用户名: 密码: 验证码:
Bis(7)-tacrine对NMDA受体的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Tacrine,memantine和bis(7)-tacrine对培养大鼠海马神经元NMDA电流抑制作用比较
     阿尔茨海默病(Alzheimer’s disease,AD)发病机制与胆碱能神经元功能缺损以及神经元凋亡均有密切关系。在治疗AD,特别是防止AD及其它神经退行性病变方面,兼具抗凋亡作用的乙酰胆碱酯酶抑制剂如bis(7)-tacrine将会比单纯的乙酰胆碱酯酶抑制剂发挥更有效的作用。本实验通过膜片钳技术,利用原代培养的大鼠海马神经元,将bis(7)-tacrine与tacrine和memantine对N-methyl-D-aspartate(NMDA)电流的抑制作用做比较,并进一步研究bis(7)-tacrinec对NMDA受体的作用机制。结果显示,三种药物均选择性地作用于NMDA受体,浓度依赖性地抑制NMDA电流,其IC50值分别为3.61±0.78μM,112.33±19.83μM和8.82±1.03μM。Tacrine和memantine均为“开放通道阻滞剂”,作用于NMDA受体通道的内部,表现为“激动剂依赖性”和“电压依赖性”;前者与NMDA受体结合与解离的速度更快,25μM以上浓度tacrine与NMDA同时作用时,停药后产生一内向延迟电流峰。而bis(7)-tacrine对NMDA电流的抑制作用不同于tacrine和memantine,提前1 s给药能明显提高bis(7)-tacrine的抑制作用,但提前更长时间(2-90 s)并无进一步抑制。在钳制电压-50至+50mV的范围内,bis(7)-tacrine对NMDA电流的抑制率没有变化,I-V曲线的翻转电位也没有改变。Bis(7)-tacrine没有明显改变NMDA的EC50值[49.48±2.93μM in the absence of bis(7)-tacrine vs 57.32±8.43μM in the presence of bis(7)-tacrine;ANOVA,P﹥0.05;n = 7-8],但使NMDA最大反应浓度(Emax)降低了约40%(ANOVA,P﹤0.05;n = 7-8),显示bis(7)-tacrine的作用为非竞争性地抑制NMDA激活电流。结果提示,作为一种新型二聚体胆碱酯酶抑制剂,bis(7)-tacrine对NMDA激活电流的的抑制作用强于tacrine和memantine,其作用机制也与它们不同,是以慢作用方式、非竞争性地抑制NMDA激活电流,其临床使用的效能和安全性可能较高。
     第二部分Bis(7)-tacrine对培养大鼠海马神经元NMDA受体可能的作用位点研究
     最近的研究证实,bis(7)-tacrine除作为一种乙酰胆碱酯酶抑制剂外,还可通过抑制原代培养大鼠小脑颗粒细胞NMDA受体而防止谷氨酸导致的神经元凋亡。本实验通过全细胞膜片钳记录研究bis(7)-tacrine对原代培养大鼠海马神经元NMDA受体可能的作用位点。结果发现,细胞外液中甘氨酸的浓度从0.1μM增加至10μM,细胞外液pH值从8.1改变到6.7,在细胞外液中加入二硫苏糖醇(2 mM)、精胺(10μM)、镁离子(10至100μM)或锌离子(5至20μM)均不引起bis(7)-tacrine对NMDA电流抑制率的改变。电极内液中加入25μM bis(7)-tacrine也未观察到外加的2.5μM bis(7)-tacrine对30μM NMDA激活电流抑制率的改变(37±3% vs对照组36±4%,P﹥0.05;n = 4)。但是,2.5μM bis(7)-tacrine及5μM dizocilpine(MK-801)分别对30μM NMDA激活电流抑制了36%和22%,而在两种药物都存在的条件下,30μM NMDA电流仅被抑制了37%。结果提示, bis(7)-tacrine虽然不大可能作用于MK-801位点,但MK-801却可以负性调制bis(7)-tacrine对NMDA受体的抑制作用。
     第三部分Bis(7)-tacrine对表达NR1/NR2A或NR1/NR2B受体的HEK-293细胞NMDA电流抑制作用
     在正常大鼠前脑,NMDA受体复合物的构成形式主要是NR1/NR2A和NR1/NR2B的二合体形式,少部分以NR1/NR2A/NR2B的三合体形式存在。因此,我们进一步通过表达NR1/NR2A或NR1/NR2B受体到培养的HEK-293细胞,利用膜片钳技术来研究bis(7)-tacrine对NMDA电流的抑制作用。结果显示,在同时给药的情况下,作用于表达了NR1/NR2A受体的HEK-293细胞时,1μM bis(7)-tacrine对30μM NMDA和1000μM NMDA激活稳态电流的抑制分别为46%和40%(ANOVA,P﹥0.05;n = 5),显示其作用方式可能与NMDA浓度无关,可能为非竞争性抑制;而作用于表达了NR1/NR2B受体的HEK-293细胞时,1μM bis(7)-tacrine对NMDA电流的抑制与NMDA浓度有关,对30μM NMDA和1000μM NMDA激活稳态电流的抑制分别为61%和13%(ANOVA,P﹤0.05;n = 6),这似乎是一种竞争性的作用方式。但在1000μM NMDA作用条件下,同时给予1μM bis(7)-tacrine对NMDA激活电流峰值产生了一定的抑制作用,电流逐渐下降到稳态,而在同一细胞上提前5秒给予1μM bis(7)-tacrine却可以将峰值几乎完全抑制。这一结果表明,bis(7)-tacrine对表达NR1/NR2B受体NMDA电流的抑制作用可能为慢作用方式,并不依赖于激动剂的存在。钳制电压从-50到+50mV变动范围内,bis(7)-tacrine对NMDA电流的抑制率没有发生变化,而且其翻转电位没有改变。这些结果与我们前面用培养的海马神经元实验结果趋于一致,证明bis(7)-tacrine作用于表达的NR1/NR2B受体时,还是以非竞争性方式,无激动剂依赖性和电压依赖性,并且对离子的通透没有发生选择性变化。结果提示:在作用于表达了NR1/NR2A或NR1/NR2B的HEK-293细胞时,bis(7)-tacrine仍然以非竞争性方式抑制NMDA电流,可以此为模型进一步开展有关其分子机制的实验研究。
