兰,郭艳玲等.国内外纯净钢生产技术的新进展.鞍钢技术,2003(5):1~5.
    [11] 崔峥.洁净钢生产技术的国内外概况.云南冶金,2001,30(5):25~26.
    [12] 蔡开科,张立峰等.纯净钢生产技术及线状.河南冶金,2003,11(3):4~6.
    [13] 张立峰,吴巍等.洁净钢中杂质元素的控制.炼钢,1996(5):37~42.
    [14] 李正邦.超纯净钢的新进展.材料与冶金学报,2002(3):161~165.
    [15] T.Kishids 等.炉外精炼是大同连铸的基础.国外炉外精炼技术译文集(一).北京,冶金部炉外精炼办公室,1993:124.
    [16] N.Bannenberg et al.Combined decrease of sulphur、nitrogen、hydrogen and totaloxgen in only one secondary steelmaking operation.Steel research,1993,63(10):431.
    [17] 余志祥等.纯净钢的生产实践.炼钢,2002(3):6~7.
    [18] 朱立新等.宝钢纯净钢生产技术进展.钢铁,2000(11):23~24.
    [19] 贾宝军等.武钢管线钢生产情况及发展规划.焊管,2001(1):34.
    [20] 潘秀兰译.钢洁净度的评定和控制.鞍钢技术,2004(1):58~61.
    [21] J.Schade et al.The measurement of steel Cleanliness.Steel Technology International,1993:149.
    [22] S.R.Bulajec 等.内陆钢公司第四转炉炼钢厂生产洁净钢的原料加工和改进.国外炉外精炼技术译文集(一).北京,冶金部炉外精炼办公室,1993:106.
    [23] W.A.Brawn 等.阿姆柯公司阿什兰厂提高板坯连铸中间包包龄的实践.中间包冶金技术论文集.攀枝花,钢研院科技信息中心,1994:45.
    [24] 蔡开科.提高深冲薄板连铸坯纯净度的研究(课题总结).1994:39~49.
    [25] S.R.Cameron.Dofasco 钢铁公司减少连铸时中间包水口的阻塞.中间包冶金技术论文集.攀枝花,钢研院科技信息中心,1994:88.
    [26] L.Kuchar.Steelmaking conference proceeding.1993:445~502.
    [27] D.V.Barradell et al.The development of secondary steelmaking process routes for the successful continous casting of flat product.Second European CC Conference 6th International Rolling conference.Dusseldorf,June,1994:20~22.
    [28] H.Kondo 等.Q―BOP―RH 流程综合精炼工艺生产超低碳钢. 国外炉外精炼技术译文集(一).北京,冶金部炉外精炼办公室,1993:86~90.
    [29] C.M.Lee et al.Producion of high purity aluminum killed steel.La Revue de Metallurgie-CIT,April,1993.
    [30] Fukumotos, Mitchella. The manufacture of alloy swith zero oxide inclusion content[A]. Proceedings of the 1991 vacuum metallurgy conference on the melting and processing of specialty material[C]I&SS,Inc.Pittsburgh,USA,1991:3~7.
    [31] 陈家祥.钢铁冶金学[M].北京:冶金工业出版社,1995:16~17.
    [32] S.D.Melville and L.Brinkmeyer. 78th Steelmaking Conf. Proc., ISS, Warrendale, PA, 1995:563.
    [33] 袁昌扬.60Si2MnA 钢化学成分对性能的影响.江西冶金,1993(3):22~25.
    [34] Kiessling R.Clean Steel,London,U.K. The Iron & Steel Institute,Nov.,1962: 28~29.
    [35] 余宗森,袁泽喜.钢的成分、残留元素及其性能的定量关系.北京:冶金工业出版社,2001:249~251.
    [36] 中华人民共和国国家标准.GB1499-84,1985:152~153.
    [37] 蔡开科.连续铸钢[M].北京:科学出版社,1990:137~140.
    [38] 宋维锡.金属学[M].北京:冶金工业出版社,1980.
    [39] T.J.Baker,K.B.Gove,et al.Metal Tech.1976(4):183.
    [40] 曲英.炼钢学原理.北京:冶金工业出版社,1981:212~215.
    [41] Kiesslin.R.钢中非金属夹杂物.鞍钢钢铁研究所编译,1980:176.
    [42] T.Malkiewica.Deformation of non-metallic inclusion during rolling of steel.ISIJ,1963:33~38.
    [43] R.Kiessling.The influence of non-metallic inclusion on the properties of steel.J.of.Metals,1969:48~54.
    [44] G.Bernard et al.Oxide inclusions plasticity.Revue de Metallurgic-CIT,Mai,1981:421~433.
    [45] N.A.McPherson,A.McLean.Continuous Casting,7,Non-Metallic inclusion in Continuously Cast Steel,1995:1~65.
