用户名: 密码: 验证码:
高土石坝张拉裂缝开展机理研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
张拉裂缝是土石坝常见的隐患和引起土石坝破坏的主要原因之一,也是对坝体安全造成威胁和亟待解决的关键技术难题。因此,开展压实粘土在三轴拉伸条件下拉伸特性和破坏机理的研究对于土石坝工程的安全评价具有重要意义。本文在前人研究成果的基础上,研究探讨了压实粘土在三轴拉伸条件下应力应变特性和破坏机理,建立了压实粘土张拉裂缝的三维无单元数值模拟方法。本文的主要研究工作和创新成果有:
     1.研制了卧式三轴拉压试验仪。该仪器采用位移控制式加载方式,轴向刚度大,可以测定三轴条件下土体拉伸破坏全过程应力位移曲线,可进行三轴压缩、三轴拉伸和三轴压缩和拉伸组合试验。
     2.采用糯扎渡和双江口心墙土料进行了系列的三轴拉伸、三轴压缩和三轴压缩-拉伸组合试验,研究了压实粘土在三轴拉伸和压缩-拉伸组合条件下的应力应变关系特性和拉伸破坏特性。在此基础上,提出了压实粘土拉压统一的联合强度准则,并对邓肯张EB模型进行了扩展,扩展后的模型可统一描述压实粘土在压缩、反向加载和拉伸条件下的变形特性。
     3.推导了三维点插值无单元法的计算公式,提出了点插值无单元法与有限元法的耦合方法。与比奥固结理论相结合,开发了无单元与有限元耦合的三维有效应力应变分析计算程序系统。
     4.提出了基于无单元法的弥散裂缝模型。通过将裂缝弥散到无单元法结点影响域中,并考虑压实粘土张拉断裂过程中的各向异性,构建了基于无单元法的裂缝弥散理论的计算模式,推导了压实粘土三维脆性断裂和钝断裂带无单元法模型。
     5.将上述研究成果嵌入已有有限元计算程序系统,发展了土石坝应力变形和裂缝分析三维计算程序系统。对双江口高心墙堆石坝坝体横向张拉裂缝和心墙水力劈裂裂缝问题进行了三维计算分析,对该坝发生坝体横向裂缝和心墙水力劈裂的可能性进行了分析和评价。
Tensile crack is a common hidden trouble and one of the main causes of destruction of earth-rockfill dams, so it is a threat to the safety of dams and a key issue desiderated to be solved. Therefore, studying the tensile property and failure mechanism of compacted clay under triaxial tension condition has great significance to the safety evaluation of earth-rockfill dams. In this thesis, based on the previous research works, the stress-strain behavior and failure mechanism of compacted clay under triaxial tension condition were investigated, then a three-dimensional meshless numerical simulation method of tensile crack of compacted clay was proposed. The main achievements obtained in the thesis are as follows:
     1. A horizontal triaxial tension-compression apparatus for soil was developed. This apparatus adopts strain-controlling loading mode, and can be used to obtain the procedural stress-displacement curve up to tensile failure of compacted clay under triaxial condition due to its large axial rigidity. This apparatus also can be used to carry out conventional triaxial test, triaxial tensile test and triaxial compression-tension combining test.
     2. A series of triaxial tensile tests, conventional triaxial tests, and triaxial compression-tension combining tests on core clay materials of Nuozhadu and Shuangjiangkou high earth-rockfill dams were performed. The stress-strain behavior and tensile failure properties of compacted clay under triaxial tension and compression-tension combining condition were investigated. Based on the test results, a tension-compression uniform joint strength criterion of compacted clay was proposed, and Duncan-Chang’s EB constitutive model was extended to describe the deformation properties of compacted clay under compression, reversed loading and tension conditions.
     3. The calculating formulas for three-dimensional point interpolation meshless method were derived comprehensively, then a coupling approach of radial point interpolation meshless method and finite element method was proposed. By combining Biot’s consolidation theory and the proposed coupling approach, a three-dimensional effective stress-strain computing program system was developed.
     4. The smeared crack model based on meshless method was proposed. By smearing crack into nodal influence domain of meshless method and considering the anisotropy of compacted clay during tensile fracture process, the computing mode of smeared crack theory based on meshless method was established, and the three-dimensional brittle fracture and blunt crack band meshless model were derived.
     5. By embedding the above research achievements in existing FEM computing program system, a three-dimensional computing program system was developed, which can be used to stress-deformation and tensile crack analysis of earth-rockfill dams. The transverse tensile crack and hydraulic fracturing crack problems in Shuangjiangkou high earth-rockfill dam were simulated and analyzed under three-dimensional condition, then the transverse tensile crack and hydraulic fracturing crack was analyzed and evaluated.
引文
[1]汝乃华,牛运光.大坝事故与安全-土石坝.北京:中国水利水电出版社, 2001.
    [2] Cook J B. Progress in rockfill dam. Journal of Geotechnical Engineering. 1984, 110(10): 1383-1413.
    [3]张丙印,于玉贞,张建民.高土石坝的若干关键技术问题.中国土木工程学会第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社, 2003, 163-186.
    [4]李昭畔,吴显扬.碧口和柘林土石坝混凝土防渗墙观测成果分析.水利学报, 1983, 10: 22-31.
    [5]孟宪麒,史彦文.石头河土石坝砂卵石抗剪强度.岩土工程学报, 1983, 5(1): 90-101.
    [6] Cao Zhengqi. Technical challenges of the Xiaolangdi project. International Journal on Hydropower and Dams, 2000, 7(4): 70-74.
    [7]周江平.高边坡崩塌稳定度评判在狮子坪水电站的应用.水电站设计, 2002, 18(2): 59-61.
    [8]冉从勇,谢新生.冶勒水电站沥青混凝土心墙堆石坝填筑质量控制.四川水力发电, 2005, 24(2): 48-51.
    [9]雷泽宏.瀑布沟水电站黑马I区防渗料的选择.岩石力学与工程学报, 2002, 21(9): 1395-1399.
    [10]张丙印,袁会娜,孙逊.糯扎渡心墙堆石坝心墙砾石土料变形参数反演分析.水力发电学报, 2005, 24(3): 18-23.
    [11]陈五一,赵颜辉.土石坝心墙水力劈裂计算方法研究.岩石力学与工程学报, 2008, 27(7): 1380-1386.
    [12]纪亮,张建海,何昌荣,陈群,韩荣荣,张肖.双江口水电站心墙堆石坝应力应变数值分析.广西水利水电, 2008, 4: 4-7.
    [13]张丙印等.其宗水电站350m级高心墙堆石坝静力有限元应力变形分析.清华大学岩土工程研究所, 2008, 8.
    [14]南京水利科学研究所,湖北水利局.土坝裂缝及其观测分析.水利电力出版社, 1979.
    [15]牛运光.土石坝裂缝原因分析与防治处理措施综述.大坝与安全, 2006, 5.
    [16] James R, Talbot P E. The mechanics of cracking in embankment dams. Geotechnical Special Publication, ASCE, 1994, 43: 118-131.
    [17] Tamrakar, Surendra B, et al. Development of a new soil tensile strength test apparatus. Site Characterization and Modeling, Geotechnical Special Publication, ASCE, 2005: 2291-2300.
    [18]李广信.高等土力学.北京:清华大学出版社, 2004.
    [19]土工试验规程SL237-1999.北京:中国水利水电出版社, 1999.
    [20] Narain J, Rawat P C. Tensile strength of compacted soils. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1970, 96(6): 7646-7652.
    [21] Tschebotarioff G P, Ward E R, Dephillippe A A. The tensile strength of disturbed and recompacted soils. In: Proceedings of the third International Conference on Soil Mechnics and Foundation Engineering, International Society for Soil Mechanics and Foundation Engineering, 1953, 1: 207-210.
    [22] Leonards G A, Narain J. Flexibility of clay and cracking of earth dams. Journal of the Soil Mechanics and Foundations Division, ASCE, 1963, 89(SM2): 47-98.
    [23] Kezdi A, Horvath Gy. Tensile and flexural strength on cohesive soils. Acta Technica, 1973, 74(2): 43-61.
    [24] Krishnayya A V G, Eisenstein Z, Morgenstern N R. Behavior of compacted soil intension. Geotechnical Engineering Division, ASCE, 1974, 100(GT9): 1051-1060.
    [25] Ajaz A, Parry R H G. Stress-strain behavior of two compacted clays in tension and compression. Geotechnique, 1975, 25(3): 495-512.
    [26] Mosaid A. Tensile properties of compacted soils. Labortory shear strength of soil, Special Technical Publication, ASTM, 1981: 207-225.
    [27] Tang G X, Graham J. A method for testing tensile strength in unsaturated soils. Geotechnical Testing Journal, 2000, 23(3): 377-382.
    [28] H Nahlawi, S Chakrabarti, J Kodikara. A direct tensile strength testing method for unsaturated geomaterials. Geotechnical Testing Journal, 2004, 27(4): 356-361.
    [29] Hannant D J, Branch J, Mulheron M. Equipment for Tensile Testing of Fresh Concrete. Magazine of Concrete Research, 1999, 51(4): 263-267.
    [30]丁金粟.粘性土抗拉特性的试验研究.清华大学水利系工程地质及土力学教研组, 1971.
    [31]周鸿逵.三轴拉伸试验中试样的断裂机理.岩土工程学报, 1984, 5.
    [32]孙亚平.水力劈裂机理研究[博士学位论文].北京:清华大学水利系, 1985.
    [33]张小江.纤维加筋土的静动力特性和断裂特性试验研究[硕士学位论文].北京:清华大学水利系, 1995.
    [34]余湘娟.粘土的拉裂试验及声发射检测.水利水电科技进展, 1997, 6.
    [35]骆亚生,邢义川.黄土的抗拉强度.陕西水力发电, 1998, 14(4): 6-10.
    [36]党进谦,张伯平,熊永.单轴土工拉伸仪的研制.水利水电科技进展, 2001, 21(5): 31-32.
    [37]张少宏,郭敏霞,邢义川.三轴拉伸试验技术研究.西北水资源与水工程, 2001, 12(2):24-27.
    [38]郭飞,何昌荣,朱安龙,刘菀茹,王伟.黏性土抗拉强度的轴向压裂法试验研究.水电站设计, 2005, 21(2): 66-68.
    [39]刘菀茹,何昌荣,朱安龙,郭飞.轴压法测定黏性土抗拉强度的若干问题探讨.水电站设计, 2005, 21(2): 69-71.
    [40]朱安龙.粘性土抗拉强度试验研究及数值模拟[硕士学位论文].成都:四川大学, 2005.
    [41]李全明.高土石坝水力劈裂发生的物理机制研究及数值仿真[博士学位论文].北京:清华大学水利系, 2006.
    [42]魏瑞.压实粘土拉伸特性试验研究[硕士学位论文].北京:清华大学水利系, 2007.
    [43]郑继勤.纤维加筋粘性土抗断裂及抗水力劈裂特性试验研究[硕士学位论文].北京:清华大学水利系, 1992.
    [44] Lawton, Erert C, Khire, Milind Y, et al. Reinforcement of soils by multioriented Geosynthetic inclusions. Journal of Geotechnical Engineering, 1993, 119(2): 257-275.
    [45] Kaplan M F. Crack propagation and the fracture of concrete. A.C.I.J., 1961, 58:591-610.
    [46] Kesler C E, Naus D J, Lott J L. Fracture mechanics-its applicability to concrete. In: Proceedings of the International Conference on the Mechanical Behavior of Materials, Kyoto, 1971, 113-124.
    [47] Walsh P F. Fracture of plain concrete. Indian Conc. J., 1972, 46(11).
    [48]徐世烺.混凝土断裂机理[博士学位论文].大连:大连理工大学, 1988.
    [49] Chappell J, Ingraffea A R. A fracture mechanics investigation of the cracking of Fontana Dam. Dept. of Struct. Engrg. Rept.81-7. School of Div. and Envir. Engrg. Cornell Univ., Ithaca, NY, 1981.
    [50] Tu Chuanlin. A study of the cracking of Zhexi Diamond Head Buttress Dam and its strengthening measures. Proceedings of the fifteenth ICOLD, 2, Lausanne, Switzerland, 1985, 673-692.
    [51] Feng Lingmin, Pekau O A, Zhang Chuhan. Cracking analysis of arch dams by 3-D boundary element method. Journal of Structural Engineering, 1996, 122(6).
    [52] Ba?ant Z P, Cedolin L. Approximate linear analysis of concrete fracture by R-curves. Journal of Structural Engineering, 1984, 110(6): 1336-1355.
    [53] Mai Y W. Cohesive zone and crack-resistance(R)-curve of cementitous materials and their fibre-reinforced composites. Engineering Fracture Mechanics, 2002, 69(2): 219-234.
    [54] Swartz S E, Refai T M E. Influence of size on opening mode fracture parameters for precracked concrete beams in bending. Proceedings of ESM-RILEM International Conference on Fracture of Concrete and Rock. Houston, Texas, 1987: 242-254.
    [55] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracturetoughness(KICe) of concrete. Engineering Fracture Mechanics, 1990, 35(4-5): 637-645.
    [56] Jenq Y S, Shah S P. Two parameter fracture model for concrete. Journal of Engineering Mechanics, 1985, 110(10): 1227-1241.
    [57] Jenq Y S, Shah S P. Determination of fracture parameters(KICe and CTODc) of plain concrete using three-point bend tests. Materials and Structures, 1990, 23(138): 457-460.
    [58]徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则.土木工程学报, 1992, 25(2): 32-38.
    [59] Lee Fook Hou, Lo Kuang Wei, Lee Sang Lip. Tension crack development in soils. Journal of the Geotechnical Engineering, ASCE, 1988, 114(8): 915-929.
    [60]丁金粟,刁玉春,孙亚平.击实粘性土断裂韧度性质研究.水利学报, 1990, 5: 55-60.
    [61]周建敏,蔡伟铭,胡中雄.土的断裂韧性测定.第六届全国土力学及基础工程会议论文集.上海:同济大学出版社, 1991: 151-154.
    [62]刘彦生.宽继配击实粘性土断裂韧度性质研究[硕士学位论文].北京:清华大学水利系, 1994.
    [63] Harison Jack A, Hardin Bobby O, Mahboub Hamyar. Fracture toughness of compacted cohesive soils using ring test. Journal of Geotechnical Engineering, 1994, 120(5): 872-891.
    [64]铁摩辛柯,古地尔.弹性理论(徐芝纶,吴永祯译).北京:人民教育出版社, 1964.
    [65] Cundall P A, Board M P. A microcomputer program for modelling large-strain plasticity problems. In: 6th Int. Conf. on Num. Methods in Geo-mech. Innsbruck, 1988.
    [66] FLAC-3D, Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, User’s Manual, Itasca Consulting Group, Inc. USA.
    [67] Turner M J, et al. Stiffness and deflection analysis of complex structure. Journal of the Aeronautical Sciences, 1956, 23(9): 22-28.
    [68] Clough R W. The finite element method in plane stress analysis. In Proc. 2nd ASCE Conf. on Electronic Computation. Pittsburg, Pa., Sept, 1960.
    [69] Clough R W. SPEECH BY PROFESSOR R. W. CLOUGH Early history of the finite element method from the view point of a pioneer. International Journal for Numerical Methods in Engineering, 2004, 60(1): 283-287.
    [70] Clough R W, Wilson E L. Stress analysis of a gravity dam by FEM. RILEM Bullelin, 1963, 19: 45-54.
    [71]沈珠江.用有限单元法计算软土地基的固结变形.水利水运科技情报, 1977(1).
    [72] Cundall P A. A computer model for simulating progressive large-scale movements in block rock systems, Proc. Symp. Int. Soci. Rock Mech., Nancy France, 1971.
    [73] Shi Genhua, Goodman R E. Generalization of two-dimensional discontinuous deformation analysis for forward modelling. Int. J. for Num. and Analy. Methods in Geomech., 1989,13: 359-380.
    [74]石根华.数值流形方法与非连续变形分析(裴觉民译).北京:清华大学出版社, 1997.
    [75] Dowding C H, Belytschko T B, Yen H J. A coupled finite element-rigid block method for transient analysis of rock caverns. Int. J. Num. & Analy. Methods in Geomech, 1983, 7: 117-127.
    [76]王泳嘉,邢纪波.离散元法及其与边界元的耦合.见:边界元法在岩石力学和工程中应用学术会议文集, 1987.
    [77] Margulies M. Combination of the boundary element and finite element methods. Prog. In Boundary Element Meth., 1981, 1: 258-288.
    [78]寇晓东.无单元法追踪结构开裂及拱坝稳定研究[博士学位论文].北京:清华大学, 1998.
    [79]张琰,王建国,张丙印.径向基点插值无网格法与有限元耦合法.清华大学学报, 2008, 48(6): 951-954.
    [80]朱万成.混凝土断裂过程的细观数值模型及其应用[博士学位论文].沈阳:东北大学, 2000.
    [81] Ba?ant Z P, Oh B. Crack band theory for fracture of concrete. RILEM Mat. Struct., 1983, 16: 155-177.
    [82] Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741-1760.
    [83] Perronr N, Kao R. A general finite difference method for arbitrary meshes. Computional Structure., 1975, 5: 45-47.
    [84] Lucy L B. A numerical approach to the testing of fission hypothesis. The Astron. J., 1977, 8(12): 1013-1024.
    [85] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and applications to non-shperical stars. Mon. Not. Roy. Astrou. Soc., 1977, 18: 375-389.
    [86] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech., 1992, 10: 307-318.
    [87] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math. Comput., 1981, 37(155): 141-158.
    [88] Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods. Int. J. Num. Meth. Engng., 1994, 37: 229-256.
    [89] Chung H J, Belytschko T. An error estimate in the EFG method. Comput. Mech., 1998, 21: 91-100.
    [90] Dolbow J, Belytschko T. Numerical integration of Galerkin weak form in mesh-freemethods. Comput. Mech., 1999, 23: 219-230.
    [91] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. Int. J. Num. Meth. Engng., 1998, 41: 1215-1233.
    [92] Amaratunga K, Williams J R. Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int. J. Num. Meth. Engng., 1994, 37(16): 2703-2716.
    [93] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow. Int. J. Num. Meth. Engng., 1996, 39: 3839-3866.
    [94] Liu W K, Jun S, Zhang Y F. Reproducing Kernel Particle Methods. Int. J. Numer. Meth. Fluids., 1995, 20: 1081-1106.
    [95] Liu W K, Chen Y, Chang C T et al. Advances in multiple scale kernel particle methods. Comput. Mech., 1996, 18: 73-111.
    [96] Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Meth. Fluids., 1995, 21: 901-931.
    [97] Liu W K, Li S, Belytschko T. Moving least-square reproducing kernel method. Part I: Methodology and convergence. Comput. Methods Appl. Mech. Engrg., 1997, 143(4): 422-433.
    [98] Duarte C A, Oden J T. An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Engrg., 1996, 139: 237-262.
    [99] Oden J T, Duarte C A, Zienkiewicz O C. A new cloud-based hp finite element method. Int. J. Num. Meth. Engng., 1998, 50: 160-170.
    [100] Liszka T J, Duarte C, Tworzydlo W W. Hp-meshless cloud method. Comput. Methods Appl. Mech. Engrg., 1996, 139: 263-288.
    [101] Melenk J M, Babuska I. The partition of unity finite element methods: Basic theory and application. Comput. Methods Appl. Mech. Engrg., 1996, 139: 289-314.
    [102] Babuska I, Melenk J M. The partition of unity methods. Int. J. Num. Meth. Engng., 1997, 40: 727-758.
    [103] Duarte C A, Babuska I, Oden J T. Generalized finite element method for three-dimensional structural mechanics problems. Comput. Struct., 2000, 77: 215-232.
    [104] Zhu T, Zhang J, Atluri S N. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput. Mech., 1998, 22: 174-186.
    [105] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 1998, 22: 117-127.
    [106] Mukherjee Y X, Mukherjee S. The boundary node method for potential problems. Int. J.Num. Meth. Engng., 1997, 40(6): 797-815.
    [107] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951.
    [108] Wang Jianguo, Liu Guirong. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002, 54: 1623-1648.
    [109] J G Wang, G R Liu, P Lin. Numerical analysis of Biot’s consolidation process by radial point interpolation method. International Journal of Solids and Structures, 2002, 39(6): 1557-1573.
    [110]周维垣,寇晓东.无单元法及其工程应用.力学学报, 1998, 30(2): 193-202.
    [111]寇晓东,周维垣.应用无单元法近似计算拱坝开裂.水利学报, 2000, 10: 28-35.
    [112]黄岩松.三维无单元伽辽金法及其在坝工破坏分析中的应用[博士学位论文].北京:清华大学, 2005.
    [113]张雄,刘岩.无单元法.北京:清华大学出版社, 2004.
    [114]刘欣,朱德懋,陆明万,张雄.基于流形覆盖思想的无单元方法的研究.计算力学学报, 2001, 18(1): 21-27.
    [115]田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究[博士学位论文].大连:大连理工大学, 2000.
    [116]龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报, 2001, 33(4): 508-517.
    [117]张湘伟,蔡永昌.一种改进的无单元法.计算力学学报, 2002, 19(1): 26-30.
    [118]张见明,姚振汉.一种新型无单元法杂交边界点法.见:袁明武,孙树立编,工程与科学中的计算力学,中国计算力学大会2001论文集.北京, 2001.
    [119]张建辉,邓安福.无单元法在筏板基础计算中的应用.岩土工程学报, 1999, 21(6): 691-695.
    [120]张伟星,庞辉.无单元分析弹性地基板.力学与实践, 2000, 22(3): 38-41.
    [121]庞作会,葛修润,王水林.无单元伽辽金法在边坡开挖问题中的应用.岩石力学, 1999, 20(1): 61-64.
    [122]陈建,吴林志,杜善义.采用无单元法计算含沿裂纹功能梯度材料板的应力强度因子.工程力学, 2000, 17(5): 139-144.
    [123]何沛详,李子然,吴长春.无单元法与有限元的耦合及其对功能梯度材料断裂计算的应用.中国科学技术大学学报, 2001, 31(6): 673-680.
    [124] Song K Z, Zhang X, Lu M W. Meshless method based on collocation for elasto-plastic analysis. In: Proceedings of International Conference on Computational Engineering & Science, August 20-25, 2000, Los Angeles, USA.
    [125] Liu X, Lu M W, Zhang X. Numerical analysis of singular problems using the Partition of unity method. European Conference on Computational Mechanics (ECCM’99), Munchen,Germany, 1999.
    [126]李广信,葛锦宏,介玉新.有自由面渗流的无单元法.清华大学学报, 2002, 42(11): 1552-1555.
    [127]葛锦宏,李广信,介玉新.无单元法在有自由面渗流计算中的应用.计算力学学报, 2003, 20(2): 241-243.
    [128] Belytschko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin method. Engrg. Fract. Mech., 1995, 51(2): 295-315.
    [129] Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. Int. J. Num. Meth. Engrg., 1996, 39: 923-938.
    [130] Terry T. Fatigue crack propagation modeling using the element-free Galerkin method[M.S. Thesis]. Evanston, Illinois: Northwestern University, USA, 1994.
    [131]袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展.工程力学, 2002, 19(1): 25-28.
    [132]娄路亮,曾攀,聂蕾.裂纹扩展的无网格数值模拟方法.航空材料学报, 2001, 21(3): 51-56.
    [133]寇晓东,周维垣.应用无单元法追踪裂纹扩展.岩石力学与工程学报, 2000, 19(1): 18-23.
    [134]李卧东,王元汉,陈晓波.压剪裂纹扩展的无网格法计算.华中理工大学学报, 2000, 28(11): 79-82.
    [135] Choi C K et al. A new adaptive scheme for crack analysis with element-free Galerkin method. In: Computation Mechanics– New Frontiers for New Millenium, 2001.
    [136]张琰,张丙印,孙逊,李广信.压实粘土的三轴拉伸特性试验研究.水力发电学报(录用待刊).
    [137] Griffith A A. Theory of Rupture. Proceedings of the First International Congress for Applied Mechanics, 1924, 55-63.
    [138] McClintock F A, Walsh J B. Friction on Griffith Cracks in Rocks under Pressure. Proceedings of the Fourth U. S. National Congress of Applied Mechanics, 1962, 1015-1021.
    [139]关德斌.土的Griffith-Mohr联合抗裂强度理论.山东省水利科学研究所, 1983, 6.
    [140] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils. Proc. ASCE, JSMFD 1970, 96(SM5), 1629 -1633.
    [141] Hardy R L. Theory and applications of the multiquadrics—Biharmonic method (20 years of discovery 1968-1988). Computers and Mathematics with Applications 1990, 19: 163-208.
    [142] Powell M J D. The theory of radial basis function approximation in 1990. In Advances in Numerical Analysis, Light FW (ed.), Oxford: Clarendon Press, 1992, 105-203.
    [143] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions use for 2-D meshless methods. Comput Meth Appl Mech Engng 2002, 191: 2611-2630.
    [144] G R Liu, G Y Zhang, Y T Gu, Y Y Wang. A meshfree radial interpolation method (RPIM) for three-dimensional solids. Comput Mech, 2005, 36: 421-430.
