用户名: 密码: 验证码:
感音神经性耳聋中内耳畸形的分类以及与SLC26A4、GJB2基因关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究感音神经性耳聋病例的流行病学资料,通过高分辨率螺旋CT检查探讨中国人感音神经性耳聋患者群体中内耳畸形的发病率情况;在Sennaroglu分类的基础上分析各类内耳畸形的影像学特征,从形态学、组织胚胎学及听力学方面探讨内耳畸形分类的依据;研究感音神经性耳聋中CT表型与SLC26A4、GJB2基因致病性突变类型之间的关系,初步探讨SLC26A4、GJB2基因检测在部分感音神经性耳聋患者中辅助或替代CT成为诊断工具的可行性。
     方法
     在第一部分中,对我院门诊近10年来2747例感音神经性耳聋病例进行回顾性分析,采用流行病学方法对感音神经性耳聋病例的一般情况、听力学情况进行调查,通过对大宗病例CT资料的研究,了解中国人感音神经性耳聋患者群体中内耳畸形的发病情况。以Sennaroglu分类为标准,对以上病例中通过CT检查发现存在内耳畸形的843例患者,按以下部位进行详细观察:耳蜗、前庭、半规管、前庭导水管及内听道;对其中的441例耳蜗畸形按以下分类:Michel畸形、耳蜗未发育、共同腔畸形、耳蜗发育不全、不完全分隔-Ⅰ型、不完全分隔-Ⅱ型(Mondini畸形)进行研究,在大宗病例中统计各类畸形的详细情况,同时结合影像学及听力学方法对上述分类结果进行分析。在第二部分中,对2598例感音神经性耳聋患者按DNA测序的方法检测SLC26A4基因和GJB2基因,统计这两种基因在以上各类CT表型中对应的致病性突变情况,研究SLC26A4、GJB2基因致病性突变在以上各类CT表型中的分布特点,分析SLC26A4、GJB2基因型与CT表型之间的关系。
     结果
     1、通过CT检查在2747例感音神经性耳聋患者中发现843例内耳畸形病例,内耳畸形的发病率为30.69%(843/2747)
     2、843例内耳畸形患者的调查分析结果:
     (1)一般情况:性别比例男女之比为1.33:1;种族分布汉族为96.68%(815/843),然后依次为满族、蒙古族、回族以及其他族;发病年龄平均2.89±0.92,1~3岁比例最高为34.68%(292/843);单、双侧均可发病,其中双侧占93.36%(787/843);存在家族史的占2.37%(20/843)。
     (2)听力学情况:平均听阈为89.71±6.30dB HL,以重度、极重度聋为主,占84.25%;声导抗A型为主,占74.43%。
     3、按照Sennaroglu分类方法,843例内耳畸形的CT检查详细结果:
     (1)各部位畸形构成情况:耳蜗畸形为52.31%(441/843)、单纯大前庭导水管为40.33%(340/843)、单纯前庭/半规管/内听道畸形为7.36%(62/843)。
     (2)内耳畸形中441例耳蜗畸形分类情况:Michel畸形为1.13%(5/441)、耳蜗未发育为1.81%(8/441)、共同腔畸形为3.17%(14/441)、IP-Ⅰ畸形为8.62%(38/441)、耳蜗发育不全为9.07%(40/441)、Mondini畸形(伴大前庭导水管)为76.19%(336/441)。
     (3)CT检查出与大前庭导水管相关畸形(单纯大前庭导水管340例、大前庭导水管伴Mondini畸形336例)676例,占全部内耳畸形的比例为80.19%(676/843);严重内耳畸形(Michel畸形、耳蜗未发育、共同腔畸形、IP-Ⅰ畸形、耳蜗发育不全)105例,占全部畸形的比例为12.46%(105/843)。
     (4)与前庭导水管扩大相关内耳畸形在感音神经性耳聋患者中的发病率为24.61%(676/2747);严重内耳畸形在感音神经性耳聋中的发病率为3.82%(105/2747)。
     4、2598例感音神经耳聋病例中SLC26A4、GJB2基因突变检测结果:
     (1)共检出SLC26A4基因致病性突变(双等位基因突变)517例,全部在前庭导水管扩大相关内耳畸形中检出。共检出GJB2基因致病性突变(双等位基因突变)414例,其中在CT正常组中检出411例,占全部检出例数的99.28%(411/414);在单纯前庭/半规管/内听道畸形中检出2例;在单纯大前庭导水管中检出1例(SLC26A4、GJB2基因双突变)
     (2)517例SLC26A4基因致病性突变中,双等位基因纯合突变164例、复合杂合突变353例。
     (3)414例GJB2基因致病性突变中,双等位基因纯合突变213例、复合杂合突变199例、单等位基因显性突变(R184Q)2例。
     5、感音神经性耳聋中内耳CT表型与SLC26A4、GJB2基因突变之间的关系:
     (1)CT表型为严重内耳畸形的病例中均未检测出SLC26A4、GJB2基因致病性突变(双等位基因突变)
     (2)SLC26A4基因致病性突变(双等位基因突变)全部在CT表型为前庭导水管扩大相关内耳畸形病例中检出。
     (3)GJB2基因致病性突变(双等位基因突变)99.28%在内耳CT表型为正常的耳聋病例中检出。
     结论
     通过CT检查发现感音神经性耳聋患者群体中内耳畸形发病率为30.69%,内耳畸形中与前庭导水管扩大相关内耳畸形的病例占80.19%。通过DNA测序发现,SLC26A4基因致病性突变(双等位基因突变)100%在前庭导水管扩大相关内耳畸形的病例中检出,GJB2基因致病性突变(双等位基因突变)99.28%在内耳CT正常的耳聋病例中检出,二者与CT表型密切相关;SLC26A4、GJB2基因联合检测,有望在部分感音神经性耳聋患者中辅助甚至替代CT成为诊断工具。