Part 1 Comparison of the inhibition by tacrine, memantine and bis(7)-tacrine of N-methyl-D-aspartate-activated currents in cultured rat hippocampal neurons
     The cellular mechanism of Alzheimer’s disease (AD) is closely related to cholinergic disfunction and neuronal apoptosis. In treating AD, especially in preventing AD and other neurodegenerative diseases, acetylcholinesterase inhibitors, such as bis(7)-tacrine, which possess anti-apoptosis functions should be more effective than compounds that only have pure acetylcholinesterase inhibitory properties. The present study was carried out to determine the inhibitory mechanisms of bis(7)-tacrine by comparing it with tacrine and memantine in primary cultured rat hippocampal neurons using whole-cell patch-clamp techniques. The results indicate that, all three drugs selectively produced a concentration-dependent inhibition of NMDA-activated current (IC50 values of 3.61±0.78μM, 112.33±19.83μM, 8.82±1.03μM for bis(7)-tacrine, tacrine and memantine, respectively). Both tacrine and memantine were‘open channel blockers’, acted at the inner of NMDA receptor channels, showing‘agonist-dependency’and‘voltage-dependency’. The former had quicker association and disassociation rate with NMDA receptor than the latter. Tacrine at a concentration above 25μM inhibited NMDA-evoked current by enhancing receptor desensitization, followed by a delayed current peak just after cessation of drug application. However, the inhibition of NMDA-activated currents by bis(7)-tacrine was different from that of tacrine and memantine: inhibition was enhanced largely by 1 s preapplication of bis(7)-tacrine, but longer preapplication (2-90 s) had no more inhibitory effect. The percentage inhibition of NMDA-activated current by bis(7)-tacrine was not significantly different at the holding potentials ranging from -50 to +50 mV, without changing the reversal potential too. Bis(7)-tacrine did not significantly change the EC_(50) value of NMDA-activated current [49.48±2.93μM in the absence vs 57.32±8.43μM in the presence of bis(7)-tacrine; ANOVA, P﹥0.05;n = 7-8], but decreased the E_(max) of NMDA current by 40% (ANOVA, P﹤0.05; n = 7-8), showing that the inhibition of NMDA-induced currnet by bis(7)-tacrine was non-competitive. These results also suggest that bis(7)-tacrine, a novel dimeric acetylcholinesterase inhibitor, more potently inhibits NMDA receptor function than tacrine and memantine by a slow onset, non-competitive mechanism, which may have better clinical efficiency and safety properties.