    [145] Belytschko T, Krongauz K, Organ D, et al. Meshless methods: An overview and recent development. Comput. Methods Appl. Mech. Engrg., 1996, 139: 3-47.
    [146] Biot M A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, 12(2): 155-164.
    [147] G R Liu, G Y Zhang, Y Y Wang, Z H Zhong, G Y Li, X Han. A nodal integration technique for meshless radial point interpolation method (NI-RPIM). International Journal of Solids and Structures, 2004, 44(11-12): 3840-3860.
    [148]吴家龙.弹性力学(新一版).上海:同济大学出版社, 1993.
    [149] K Terzaghi, R B Peck. Soil Mechanics in Engineering Practice, 2nd ed., Wiley, New York, 1976.
    [150] Belytschko T, Organ D Y, Krougauz Y. A Coupled finite element-element free Galerkin methods. Computational Mechanics, 1995, 17(3): 186-195.
    [151] Jiang J J, Song Q G, Shan B G. A finite element simulation model for cracks in reinforced concrete. IABSE Colloquium on Computational Mechanics of Concrete Structures, Delft, Netherland, 1987.
    [152] Jirasek M. Finite element with embedded cracks. LSC Report, Lausanne, EPFL, 1998.
    [153] Cedolin L, Ba?ant Z P. Effect of finite element choice in blunt crack band analysis. Computer methods in applied mechanics and engineering, 1980, 24(3): 305-316.
    [154] Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 1968, 7: 334-344.
    [155]张琰,王建国,张丙印,李全明.土坝裂缝开展的无单元法数值模拟.岩土工程学报, 2009, 31(5): 727-731.
    [156]朱维新.用离心模型研究土石坝心墙裂缝.岩土工程学报, 1994, 16(6): 82-95.
    [157]张丙印,张美聪,孙逊.土石坝横向裂缝的土工离心机模型试验研究.岩土力学, 2008, 29(5): 1254-1258.
    [158] Hillerborg A, ModeAer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773-782.
    [159] Ba?ant Z P, Oh B H. Crack band theory for fracture of concrete. Material and Constructions, 1983, 16(93): 155-177.
    [160] Petersson P E. Crack Growth and Development of Fracture Zones in Plain Concrete andSimilar Materials. TVBM-1006, Division of Building Materials, Lund Institute of Technology, 1981.
    [161]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社, 1996.
    [162] S W Sloan, J R Booker. Intergration of Tresca and Mohr-Coulomb constitutive relations in plane strain elastoplasticity. Internation Journal for numerical methods in engineering, 1992, 33: 163-196.
    [163]张美聪.土石坝裂缝计算分析方法研究[硕士学位论文].北京:清华大学, 2006.
    [164] Droz P. Modèle numérique du comportement non-linéaire d’ouvrages massifs en béton nonarmé. PhD thesis, Swiss Federal Institute of Technology at Lausanne(EPFL), 1987.
    [165] Zimmermann T, Li Y J. Numerical simulation of smeared crack propagation in geomaterials: An evaluation of the rotating crack model. Proc. Application of Computer methods in Rock Mechanics, Xi’an, China, 1993: 123-127.
    [166] Galvez J C, Elices M, Guinea G V, Planas J. Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture, 1998, 94(3): 267-284.
    [167] Cendon D A, Galvez J C, Elice M, Planas J. Modelling the fracture of concrete under mixed loading. International Journal of Fracture, 2000, 103(3): 293-310.
    [168]沈珠江.土石料的流变模型及其应用.水利水运科学研究, 1994, (4): 335-342.
    [169]李广信.堆石料的湿化试验和数学模型.岩土工程学报, 1990, (5): 58-64.
    [170]周元德.混凝土非线性断裂力学模型与高拱坝开裂分析研究[博士学位论文].北京:清华大学水利系, 2004.
    [171]方修君.基于扩展有限元方法的连续-非连续过程静动力模拟研究[博士学位论文].北京:清华大学水利系, 2007.
    [172]侯艳丽.砼坝-地基破坏的离散元方法与断裂力学的耦合模型研究[博士学位论文].北京:清华大学水利系, 2005.
    [173]张琰,张丙印,李广信,孙逊.压实粘土拉压组合三轴试验和扩展邓肯张模型.岩土工程学报,(录用待刊).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700