Objective
     1. Analyze the data of the patients with sensorineural hearing loss in China and investigate the status of inner ear malformations based on reading the image of high-resolution computed tomography.
     2. Analyze the characteristic feature of inner ear malformation according to Sennaroglu'classification and discuss the results based on the evidence provided by radiological, histological and embryological, and audiological examinations.
     3. Explore the relationship between the CT phenotypes of inner ear and pathogenic mutations of SLC26A4 gene and GJB2 gene, and analyze the feasibility of using the method of gene sequence analysis to help or replace CT examination in diagnosing part of patients with sensorineural hearing loss.
     Material and Methods
     1. The investigation took the form of a retrospective review of CT findings relating to the 2747 cases of outpatients in our hospital in recent 10 years. We obtained data of the outpatients with epidemio logical methods based on analyzing the status of general information and audiological evaluation, and then analyzed the data of inner ear malformation based on CT examination. Those 843 cases of inner ear malformations diagnosed by CT were classified according to the methods proposed by Sennaroglu. The CT images were thoroughly reviewed for malformations under the following subgroups:cochlear, vestibular, semicircular canal, internal auditory canal, and vestibular aqueduct malformations. Cochlear malformations were classified as Michel deformity, cochlear aplasia, commoncavity deformity, incomplete partition typesⅠ(IP-Ⅰ), hypoplastic cochlea, and incomplete partition typesⅡ(IP-Ⅱ) (Mondini deformity). Summarized the statistic data of each inner ear malformation and analyzed the results based on the evidence provided by radiological, histological and embryological, and audiological examinations.
     2. The DNA sequence of SLC26A4 gene and GJB2 gene were analyzed in 2598 cases of patients with sensorineural hearing loss to explore the relationship between the CT phenotypes and the pathogenic mutations of SLC26A4 gene and GJB2 gene.
     Results
     1.843 cases of inner ear malformations were found in 2747 cases of patients with sensorineural healring loss by CT examination. The incidence of inner ear malformation was 30.69%(843/2747).
     2. The epidemiological informations of 843 cases of inner ear malformation:
     (1) General information:The ratio of male and female was 1.33:1. Han nationality consists of 96.68%(815/843) of the whole group, followed by Man, Mongolia, Hui and other nationalities. The average onset age was 2.89±0.92 years old, mostly ranged from 1 to 3 years old, which consists of 34.68%(292/843) of the group. The malformed ear could be either unilateral or bilateral, and 93.36%(787/843) cases were unilateral. 2.37%(20/843) patients of the group have family history.
     (2) Audiological evaluations:The average auditory threshold was 89.71±6.30 dB HL and most patients were profound or extremely profound sensineural hearing loss, which consist 84.25% of the group, and 74.30% of tympanogram was type A.
     3. The detailed information of 843 cases of inner ear malformation according to Sennaroglu's classification was as follows:
     (1) Each component of the inner ear with malformation consisted of the group as:cochlea was 52.31%(441/843), simple vestibular aquaduct was 40.33%(340/843), vestibular/semicircular cannal/internal auditory cannal were 7.35%(62/843) of the group.
     (2) 441 cases of cochlea malformation were consisted of these types of malformation:Michel deformity was 1.13%(5/441), cochlear aplasia was 1.81%(8/441), common cavity deformity was 3.17%(14/441), incomplete partition typeⅠ(IP-Ⅰ) was 8.62%(38/441), hypoplastic cochlea was 9.07%(40/441) and incomplete partition typeⅡ(IP-Ⅱ) (Mondini malformation) was 76.19%(336/441) of the group.
     (3) Large vestibular aqueduct and Mondini accompanied with large vestibular aqueduct were related to the vestibular aqueduct malformation, which consisted of 80.19%(676/843) cases of the whole malformation group. Michel deformity, cochlear aplasia, common cavity deformity, incomplete partitionⅠ(IP-Ⅰ) and hypoplastic cochlea were related to severe deformity of inner ear and consisted of 12.46% (105/843) of the whole malformation group.
     (4) Vestibular aqueduct related malformation was consisted 24.61% (676/2747) of the sensorineural hearing loss entity group and severe deformity of inner ear were consisted 3.82%(105/2747) of the entity group.
     4. Results of the DNA sequence analysis of SLC26A4 gene and GJB2 gene in 2598 cases of patients with sensorineural hearing loss:
     (1) The sequence results revealed that 517 cases carried pathogenic mutations (Bi-allelic mutations) of SLC26A4 gene and detected without exceptionally in the group related to vestibular aqueduct malformation. There were 414 cases carried pathogenic mutation (Bi-allelic mutations) of GJB2 gene, among which 411 (99.28%) cases were found in the normal group,2 cases were found in the simple vestibular/semicircular cannal/internal auditory cannal malformation group and 1 case was found in vestibular aqueduct malformation (this case was particularly carried pathogenic mutation of SLC26A4 and GJB2 gene simultaneously).
     (2) 517 cases carried pathogenic mutations of SLC26A4 gene, among which 164 cases were homozygous,353 cases were compound heterozygous.
     (3) 414 cases carried pathogenic mutation of GJB2, among which 213 cases were homozygous,199 cases were compound heterozygous and 2 case carried dominant mutation of GJB2 gene.
     5. The relationship between the CT phenotypes and the pathogenic mutations of SLC26A4 gene and GJB2 gene in patients with sensorineural hearing loss:
     (1) None of the pathogenic mutation (Bi-allelic mutations) in SLC26A4 gene or GJB2 gene was detected in group of severe CT phenotypes.
     (2) Pathogenic mutations (Bi-allelic mutations) of SLC26A4 gene were detected in all cases in the group of vestibular aqueduct related CT phenotype.
     (3) Pathogenic mutations (Bi-allelic mutations) of GJB2 gene were detected in 99.28% cases in the group of normal CT phenotype.
     Conclusion
     The results suggested that 30.69% cases of inner ear malformation can be found in patients with sensorineural hearing loss by CT examination, among which 80.19% cases related to vestibular aqueduct malformation. Pathogenic mutations (Bi-allelic mutations) of SLC26A4 gene were detected in 100% in the group of vestibular aqueduct related CT phenotype, while pathogenic mutations (Bi-allelic mutations) of GJB2 were detected in 99.28% cases in the group of normal CT phenotype. These two kinds of gene types may be closely related to CT phenotype of patients with sensorineural hearing loss. Associated analysis of SLC26A4 gene and GJB2 gene can help or replace CT examination to diagnose part of patients with sensorineural hearing loss.
引文
[1]Brookhouser PE. Sensorineural hearing loss in children. In:Cummings CW, Fredrikson JM, Harker LA, Krause CJ, SchullerDE, eds. Otolaryngology-Head and Neck Surgery.2nd ed. St Lou-is:Mosby-Year Book; 1993; 3080-3102.
    [2]Mori T, Westerberg BD, Atashband S,et al. Natural history of hearing loss in children with enlarged vestibular aqueduct syndrome. J Otolaryngol Head Neck Surg,2008,37(1):112-118.
    [3]Kadom N, Sze RW. Radiological reasoning:congenital sensorineural hearing loss. AJR Am J Roentgenol,2010,194(3 Suppl):1-4.
    [4]Jackler RK, Luxford WM, House WE Congenital Malformations of the Inner Ear:a Classification Based on Embryogenesis[J]. Laryngoscope,1987,97(1): 2-14.
    [5]Cross NC, Stephens SDG, Francis M, et al. Computed tomography evaluation of the inner ear as a diagnostic, counseling and management strategy in patients with congenital sensorineural hearing impairment. Clin Otolaryngol, 1999,24:235-238.
    [6]Swartz JD, Hmasbegrer HR. Imaging of the Temporal Bone [M],3dr edn. Thieme Medieal Publishers,1998:240-317.
    [7]Weber BP, Dillo W, Dietrich B, et al. Pediatric Cochlear Implantation in Cochlear Malformations [J]. Am J Otol,1998,19 (6):747-753.
    [8]Sennaroglu L, Saatci I. A New Classification for Cochleovestibular Malform-ations [J]. Laryngoscope,2002,112(12):2230-2241.
    [9]Schuknecht HF. Mondini dysplasia:a clinical and pathological study. Ann Otol Rhinol Laryngol 1980; 89 (Suppl 65):1-23.
    [10]Yuen HY, Ahuja AT, Wong KT, et al. Computed tomography of common congenital lesions of the temporal bone, 2003,58(9):687-693.
    [11]Molter DW, Pate BR, McElveen JT. Cochlear implantation in the congenit-ally malformed ear[J]. Otolaryngol Head Neak Surg,1993,108:174-177.
    [12]Tucci DL, Telian SA, Zimmerman-Philips S, et al. Cochlear implantation in patients with cochlear malformations. Arch Otolaryngol Head Neck Surg 1995; 121:833-838.
    [13]McKay IJ, Lewis J, Lumsden A. The role of FGF-3 in early inner ear development:an analysis in normal and Kreisler mutant mice. Dev Biol, 1996,174:370-378.
    [14]Hardys T, Brown T, Brandt SR, et al. Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development,1998,125:33-39.
    [15]Torres M, Gomez-Pardo E, Gruss P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development,1996,122:3381-3391.
    [16]戴朴,黄德亮,王嘉陵,等.PDS基因检测-诊断大前庭水管综合征的新方法.中华耳科学杂志,2005,3(4):241-244.
    [17]戴朴,韩东一,袁慧军,等.基因诊断-耳科诊断领域的重大进步.中华耳科学杂志,2005,3(1):62-64.
    [18]Jackler RK, Hwang PH. Enlargement of the cochlear aqueduct:fact or fiction? Otolaryngol Head Neck Surg 1993:109:14-25.
    [19]姜泗长,顾瑞,王正敏.耳科学[M].上海:上海科学技术出版社,2002.17-80.
    [20]Triglia JM, Nicollas R, Ternier F, et. Deafness caused by malformation of the inner ear. Current contribution of x-ray computed tomography. Ann Otolaryngol Chir Cervicofac.1993; 110(5):241-246.
    [21]Davidson HC. Imaging evaluation of sensorineural hearing loss. Semin Ultrasound CT MR.2001 Jun; 22(3):229-249.
    [22]世界卫生组织(WHO)2000年听力损失分级标准.
    [23]韩东一,武文明.先天性内耳畸形的人工耳蜗植入.中华耳鼻咽喉科杂志,2004,39(2):85-88.
    [24]Licameli G, Kenna MA. Is computed tomography (CT) or magnetic imag-ing (MRI) more useful in the evaluation of pediatric sensorineural hearing loss? Laryngoscope,2010,120(12):2358-2369.
    [25]Johannes P. Westerhof, Jurgen Rademaker,et al. Congenital alformations of the Inner Ear and the Vestibulocochlear Nerve in Children with Sensorineural Hearing Loss:Evaluation with CT and MRI. Journal of Computer Assisted Tomography,2004,25(5):719-726.
    [26]Johannes P, Westerhof, Jurgen Rademaker, et al. Congenital Malformations of the Inner Ear and the Vestibulocochlear Nerve in Children with Sensorineural Hearing Loss:Evaluation with CT and MRI. Journal of Computer Assisted Tomography,2004,25(5):719-726.
    [27]兰宝森.中华影像医学头颈部卷[M].北京:人民卫生出版社,2002:93-94.
    [28]Johnson J, Lalwani AK. Sensorineural and conductive hearing loss assoacited with lateral simcircular cannal malformation [J]. Larynscope,2000, 110:1673-1679.
    [29]Puerell D, Johnson J, Fishcbein N, et al. Establishment of normative of cochlear and vestibular measurements to aid in the diagnosis of innerear malofmrations[J].Otolngology-Head and Neck Surgery,2003,128(1):78-87.
    [30]李书玲,刘怀军,池深,等.正常人内耳前庭、半规管及耳蜗的MRI测量[J].中华放射学杂志,2003,37(1),55-58.
    [31]Naganawa S, Ito T, Iwayama E, et al. MR imaging of the cochlear modiolus erea measurement in healthy subjects and in patients with a large endolymphatic duct and sac [J]. Radioloy,1999,213:819-823.
    [32]韩德民.人工耳蜗.北京:人民卫生出版社,2003,127-140.
    [1]Jackler RK, Luxford WM, House WF. Congenital Malformations of the Inner Ear:a Classification Based on Embryogenesis[J]. Laryngoscope,1987,97(1): 2-14.
    [2]Phelps PD, King A, Michaels L. Cochlear dysplasia and meningitis. Am J Otol,1994,15:551-557.
    [3]Zheng YQ, Patricia A, Sebahattin Cureoglu, et al. The shortened cochlea:its classification and histopathologic features[J]. International Journal of Pediatric Otorhinolaryngology,2002,63:29-39.
    [4]Schuknecht HF. Pathology of the Ear,2nd ed. Philadelphia:Lea and Febiger, 1993:180-181.
    [5]Jackler RK, Hwang PH. Enlargement of the cochlear aqueduct:fact or fiction? Otolaryngol Head Neck Surg,1993,109:14-25.
    [6]Phelps PD. Mondini and pseudo-Mondini. Clin Otolaryngol,1990,15:99-101.
    [7]杨伟炎,方耀云,杨仕明,等Mondini内耳畸形的诊断与治疗.中华耳鼻咽喉科杂志,1997,32(1):8-10.
    [8]Sennaroglu L, Saatci I. Unpartitioned versus incompletely partitioned cochleae:radiologic differentiation. Otol Nerotol,2004; 25:520-529.
    [9]Sennaroglu L, Saatci I. A New Classification for Cochleovestibular Malform-ations [J]. Laryngoscope,2002,112(12):2230-2241.
    [9]Schuknecht HF. Pathology of the Ear,2nd ed. Philadelphia:Lea and Febiger, 1993:180-181.
    [10]Jackler RK. Congenital malformations of the inner ear. In:Cummings CW, ed. Otolaryngology Head and Neck Surgery, Vol V. St. Louis, MO:Mosby-Year Book,1998:418-438.
    [11]Kavanagh KT, Magill HL. Michel dysplasia:common cavity inner ear deformity. Pediatr Radiol 1989;19:343-345.