    [46] S.Maeda,T.Soejima et al.Shape control of inclusions in wire rods for high tensile tire cord by refining with synthetic slag.Steelmaking Conference Proceedings,1989:379~385.
    [47] 坪井润一郎,平井征夫.溶接学会言志,1981:29.
    [48] H.V.Atijinson,G.Shi.Characterization of inclusion in clean steel:a review including the statistics of extremes methods.Progress in Materials Science.2003,Vol.48:457~520.
    [49] Laihua Wang,Hac-Geon.Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation.ISIJ Int.1996,36(1):7~16.
    [50] Pan wei.Tetsu-to-Hagane.1992,78(8):1361.
    [51] A.W.Cramb,I.Jimbo.I&SM.June,1989:43.
    [52] 韦冈博幸.炉外精炼—向多品种、高质量钢大生产的挑战.冶金工业出版社,2002:232~235.
    [53] C.W.Anderson,G.Shi.The Precision of Methods Using the Statistics of Extremes for the Estimation of Maximium Size of Inclusions in Clean Steels.Acta mater. 2000,Vol. 48:4235~4246.
    [54] 何燕霖,吴晓春等.计算热力学在钢中非金属夹杂物研究中的应用.上海金属,2004
    [55] 杨阿娜,刘学华.炼钢过程钢中氧的控制.钢铁研究学报,2005.17(3):21~25.
    [56] 陈襄武.炼钢过程的脱氧[M].北京:冶金工业出版社.1991:79~81.
    [57] 梁福彬,万爱珍.电弧炉炼钢终脱氧上艺的改进及应用.铸造技术,1999(3):6~9.
    [58] 王忠英.钡合金对钢液脱氧和夹杂物变性影响的理论分析.钢铁研究,2003(6):31~34.
    [59] 李阳等.含钡合金的生产对其钢液脱氧行为的研究.铁合金,2003(5):6~11.
    [60] 杨武,王忠英等.钡合金对 GCr15 钢脱氧和夹杂物变性的研究.钢铁研究,2002(4):21~24
    [61] J.M.Hampshire.The bearing industry view.Proceedings of the third international conference on cleansteel,Hungary,1986:209~213.
    [62] Hsiaotse-chiang,Lehner,theo,et al.Fluid flow in ladles—Experimental Rusults.Scand.Journal of Metallurgy,1980(9):105~110.
    [63] 薛正良,李正邦.LF 钢包精炼过程中的脱氧.武汉科技大学学报,2001.24(2):111~114.
    [64] 杨宪礼,马兴云等.中小转炉钢水的精炼工艺.炼钢,2004.20(3):10~12.
    [65] Kiessling R.Non-metallic inclusion in steel [M].Met.Soc.London.1978 Kiessling R. ”Clean steel”, Proc.2nd Int.Conf.London,1983:1.
    [66] 蔡开科,胡勤东.高拉速小方坯铸坯中夹杂物行为.钢铁,2001.36(3):23~25.
    [67] B.Kaufmann. Separation of Nonmetallic Particle in Tundishes. Steel Research, 1993(64):262~270.
    [68] A.K.Sinha, Y.Sahai,Mathematical Modelling of Inclusion Transport and Removal in CC Tundish, 1993 ISIJ,(Vol.33):556~566.
    [69] 张立峰.纯净钢钢水洁净度的工艺及理论研究.北京科技大学.博士论文,1998.
    [70] 苏振江.六流大方坯连铸中间包和结晶器内钢液行为研究.重庆大学硕士学位论文,2004.
    [71] R.D.MORALES, J.de J.BARRETO. Melt Flow Control in a Multistrand Tundish Using aTurbulence Inhibitor. Metallurgical and Materials Transactions B. 2000,Vol.31B:1505~1515.
    [72] 周汉香,于学斌.电磁搅拌对铸坯质量的影响.武钢技术,2004.42(3):47~50.
    [73] 张宏丽,贾交霖等.电磁搅拌改善铸坯内部质量的实验研究.东北大学报.2001,22(3):315~318.
    [74] 王学东等.电磁搅拌技术的国内外发展现状.辽宁工程技术大学学报,2001,20(1):82~83.
    [75] 蔡开科.凝固与浇注[M].北京:冶金工业出版社,1987.
    [76] 王兆达.冶金保护材料理论与实践[M].沈阳:东北大学出版社,2005,1~3.
    [77] Irons GA.Steelmaking Conference Proceeding,1992:255~260.
    [78] 聂雨青.20MnSi 钢脱氧合金化工艺优化的研究.湖南冶金,2000(4),18~21.
    [79] 谢兵,王雨,王谦等.重钢现有工艺条件下铸坯洁净度调查报告.重庆,2004.
    [80] 方 福 进 等 . 硅 铝 钡 钙 复 合 脱 氧 剂 在 转 炉 炼 钢 中 的 应 用 . 河 北 理 工 学 院 学 报增刊,2000,22:26~28.
    [81] 蔡开科,陈士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700