     Part 2 Investigation of N-methyl-D-aspartate receptor modulatory sites possibly involved in the bis(7)-tacrine inhibition in cultured rat hippocampal neurons
     Bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, has been proposed as one of the most promising agents to treat Alzheimer’s disease. Recently, the agent was found to prevent glutamate-induced neuronal apoptosis by inhibiting N-methyl-D-aspartate (NMDA) receptors in cultured rat cerebellar granule neurons in addition to causing an inhibitory effect on acetylcholinesterase. In the present study, the possible modulatory site of bis(7)-tacrine on NMDA receptors was investigated using whole-cell patch-clamp recording in cultured rat hippocampal neurons. The inhibitory rates of bis(7)-tacrine were neither altered by changing the concentrations of glycine (0.1-10μM) or proton (pH 8.1-6.7) in the external solution, nor by adding ditiothreitol (2 mM), spermine (10μM), Mg~(2+) (10-100μM), or Zn~(2+) (5-20μM) to the external solution. 25μM bis(7)-tacrine in the recording pipette solution did not alter the inhibition rate of 30μM NMDA-activated current by 2.5μM bis(7)-tacrine applied externally (37±3% vs coltrol of 36±4%, P﹥0.05; n = 4). However, 2.5μM bis(7)-tacrine and 5μM dizocilpine (MK-801) inhibited NMDA-activated currents by 36% and 22%, respectively; co-application of these two drugs only inhibited NMDA-activated currents by 37%. The results suggest that, although bis(7)-tacrine is very unlikely acting at the MK-801 site, MK-801 could negatively modulate the inhibition of NMDA receptor function by bis(7)-tacrine.
     Part 3 Inhibition of N-methyl-D-aspartate-activated current by bis(7)-tacrine in HEK-293 cells expressing NR1/NR2A or NR1/NR2B receptors
     In normal rat forebrain the NR1/NR2A and NR1/NR2B dimmers, but not the NR1/NR2A/NR2B trimer, are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of heteromeric NMDA receptor subunits composed by NR1/NR2A or NR1/NR2B expressed in HEK- 293 cells and their inhibition by bis(7)-tacrine using whole-cell patch-clamp techniques. The results demonstrate that, when co-applied to HEK-293 cells expressing NR1/NR2A receptors, 1μM bis(7)-tacrine inhibited 30μM NMDA- and 1000μM NMDA-activated steady-state current by 46% and 40%, respectively (ANOVA, P﹥0.05; n = 5), suggesting that the inhibition of bis(7)-tacrine doesn’t depend on NMDA concentration which is consitant with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1μM bis(7)-tacrine inhibited 30μM NMDA- and 1000μM NMDA-activated steady-state current by 61% and 13%, respectively (ANOVA, P﹤0.05; n = 6), showing that it appears to be competitive with NMDA. In addition, simultaneous application of 1μM bis(7)-tacrine and 1000μM NMDA produced a moderate inhibition of peak NMDA-activated current, followed a gradual decline of the current to a steady-state. However, when 1μM bis(7)-tacrine was applied for 5 s before NMDA, the peak current was almost completely inhibited. These results show that bis(7)-tacrine inhibition of NMDA current on NR1/NR2B was slow onset, and it did not depend on the existing of agonist. With holding potential ranging from -50 to +50 mV, the bis(7)-tacrine inhibition rate of NMDA current was the same, and the reversal potential did not change too. The results are consitant with what we have observed in cultured hippocampal neurons, showing that bis(7)-tacrine inhibits NR1/NR2B receptors in a non-competitive, agonist-independent and voltage-independent manner. These results also indicate that the NR1/NR2A and NR1/NR2B receptors could be used to study the molecular mechanism of bis(7)-tacrine inhibition.
引文
1. Mattson MP. Cellular Actions ofβ-Amiloid precursor protein and its soluble and fibrillogenic deriveatives. Physiol Rev, 1997,77: 1081-1085.
    2. Sleegers K, Van Duijn CM. Alzheimer’s disease: genes, pathogenesis and risk prediction. Community Genet, 2001, 4: 197-203.
    3. Krall WJ, Sramek JJ, Cutler NR. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother, 1999, 33: 441-450.
    4. Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf, 1998, 19(6): 465-480.
    5. Rogawski MA and Wenk GL. The Neuropharmacological basis for the memantine in the treatment of Alzheimas’s disease. CNS Drug Reviews, 2003, 9: 275-308.
    6. Samanta MK, Wilson B, Santhi K, et al. Alzheimer disease and its management: a review. Am J Ther, 2006, 13(6): 516-526.
    7. Pang YP, Quiram P, Jelacic T, et al. Highly potent, selective, and low cost bis-tetrahydroaminacrines inhibitors of acetylcholinesterase. Steps toward novel drugs for treating Alzheimer’s disease. J Biol Chem, 1996, 271: 23646-23649.