    [12]Schuknecht HF. Mondini dysplasia:a clinical and pathological study. Ann Otol Rhinol Laryngol,1980; 89(Suppl 65):1-23.
    [13]Mondini C:Anatomica surdi nati secto. De Bonomiensi scientarum et atrium institute atqueacademia commentani. Banoniax,1791; 7:419-431.
    [14]兰宝森.中华影像医学头颈部卷[M].北京:人民卫生出版社,2002:93-94.
    [15]Slattery WH, Luxford WM. Cochlear implantation in the congenital malformed cochlea. Laryngoscope,1995;105:1184-1187.
    [16]Lo WWM. Imaging of cochlear and auditory brain stem implantation. Am J Neuroradiol,1998:1147-1154.
    [17]Phelps PD. The basal turn of the cochlea. Br J Radiol,1992; 65:370-412.
    [18]Yuen HY, Ahuja AT, Wong KT, et al. Computed tomography of common congenital lesions of the temporal bone,2003,58(9):687-693.
    [19]Bouman NM, Kyrby-Keyser L, Dolan K. Mondini dysplasia and congenital cytomegalovirus infection. J Pediatr,1994; 124:71-78.
    [20]Levenson MJ, Parisier SC, Jacobsm, et al. The largevestibular aqueduct syndrome in children. A review of 12cases and the description of a new clincial entity[J]. Arch Otolaryngol Head Neck Surg,1989,115:54-58.
    [21]Arndt S, Beck R, Schild C, et al. Management of cochlear implantation in patients with malformations. Clin Otolaryngol,2010,35(3):220-227.
    [22]Kabatova Z, Profant M, Simkova L, et al. Cochlear implantation in malformed inner ear. Bratisl Lek Listy,2009,110(10):609-613.
    [23]Shim HJ, Shin JE, Chung JW, et al. Inner ear anomalies in cochlear implantees:importance of radiologic measurements in the classification. Otol Neurotol,2006 Sep,27(6):831-837.
    [24]Ding X, Tian H, Wang W, et al. Cochlear implantation in China:review of 1237 cases with an emphasis on complications. ORL J Otorhinolaryngol Relat Spec,2009,71(4):192-195.
    [25]Cheng L, Yang J, Wu H, et al. Evaluation with functional magnetic resonance imaging in 1 case of cochleovestibular nerve malformation in children before cochlear implantation and review of the iterature. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2010 Mar,24(5):217-220.
    [26]Yu Z, Han D, Gong S, et al. Facial nerve course in congenital aural atresia-identified by preoperative CT scanning and surgical findings. Acta Otolaryngol,2008,128(12):1375-1380.
    [1]Kadom N, Sze RW. Radiological reasoning:congenital sensorineural hearing loss. AJR Am J Roentgenol,2010,194(3 Suppl):1-4.
    [2]Cross NC, Stephens SDG, Francis M, et al. Computed tomography evaluation of the inner ear as a diagnostic, counseling and management strategy in patients with congenital sensorineural hearing impairment. Clin Otolaryngol, 1999,24:235-238.
    [3]Swartz JD, Hmasbegrer HR. Imaging of the Temporal Bone [M],3dr edn. Thieme Medieal Publishers,1998:240-317.
    [4]Schuknecht HF. Mondini dysplasia:a clinical and pathological study. Ann Otol Rhinol Laryngol,1980; 89 (Suppl 65):1-23.
    [5]戴朴,韩东一,袁慧军,等.基因诊断-耳科诊断领域的重大进步.中华耳科学杂志,2005,3(1):62-64.
    [6]Dai, P., et al., Molecular etiology of hearing impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis. J Transl Med, 2008.6:p.74.
    [7]Dai P, et al, GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med,2009.7:p.26.
    [8]戴朴,韩东一,杨伟炎。标准聋病分子诊断实验室的结构及功能,中华耳科学杂志,2004,2(1):60-63.
    [9]Maarzita ML, Ploughman L, Rawlings B, et al. Genetic epidemiological studies of early-onset deanfess in the U.S. school-age Population. Am J Med Genet.1993,46:486-491.
    [10]Kalatzis V, Petit C. The fundamental and medical impacts of recent progress in research on heriditary hearing loss. Hum mol Genet.1998,7(10), Review: 1589-1597.
    [11]Posukh O, Pallares-Ruiz N, Tadinova V, et al. First molecular screening of deafness in the Altai Republic population. BMC Med Genet,2005,6:12-18.
    [12]Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum mol Genet,2005,14(12): 1641-1650.
    [13]Smith, R.J. and N.H. Robin, Genetic testing for deafness- GJB2 and SLC26A4 as causes of deafness. J Commun Disord,2002.35(4):p.367-77.
    [14]Chen, G, X. Wang, and S. Fu, Prevalence of A1555G mitochondrial mutation in Chinese newborns and the correlation with neonatal hearing screening. Int J Pediatr Otorhinolaryngol.75(4):p.532-4.
    [15]Pryor, S.P., et al., SLC26A4/SLC26A4 genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA):evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet,2005.42(2):p.159-65.
    [16]Dai, P., et al., Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss. Physiol Genomics,2009. 38(3):p.281-90.
    [17]Yong, AM, et al, Two Chinese families with Pendred's syndrome radiological imaging of the ear and molecular analysis of the pendrin gene. J Clin Endocrinol Metab,2001.86(8):p.3907-3911.
    [18]Yoshida, A., et al., Mechanism of iodide/chloride exchange by pendrin. Endocrinology,2004.145(9):p.4301-8.
    [19]戴朴.遗传性耳聋的分子诊断和遗传咨询,实用医学杂志,2005,21(2):116-118.
    [20]肖晓光,严勇,徐丽,等Cnonexin26基因与常染色体隐性非综合征性耳聋.国外医学遗传学分册.2003,26(2):110-12.
    [21]Seott DA, Kratf ML, Stone EM, et al. Connexin mutations and hearing loss. Nautre,1998,391:332.
    [22]Kelsell DP, Dunlo PJ, Stevens HP, et al. Connexin 26 mutations in hereditary Nonsyndromic sensorineuarl deaefnss. Nature.1997,387:80-83.
    [23]Smith RJH, Robin NH. Genetic testing for deafness-GJB2 and SLC26A4 as causes of deanfess. J Communication Disorders.2002,35:367-377.
    [24]Naganawa S, Koshikawa T, Iwayama E, et al. MR imaging of the enlarged endolymphatic duct and sac syndrome by use of a 3D fast asymmetric spin-echo sequence:volume and signal-intensity measurement of the endolymphatic duct and sac and area measurement of the cochlear modiolus.AJNR Am J Neuroradiol.2000 Oct;21(9):1664-9.
    [25]Krombach GA, Honnef D, Westhofen M, et al. Imaging of congenital nomal-ies and acquired lesions of the inner ear.Eur Radiol.2008 Feb;18(2):319-330.
    [1]Schuknecht HF. Pathology of the Ear,2nd ed. Philadelphia:Lea and Febiger, 1993:180-181.
    [2]Jackler RK, Luxford WM, House WF. Congenital Malformations of the Inner Ear:a Classification Based on Embryogenesis[J]. Laryngoscope,1987,97(1): 2-14.
    [3]Sennaroglu L, Saatci I. A New Classification for Cochleovestibular Malform-ations [J]. Laryngoscope,2002,112(12):2230-2241.
    [4]Cross NC, Stephens SDG, Francis M, et al. Computed tomography evaluation of the inner ear as a diagnostic, counseling and management strategy in patients with congenital sensorineural hearing impairment. Clin Otolaryngol, 1999,24:235-238.
    [5]Yuen HY, Ahuja AT, Wong KT, et al. Computed tomography of common congenital lesions of the temporal bone,2003,58(9):687-693.
    [6]韩德民.人工耳蜗.北京:人民卫生出版社,2003,127-140.
    [7]Swartz JD, Hmasbegrer HR. Imaging of the Temporal Bone[M],3dr edn. