用户名: 密码: 验证码:
近壁面环境下UUV回收过程的自适应控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着世界范围内对海洋资源开发及海洋空间利用技术的不断探索,水下无人航行器UUV(Unmanned Underwater Vehicle)因为其具有作业模式灵活、隐蔽性高、安全性好等优点而引起各国工程人员越来越多的关注。当UUV完成任务后,或出现需要下载指令、上传数据或补充能源等情况时,UUV必须返回水下工作站。由于必须考虑UUV回收过程中隐蔽性、安全性及降低成本等方面的因素,UUV水下自主回收方式被越来越多地采用。本文采用平台搭载方式进行UUV水下自主回收,即在水下工作站背部为UUV设置专门的回收区域,该区域安装有短基线声呐、导引光源、锁紧装置等回收设施,UUV按照预先设计的控制和决策程序自主地坐落至该区域,并利用锁紧装置固定在水下工作站上,实现随艇而动,同时完成指令下载、数据传输或能源补充等工作。
     UUV回收坐落过程是一个从无限宽广水域到近壁面受限水域的过程。坐落过程中UUV受到的水动力特性与宽广水域下相比发生变化,而且规律复杂,若仍以无限宽广水域下的UUV运动模型对所设计的控制器进行仿真来验证其性能的可靠性,这是没有说服力的。考虑到目前对于该问题仍没有相对成熟的理论做为依据,论文采用计算流体动力学软件Fluent对近壁面环境下UUV回收坐落过程中受到的水动力进行数值模拟计算,对计算所得到数据进行回归分析,总结出近壁面环境下,在UUV回收坐落过程中水动力随UUV高度不同的变化规律,并拟合出此过程的干扰计算公式,最后再根据UUV回收时的运动特点,建立采用平台搭载方法进行回收时的UUV六自由度运动模型。
     由于UUV自身的非线性、弱观测、强耦合等特性,使UUV实现完全自主回收存在很多困难。采用传统的控制方法已经不能满足在复杂环境,尤其是在未知的近壁面环境下完成安全性和精确度都有很高要求的UUV水下自主回收,故本文采用自适应控制方法对UUV近壁面环境下自主回收过程的运动状态进行控制,这是因为自适应控制方法的特点在于它不仅能控制一个已知系统,还能控制一个完全或部分未知的系统,尤其适用于较为复杂的非线性系统。此外,本文还引入了非线性干扰观测器(DOB)作为控制回路的内环,它不仅能够有效补偿系统中的未知干扰,而且其内部的低通滤波器还可以消除由传感器引入的高频测量噪声对控制器的影响。
     本文最后进行了UUV回收系统的半实物仿真,利用建立的UUV近壁面回收过程的运动模型,通过不同的水动力环境、水下工作站的不同运动方式以及是否加入高频测量噪声等仿真方案,对应用于控制UUV回收过程中垂直面运动的基于非线性干扰观测器的自适应控制方法性能进行验证,并将控制结果与单纯自适应控制方法和传统的PID控制方法进行比较,证明了UUV回收自适应控制器在未知环境下的鲁棒性、自校正能力、以及抑制高频噪声的能力。
With the development of ocean source exploitation and ocean space utilization, UUV (Unmanned Underwater Vehicle) has been paid more and more attention by engineers from all over the world. UUV must come back to the underwater workstation when assignments have been done, or it needs to download missions, transform data and charge up batteries. Automatic underwater recovery is used widely for the requirements of covert, safety and low cost. In this dissertation, flat-carrying recovery is adopted, that is a special location for UUV recovery is set on the back of the underwater workstation, where SBL (Short Base Line) sonar, guiding lights and fixed compartments are installed on. UUV comes down to the recovery location automatically according to the controllers and decision-making programs, which are decided in advance, and then the vehicle moves with the underwater workstation after being fixed to the flat. Meanwhile, mission download, data transforming and charging up are finished.
     During the recovery, UUV comes down to the flat from infinite broad environment to near-wall region, that is, the characteristics of hydrodynamic change greatly, and the rule is so complex that it is not persuasive for the controller capability if simulating with the UUV motion model under infinite broad region. Considering no mature theory exists, "Fluent", a CFD (computational fluid dynamics) software, is used for numerical simulation calculating the hydrodynamic forces at different height in UUV recovery. Then the data coming from computing by Fluent is analyzed regressively, and the interference calculation formulas are fitted after the rules of the hydrodynamic are summarized. Finally, the 6-DOF model of UUV flat-carrying recovery is built based on the motion characteristics.
     Considering the characteristics of nonlinear, weak-observation and strong couple, the automatic control of UUV is very difficult, so the traditional control method can not satisfy the automation performance under the complex environment, especially the unknown near-wall region. To deal with these problems, adaptive controller based on DOB (Nonlinear Disturbance Observer) is presented as an inner loop for UUV recovery. DOB not only can compensate the unknown inferences, but also eliminate the high frequency noise from sonar by the low pass filter in DOB.
     At the end of this dissertation, some simulation schemes are simulated with the near wall UUV motion model. By comparing the simulation results with adaptive controller without DOB and PID controller, the performances of adaptive controller based on DOB for UUV recovery, such as robust, self-tuning, and high-frequency noise eliminating, are verified.
引文
[1]徐玉如,庞永杰,甘永.智能水下机器人技术展望[J].智能系统学报,2006.1(1):9-16页.
    [2]R. Coulson, J.C. Lambiotte, G. Grenon, T. Pantelakis, J. Curran. Development of a modular docking sub-system for 12 class autonomous underwater vehicles [J]. Oceans, 2004.3:1745-1752 P.
    [3]张铭钧.水下机器人[M].2000,北京:海洋出版社.
    [4]冯正平.国外自治水下机器人发展现状综述[J].鱼雷技术,2005.13(1):5-9页.
    [5]王建斌,王志敏.UUV发展、应用及关键技术[J].信息与电子工程,2007.5(6):476-480页.
    [6]H Singh. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering,2001.26(4):281-291 P.
    [7]Roger Stokey, Ben Allen, Tom Austin, Rob Goldsborough, Ned Forrester, Mike Purcell, Chris von Alt. Enabling Technologies for REMUS Docking:An Integral Component of an Autonomous Ocean-Sampling Network[J]. IEEE JOURNAL OF OCEANIC ENGINEERING,2001.26(4):198-205 P.
    [8]Robert S. McEwen, Brett W. Hobson, Lance McBride, James G. Bellingham. Docking Control System for a 54-cm-Diameter (21-in) AUV[J]. IEEE JOURNAL OF OCEANIC ENGINEERING,2008.33(4):550-562 P.
    [9]潘光.AUV回收技术现状及发展趋势[J].鱼雷技术,2008.16(6):10-14页.
    [10]燕奎臣,吴利红.AUV水下对接关键技术研究[J].机器人,2007.29(3):267-273页.
    [11]张千一.坞舱搭载AUV回收过程中对线控位技术的研究[D].哈尔滨:哈尔滨工程大学.
    [12]P. Weiss, Catret Mascarelli, J.V., D. Grossnet, L. Brignone, D.F.L. Labbe, P.A. Wilson. FREESUB:Dynamic stabilization and docking for autonomous underwater vehicles. in 13th International Symposium on Unmanned Untethered Submersible Technology.2003: 123-130 P.
    [13]P. Sotiropoulos, D. Grosset, G. Giannopoulos, F. Casadei. AUV docking system for existing underwater control panel[J]. OCEANSE,2009:1-5 P.
    [14]Szymon Krupi, Francesco Maurelliy, Angelos Malliosz, Panagiotis Sotiropoulosx, Tomeu Palmer. Towards AUV docking on sub-sea structures [J]. OCEANS,2009:1-10 P.
    [15]Tadayuki Kawasaki, Toshihito Noguchi, Toshifumi Fukasawa, Shinjirou Hayashi, Yozo Shibata, Takeo limori, Noriyuki Okaya, Kouichi Fukui, Masato Kinoshita. "Marine Bird,' a New Experimental AUV-Results of Docking and Electric Power Supply Tests in Sea Trials, in OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04 2004:1738-1744 P.
    [16]Toshifumi Fukasawa, Toshihito Noguchi, Tadayuki Kawasaki, Kawasaki Shipbuilding Corporation. "MARINE BIRD", A New Experimental AUVwith Underwater Docking and Recharging System. in OCEANS 2003. Proceedings.2003:2195-2200 P.
    [17]Grant M. de Goede, Donald Norris. Recovering Unmanned Undersea Vehicles With a Homing and Docking Sonar.in OCEANS,2005. Proceedings of MTS/IEEE Digital Object Identifier.2005:2789-2794 P.