    8. Wang H, Carlier PR, Ho WL, et al. Bis(7)-tacrine, a novel anti-Alzheimer's agent, on rat brain AChE. NeuroReport, 1999, 10: 789-793.
    9. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330(9): 613-622.
    10.Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol, 1992, 54: 507-536.
    11.Ellerby LM. Hunting for excitement: NMDA receptors in Huntington’s disease. Neuron, 2002, 33(6): 841-842.
    12.Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature, 1999, 399: A7-14.
    13.Blandini F, Greenamyre JT, Nappi G. The role of glutamate in the pathophysiology of Parkinson’s disease. Funct Neurol, 1996, 11(1): 3-15.
    14.Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15(4): 961-973.
    15 . Bachis A, Colangelo AM, Vicini S, et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci, 2001, 21(9): 3104-3112.
    16.Lusardi TA, Wolf JA, Putt ME, et al. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J Neurotrauma, 2004, 21(1): 61-72.
    17.Wu DC, Xiao XQ, Ng AK, et al. Protection against ischemic injury in primary cultured mouse astrocytes by bis(7)-tacrine, a novel acetylcholinesterase inhibitor [corrected]. Neurosci Lett, 2000, 288(2): 95-98.
    18.Xiao XQ, Lee NT, Carlier PR, et al. Bis(7)-tacrine, a promising anti-Alzheimer’s agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cells: comparison with tacrine. Neurosci Lett, 2000, 290(3): 197-200.
    19.Li CY, Wang H, Xue H, et al. Bis(7)-tacrine, a novel dimeric AChE inhibitor, is a potent GABA(A) receptor antagonist. Neuroreport, 1999, 10(4): 795-800.
    20.Li W, Pi R, Chan HH, et al. Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors. J Biol Chem, 2005, 280(18): 18179-18188.
    21.Cheng XP, Qin S, Dong LY, et al. Inhibitory effect of total flavone of Abelmoschus manihot L. Medic on NMDA receptor-mediated current in cultured rat hippocampal neurons. Neurosci Res, 2006, 55(2): 142-145.
    22.Fu H, Li W, Lao Y, et al. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem, 2006, 98(5):1400-1410.
    23.Nie H, Yu WJ, Li XY, et al. Inhibition by bis(7)-tacrine of native delayed rectifier and KV1.2 encoded potassium channels. Neurosci Lett, 2007, 412(2): 108-113.
    24 . Hershkowitz N, Rogawski MA. Tetrahydroaminoacridine block of N-methyl-D-aspartate-activated cation channels in cultured hippocampal neurons. Mol Pharmacol, 1991, 39(5): 592-598.
    25.Parsons CG, Gruner R, Rozental J, et al. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neruopharmacology, 1993, 32(12): 1337-1350.
    26.Costa AC, Albuquerque EX. Dynamics of the actions of tetrahydro-9-aminoacridine and 9-aminoacridine on glutamatergic currents: concentration-jump studies in cultured rat hippocampal neurons. J Pharmacol Exp Ther, 1994, 268(1): 503-514.
    27.Vorobjev VS, Sharonova IN. Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner. Eur J Pharmacol, 1994, 253(1-2): 1-8.
    28.Li CY. Novel Mechanism of Inhibition by the P2 Receptor Antagonist PPADS of ATP-Activated Current in Dorsal Root Ganglion Neurons. J Neurophysiol, 2000, 83: 2533-2541.
    29.Peoples RW, Li C. Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol, 1998, 124(2):400-408.
    30.Marszalec W, Narahashi T. Use-dependent pentobarbital block of kainate and quisqualate currents. Brain Res, 1993, 608(1): 7-15.
    31.Newland CF, Cull-Candy SG. On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurons of the rat. J Physiol, 1992, 447: 191-213.
    1. Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev, 1999, 51(1): 7-61.
    2. Lisman JE and McIntyre CC. Synaptic plasticity: a molecular memory switch. Curr Biol, 2001, 11: 788-791.
    3. Nakazawa K. Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 2002, 297(5579): 211-218.
    4. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature, 1999, 399 (6738 Suppl): A7-14.
    5. Ellerby LM. Hunting for excitement: NMDA receptors in Huntington's disease. Neuron, 2002, 33(6): 841-842.
    6. Blandini F, Greenamyre JT, Nappi G. The role of glutamate in the pathophysiology of Parkinson's disease. Funct Neurol, 1996, 11(1): 3-15.
    7.Wang H, Carlier PR, Ho WL, et al. Effects of bis(7)-tacrine, a novel anti-Alzheimer’s agent, on rat brain AChE. Neuroreport, 1999, 10(4): 789-793.
    8. Li CY, Wang H, Xue H, et al. Bis(7)-tacrine, a novel dimeric AChE inhibitor, is a potent GABA(A) receptor antagonist. Neuroreport, 1999, 10(4): 795-800.
    9. Luo JL, Zhang J, Guan BC, et al. Inhibition by bis(7)-tacrine of 5-HT-activated current in rat TG neurons. Neuroreport, 2004, 15(8): 1335-1338.
    10.Ros E, Aleu J, Gomez de Aranda I, et al. Effects of bis(7)-tacrine on spontaneous synaptic activity and on the nicotinic ACh receptor of Torpedo electric organ. J Neurophysiol, 2001, 86(1): 183-189.
    11.Fu H, Li W, Lao Y, et al. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem, 2006, 98(5): 1400-1410.
    12.Nie H, Yu WJ, Li XY, et al. Inhibition by bis(7)-tacrine of native delayed rectifierand KV1.2 encoded potassium channels. Neurosci Lett, 2007, 412(2): 108-113.
    13.Li W, Pi R, Chan HH, et al. Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors. J Biol Chem, 2005, 280(18): 18179-18188.
    14.Cheng XP, Qin S, Dong LY, et al. Inhibitory effect of total flavone of Abelmoschus manihot L. Medic on NMDA receptor-mediated current in cultured rat hippocampal neurons. Neurosci Res, 2006, 55(2): 142-145.
    15.Peoples RW, Li C. Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol, 1998, 124(2):400-408.
    16.Wang XD, Zhang JM, Yang HH, et al. Modulation of NMDA receptor by huperzine A in rat cerebral cortex. Zhongguo Yao Li Xue Bao, 1999, 20(1): 31-35.
    17 . Zhang JM, Hu GY. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience, 2001, 105(3): 663-669.
    18.Costa AC, Albuquerque EX. Dynamics of the actions of tetrahydro-9-aminoacridine and 9-aminoacridine on glutamatergic currents: concentration-jump studies in cultured rat hippocampal neurons. J Pharmacol Exp Ther, 1994, 268(1): 503-514.
    19.Vorobjev VS, Sharonova IN. Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner. Eur J Pharmacol, 1994, 253(1-2): 1-8.
    20.Parsons CG, Gruner R, Rozental J, et al. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neruopharmacology, 1993, 32(12): 1337-1350.
    21.Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U. S. A., 1988, 85: 1307-1311.
    22 . Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci, 1992, 12: 4427-4436.
    1. Luo J, Wang YH, Yasuda RP, et al. The majority of N- methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharma2 col, 1997, 51(1): 79-86.
    2. Chazot PL, Stephenson FA. Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J Neurochem, 1997, 69(5):2138-2144.
    3. Luo J, Bosy TZ, Wang Y, et al. Ontogeny of NMDA R1 subunit protein expression in five regions of rat brain. Brain Res Dev Brain Res, 1996, 92(1):10-17.
    4. Wenzel A, Scheurer L, Kunzi R, et al. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport, 1995,7(1):45-48.
    5.徐铁军,樊红彬,张凤真,等. NMDA受体亚单位NR1、NR2A和NR2B在大鼠海马的免疫组织化学表达.解剖学杂志, 2002, 25(2): 128-133.
    6 . Brimecombe JC, Potthoff WK, Aizenman E. A critical role of the N-methyl-D-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors. J Pharmacol Exp Ther, 1999, 291(2):785 - 792.
    7. Chumpyadit S, Kung MP, Vessotskie J, et al. Iodinated 2-aminotetralines and 3-amino-1 benzopyrans: ligands for dopamine D2 and D3 receptors. J Med Chem, 1994; 37(24): 4245-4550.
    8. Moore RH, Sadovnikoff N, Hoffenberg S, et al. Ligand-stimulatedβ2-adrenergic receptor internalization via the constitutive endocytic pathway into rab 5-containing endosomes. J Cell Sci, 1995, 108 (p t9): 2983-2991.
    9. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 2001, 11(3): 327-335.
    10. Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels.Pharmacol Rev, 1999, 51:7-61.
    11.Lisman JE and McIntyre CC. Synaptic plasticity: a molecular memory switch. Curr Biol, 2001, 11: 788-791.
    12.Nakazawa K. Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 2002, 297(5579): 211-218.
    13.Mohn AR, Gainetdinov RR, Caron MG, et al. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell, 1999, 98: 427-436.
    14.Tsai G and Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol, 2002, 42: 165-179.
    15. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature, 1999, 399 (6738 Suppl): A7-14.
    16. Ellerby LM. Hunting for excitement: NMDA receptors in Huntington’s disease. Neuron, 2002, 33(6): 841-842.
    17. Blandini F, Greenamyre JT, Nappi G. The role of glutamate in the pathophysiology of Parkinson's disease. Funct Neurol, 1996, 11(1): 3-15.
    18.Dunah AW, Yasuda RP, Luo J, et al. Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol Neurobiol, 1999, 19(2): 151–179.
    19.Dominques A, Cunha Oliveira T, Laco ML, et al. Expression of NR1/NR2B N-methyl-D-aspartate receptors enhances heroin toxicity in HEK293 cells. Ann NY Acad Sci, 2006, 1074:458-465.
    20.Zheng CY, Yang XJ, Fu ZY, et al. Phorbol-induced surface expression of NR2A subunit homologues in HEK293 cells. Acta Pharmacol Sin, 2006, 27(12): 1580-1585.
    21.Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 2002,415(6873): 793-798
    22.Perez-Otano I, Schulteis CT, Contractor A, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci, 2001, 21(4): 1228-1237.
    23.Wang YT, Salter MW. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature, 1994, 369(6477): 233-235.
    24. Moss SJ, Gorrie GH, Amato A, et al. Modulation of GABAA receptors by tyrosine phosphorylation. Nature, 1995, 377(6547): 344-348.
    25 . Kohr G, Seeburg PH. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family, J Physiol, 1996, 492(Pt 2): 445-452.
    26.Valenzuela CF, Machu TK, Mckernan, RM, et al. Tyrosine kinase phosphorylation of GABAA receptors. Brain Res Mol Brain Res, 1995, 31(1-2), 165-172.
    27.Chen N, Luo T, Wellington C, et al . Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem, 1999, 72(5):1890-1898.
    1. Mattson MP. Cellular Actions ofβ-Amiloid precursor protein and its soluble and fibrillogenic deriveatives. Physiol Rev, 1997,77: 1081-1085.
    2. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 2001, 81(2): 741-766.
    3. Geula C, Darvesh S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today(Barc), 2004, 40(8): 711-721.
    4. Juottonen K, Laakso MP, Insausti R, et al. Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging, 1998, 19(1): 15-22.
    5. Naqy Z, Esiri MM, Hindley NJ, et al. Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement Geriatr Coqn Disord, 1998, 9(4): 219-226.
    6. Clarke R, Smith AD, Jobst KA, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol, 1998, 55(11): 1449-1455.
    7. Cacabelos R. The application of functional genomics to Alzheimer’s disease. Pharmcaogenomics, 2003, 4(5): 597-621.
    8.Cacabelos R,Fernandez-Novoa L, Lombardi V, et al. Molecular genetics of Alzheimer’s disease and aging. Methods Find Exp Clin Pharmacol, 2005, Suppl A: 1-573.
    9.Yamagata K, Urakamc K, Ireda K, et al. High expression of apolipoprotein E mRNA in the brains with sporadic Alzheimer’s disease. Dement Geriatr Cogn Disord, 2001,12(2): 57-62.
    10.Raygani AV, Zahrai M, Raygani AV, et al. Association between apolipoprotein E polymorphism and Alzheimer disease in Tehran, Iran. Neurosci Lett, 2005, 375 (1): 1-6.
    11.Hollenbach E, Ackermann S, Hyman BT, et al. Confirmation of an associationbetween a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer’s disease. Neurology, 1998, 50(6): 1905-1907.
    12.Heneka MT, O’banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol, 2007, 184(1-2): 69-91.
    13.Walsh DM, Minogue AM, Sala Frigerio C, et al. The APP family of proteins: similarities and differences. Biochem Soc Trans, 2007, 35: 416-420.
    14.Joanna L, Jankowsky JL, Fadale DJ, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet, 2004,13(2):159-170.
    15.Alvarez V, Alvarez R, Lahoz CH, et al. Association between an alpha(2) macroglobulin DNA polymorphism and late-onset Alzheimer’s disease. Biochem Biophys Res Commun, 1999, 264(1):48-50.
    16.Wang JZ, Grundke-Iqbal K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med, 1996,2(8): 871-875.
    17.Mayeux R, Lee JH, Romas SN, et al. Chromosome-12 mapping of late-onset Alzheimer disease among Caribbean Hispanics. Am J Hum Genet, 2002, 70(1): 237-243.
    18.Sandbrink R, Hartmann T, Masters CL, et al. Genes contributing to Alzheimer’s disease. Mol Psychiatry, 1996, 1(1): 27-40.
    19.Edelberg HK, Wei JY. The biology of Alzheimer’s disease. Mech Ageing Dev, 1996, 91(2): 95-114.
    20.Gasque P, Fontaine M, Morgan BP. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol, 1995, 154(9): 4726-4733.
    21.Domingo JL. Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimers Dis, 2006, 10(2-3): 331-341.
    22.Perl DP, Moalem S. Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J Alzheimers Dis, 2006, 9: 291-300.
    23.Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer's disease in women. Am J Epidemiol, 1994, 140(3): 256-261.
    24.Grossman H, Bergmann, Parker S. Dementia: a brief review. Mt Sinai J Med, 2006, 73(7): 985-992.
    25.Gandia L, Alvarez RM, Hemandez-Guijo JM, et al. Anticholinesterases in the treatment of Alzheimer’s disease. Rev Neurol, 2006, 42(8): 471-477.
    26.Swatton JE, Sellers LA, Faull RL, et al. Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur J Neurosci, 2004, 19(10): 2711-2719.
    27.Hollmann M , Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci, 1994, 17: 31-108.
    28 . Chen M, Fernandez HL. Stimulation of beta-amyloid precursor protein alpha-processing by phorbol ester involves calcium and calpain activation. Biochem Biophys Res Commun, 2004, 316(2): 332-340.
    29.Ohgami T, Kitamoto T, Weidmann A, et al. Alzheimer’s amyloid precursor protein-positive degenerative neurites exist even within kuru plaques not specific to Alzheimer’s disease. Am J Pathol, 1991, 139(6): 1245-1250.
    30.Salehi A, Delcroix JD, Swaab DF. Alzheimer’s disease and NGF signaling. J Neural Transm, 2004, 111(3): 323-345.
    31.Ohgoh M, Shimizu H, Ogura H, et al. Astroglial trophic support and neuronal cell death: influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons. J Neurochem, 2000, 75(3): 925-933.
    32.叶未设.中医学对老年性痴呆症病因病机学认知及治疗.中医临床康复, 2002, 6(15): 2311.
    33.杨柏灿,林水淼,刘仁人,等. Alzheimer痴呆的中医病因病机探析.中国中医基础医学杂志, 1999, 5(1): 51-54.
    34.陆明霞,于建春,于涛,等.中医学论老年性痴呆.中国中医基础医学杂志, 2003, 9(6): 44-46.
    35.Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 1999, 399(6738 Suppl): A23-31.
    36.Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 2003(4), 38: 547-554.
    37.Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 2003, 61(1): 46-54.
    38.Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440): 735-741.
    39.Doering L, Snyder EY. Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J Neurosci Res, 2000, 61(6)∶597-604.
    40.Kihara T, Shimohama S, Sawada H, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol, 1997,42(2):159-163.
    41.Forloni G, Colombo L, Girola L, et al. Anti-amyloidogenic activity of tetracycline: studies in vitro. FEBS Lett, 2001,487(3):404-407.
    42 . Morgan C, Bugueno M, Garrido J, et al. Laminin affects polymerization, depolymerization and neurotoxicity of Abeta peptide. Peptides, 2002, 23(7): 1229-1240.
    43.Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr, 2000, 71(2): 621S-629S.
    44.庾照学,姚志彬.天然抗氧化剂TA9901抑制β2淀粉样肽1-40聚集和纤维形成.中国神经科学杂志, 2000, 16(3): 215-218.
    45.Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in thetreatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol, 1998, 8(1): 67-75.
    46.Casademont J, Miro O, Rodriguez-Santiago B, et al. Cholinesterase inhibitor rivastigmine enhance the mitochondrial electron transport chain in lymphocytes of patients with Alzheimer’s disease. J Neurol Sci, 2003, 206(1): 23-26.
    47.Heinrich M, Lee Teoh H. Galanthamine from snowdrop-the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol, 2004,92(2-3): 147-162.
    48.Tang XC, He XC, Bai DL. Huperzine A: a novel acetylcholinesterase inhibitor. Drugs Fut, 1999, 24(6): 647-663.
    49.Yamada K, Nabeshima T. Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs. Pharmacol Ther, 2000, 88(2): 93-113.
    50.Espinoza-Fonseca LM,Trujillo-Ferrara JG. Identification of multiple allosteric sites on the M1 muscarinic acetylcholine receptor. FEBS Lett, 2005, 579(30): 6726-6732.
    51.Decker MW, Brioni JD, Sullivan JP, et al. Isoxazole(ABT418):a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. In vivo characterization. J Pharmacol Exp Ther, 1994, 270(1): 319-328.
    52.Toide K, Shinoda M, Takase M, et al. Effects of a novel thyrotropin-releasing hormone analogue, JTP-2942, on extracellular acetylcholine and choline levels in the rat frontal cortex and hippocampus. Eur J Pharmacol, 1993, 233(1): 21-28.
    53.Nishizaki T, Matsuoka T, Nomura T, et al. A 'long-term-potentiation-like' facilitation of hippocampal synaptic transmission induced by the nootropic nefiracetam. Brain Res, 1999, 826(2): 281-288.
    54.Bacciottini L, Passani MB, Giovannelli L, et al. Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur JNeurosci, 2002, 15(10): 1669-1680.
    55.Katsura M, Kuriyama K. Effect of denbufylline, a low Km phosphodiesterase inhibitor, on striatal acetylcholine release in the rat: analysis using cerebral microdialysis. Jpn J Pharmacol, 1990, 54(4): 441-446.
    56.Crouch PJ, Barnham KJ, Bush AL, et al. Therapeutic treatments for Alzheimer’s disease based on metal bioavailability. Drug News Perspect, 2006, 19(8): 469-474.
    57.Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs, 2003, 17(9): 641-652.
    58.Swaab DF, Dubelaar EJ, Scherder EJ, et al. Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis Assoc Discord, 2003, 17 Suppl 4: S114-122.
    59.Ebert AD, Svendsen CN. A new tool in the battle against Alzheimer’s disease and aging: ex vivo gene therapy. Rejuvenation Res, 2005, 8(3): 131-134.
    60.Wang QH, Xu RX, Nagao S. Transplantation of cholinergic neural stem cells in a mouse model of Alzheimer’s disease. Chin Med J (Engl), 2005,118(6): 508-511.
    61.Henderson VW, Paganini-Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol, 1994, 51(9): 896-900.
    62.Paganini-Hill A, Henderson VW. Estrogen replacement therapy and risk of Alzheimer disease. Arch Intern Med, 1996, 156(19): 2213-2217.
    63.Ba F, Pang PK, Davidge ST, et al. The neuroprotective effects of estrogen in SK-N-SH neuroblastoma cell cultures. Neurochem Int, 2004, 44(6): 401-411.
    64.Li L. Protective effects of schisanhenol, salvianolic acid A and SY-L on oxidative stress induced injuries of cerebral cells and their mechanisms. Sheng Li Ke Xue Jin Zhan, 1998, 29(1): 35-38.
    65.Kapkova P, Alptuzun V, Frey P, et al. Search for dual function inhibitors for Alzheimer’s disease: synthesis and biological activity of acetylcholinesterase inhibitors of pyridinium-type and their Abeta fibril formation inhibition capacity.Bioorg Med Chem, 2006, 14(2):472-478.
    66.Alonso D, Dorronsoro I, Rubio L, et al. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem, 2005, 13(24): 6588-6597.
    67.Camps P, Munoz-Torrero D. Tacrine-huperzine A hybrids (huprines): a new class of highly potent and selective acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. Mini Rev Med Chem, 2001, 1(2): 163-174.
    68 . Amitai G, Adani R, Fishbein E, et al. Bifunctional compounds eliciting anti-inflammatory and anti-cholinesterase activity as potential treatment of nerve and blister chemical agents poisoning. J Appl Toxicol, 2006, 26(1): 81-87.
    69 . Wang H, Carlier PR, Ho WL, et al. Effects of bis(7)-tacrine, a novel anti-Alzheimer's agent, on rat brain AChE. Neuroreport, 1999, 10(4): 789-793.
    70.Li CY, Wang H, Xue H, et al. Bis(7)-tacrine, a novel dimeric AChE inhibitor, is a potent GABA(A) receptor antagonist. Neuroreport, 1999, 10(4): 795-800.
    71.Luo JL, Zhang J, Guan BC, et al. Inhibition by bis(7)-tacrine of 5-HT-activated current in rat TG neurons. Neuroreport, 2004, 15(8): 1335-1338.
    72.Ros E, Aleu J, Gomez de Aranda I, et al. Effects of bis(7)-tacrine on spontaneous synaptic activity and on the nicotinic ACh receptor of Torpedo electric organ. J Neurophysiol, 2001, 86(1): 183-189.
    73.Fu H, Li W, Lao Y, et al. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem, 2006, 98(5): 1400-1410.
    74.Nie H, Yu WJ, Li XY, et al. Inhibition by bis(7)-tacrine of native delayed rectifier and KV1.2 encoded potassium channels. Neurosci Lett, 2007, 412(2): 108-113.
    75.Li W, Pi R, Chan HH, et al. Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors. J Biol Chem, 2005, 280(18): 18179-18188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700