    [18]Young-Hwa Hong, Jung-Yup Kim, Pan-Mook Lee. Development of the Homing and Docking Algorithm for AUV. in Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering Conference.2003:1726-1732 P.
    [19]Myung-Hwan Oh, Jun-Ho Oh. Homing and Docking Control of AUV Using Model Predictive Control. in ISOPE Pacific/Asia Offshore Mechanics Symposium.2002: 1095-1100 P.
    [20]Pakpong Jantapremjit, Philip A. Wilson. Optimal Control and Guidance for Homing and Docking Tasks using an Autonomous Underwater Vehicle. in Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation.2007. Harbin, China: 5-8 P.
    [21]P. Jantapremjit, P. A. Wilson. Guidance-Control Based Path Following for Homing and Docking using an Autonomous Underwater Vehicle. in OCEANS'08 MTS/IEEE Kobe-Techno-Ocean'08-Voyage toward the Future, OTO'08.2008:P.
    [22]Pedro Batista, Carlos Silvestre, Paulo Oliveira. A Quaternion Sensor Based Controller for Homing of Underactuated AUVs. in Decision and Control,2006 45th IEEE Conference on Digital Object Identifier.2006:51-56 P.
    [23]P. Batista, C. Silvestre, P. Oliveira. A Sensor Based Homing Strategy for Autonomous Underwater Vehicles. in Control and Automation,2006. MED '06.14th Mediterranean Conference on.2006:491-496 P.
    [24]Jin-Yeong Park, Bong-Huan Jun, Kihun Kim, Pan-Mook Lee, Jun-Ho Oh, Yong-Kon Lim. Improvement of vision guided underwater docking for small AUV ISiMI[J]. OCEANS,2009:2514-2519 P.
    [25]Jin-Yeong Park, Bong-huan Jun, Pan-mook Lee, Junho Oh. Development of Test-Bed AUV 'ISiMI' and Underwater Experiments on Free Running and Vision Guided Docking[J]. Ocean Engineering,2009.36(1):2-14 P.
    [26]L. M. Milne-Thomson理论流体动力学[M].1984,北京:机械工业出版社.
    [27]ZHANG Liang, CHENG Li, LI Feng-lai, SHENG Qi-hu, WANG Yu. Experiment on Hydrodynamic Interaction Between 2D Oval and Wall[J]. 船舶力学,2006.10(6):1-10 P.
    [28]程丽.双体流体动力干扰的研究[D].哈尔滨:哈尔滨工程大学.
    [29]程丽.三维钝体的近壁面受力[J].水动力学研究与进展,2008.23(2):149-157页.
    [30]程丽,张亮,吴德铭,汪玉.二维Rankine体升力受邻近壁面干扰的简化算法[J].哈尔滨工程大学学报,2006.27(1):43-48页.
    [31]王智学.AUV回收时的运动控制方法研究[D].哈尔滨:哈尔滨工程大学.
    [32]冯纯伯,史维.自适应控制[M].1986,北京:电子工业出版社.
    [33]黄继起.自适应控制理论及其在船舶系统中的应用[M].1992,北京:国防工业出版社.
    [34]Richard L. Moose, M. K. Sistanizadeh, Gisli Skagfjord. Adaptive Estimation for a System with Unknown Measu rement Bias[J]. OCEANIC ENGINEERING,1987. OE-12(1):222-227 P.
    [35]J. K. Tugnait. Control of stochastic systems with Markov intempted observation[J]. IEEE Transfermation Aerospace Electronic System,1983. AES-19(2):232-239 P.
    [36]Gianluca Antonelli. On the Use of Adaptive/Integral Actions for Six-Degrees-of-Freedom Control of Autonomous Underwater Vehicles[J]. OCEANIC ENGINEERING,2007.32(2):300-312 P.
    [37]Gianluca Antonelli, Stefano Chiaverini, Nilanjan Sarkar, Michael West. Adaptive Control of an Autonomous Underwater Vehicle:Experimental Results on ODIN.in IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2001:756-765 P.
    [38]施生达.潜艇操纵性[M].1995,北京:国防工业出版社.
    [39]Xinqian Bian, Ying Qu, Zheping Yan, Wei Zhang. Nonlinear Feedback Linearization for Trajectory Tracking Control of an Unmanned Underwater Vehicle.in Proceedings of 2010 IEEE International Conference on Information and Automation (ICIA 2010).2010. Harbin:1387-1392 P.
    [40]李殿璞.船舶运动与建模[M].1999,哈尔滨:哈尔滨工程大学出版社.
    [41]李建民.AUV水下回收预测与协调控制技术研究[D].哈尔滨:哈尔滨工程大学.
    [42]刘顺隆,郑群.计算流体力学[M].1998,哈尔滨:哈尔滨工程大学出版社.
    [43]罗庆杰.物体近壁运动水动力干扰数值模拟[D].哈尔滨:哈尔滨工程大学.
    [44]L.普朗特.流体力学概论[M].1981,北京:科学出版社.
    [45]王福军.计算流体力学分析:CFD软件原理与应用[M].2004,北京:清华大学出版 社.
    [46]韩占忠,王敬,兰小平等著FLUENT-流体工程仿真计算实例与应用[M].2004,北京:北京理工大学出版社.
    [47]詹成胜,刘祖源,程细得.基于FLUENT的潜艇水动力导数数值计算.in 2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议.2007.中国宁夏银川:119-127页.
    [48]林小平.潜艇水动力计算及型线生成研究[D].武汉:武汉理工大学.
    [49]王飞.水下机器人在潜艇附近运动时的水动力计算[D].哈尔滨:哈尔滨工程大学.
    [50]刘卫国MATLAB程序设计教程[M].2005,北京:中国水利水电出版社.
    [51]曾建军Matlab语言与数学建模[M].2005,合肥:安徽大学.
    [52]吴振顺.自适应控制理论与应用[M].2005,哈尔滨:哈尔滨工程大学出版社.
    [53]范中和,王晋国.大学物理.上册[M].2005,西安:西北大学出版社.
    [54]Jean-Jacques E. Slotine, Weiping Li. Applied Nonlinear Control[M].2006:Prentice Hall.
    [55]Karl Johan Astrom, Bjorn Wittenmark. Adaptive control[M].2003, Beijing:科学出版社.
    [56]胡寿松.自动控制原理[M].2001,北京:国防工业出版社.
    [57]郑大钟.线性系统理论[M].2002,北京:清华大学出版社.
    [58]卜任祥.欠驱动水面船舶非线性反馈控制研究[D].大连:大连海事大学.
    [59]冯纯伯.非线性控制系统分析与设计[M].1990,南京:东南大学出版社.
    [60]S. Zhao, J. Yuh, H. T. Choi. Adaptive DOB Control of Underwater Robotic Vehicles.in the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems.2003. Las Vegas, Nevada:1596-1601 P.
    [61]S. Zhao, J. Yuh, H. T. Choi. Adaptive DOB Control of Underwater Robotics.in the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems.2003. Las Vegas, Nevada: 2178-2183 P.
    [62]Side Zhao. Advanced control of Autonomous Underwater Vechicles[D]. Hawaii: University of Hawaii.
    [63]刘金坤.先进PID控制MATLAB仿真[M].2004,北京:电子工业出版社.
    [64]夏国清,汤莉,边信黔,严浙平,徐健,秦政.AUV智能避碰装置及避碰方法[P].2009.
    [65]王云龙.潜艇抗沉智能决策系统的设计与仿真[D].哈尔滨:哈尔滨工程大学.
    [66]Xiaocheng Shi, Yunlong Wang, Juan Li, Ying Qu. A Fuzzy Expert System for Submarine Damage Control.in 2009 IEEE International Conference on Mechatronics and Automation Proceeding.2009. Changchun, China:638-643 P.
    [67]施小成,王晓娟,边信黔,唐照东,刘和祥.一种面向水下运载器的实时双目视觉导引方法[P].CN101251379.2008.
    [68]Thor I. Fossen. Guidance and Control of Ocean Vehicles[M].1994, Chichester:John Wiley & Sons.
    [69]刘卫国.21世纪高等院校规划教材-MATLAB程序设计教程[M].2005,北京:中国水利水电出版社.
    [70]王正林,王胜开,陈国顺,王琪MATLAB/Simulink与控制系统仿真[M],北京:电子工业出版社.
    [71]吴晓燕,张双选MATLAB在自动控制中的应用[M].2006,西安:西安电子科技大学出版社.
    [72]李中付,华宏星,宋汉文,陈之炎.用时域峰值法计算频率和阻尼[J].振动与冲击,2001.20(3):5-8页.
    [73]康华光,陈大钦.电子技术基础:模拟部分[M].2004,北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700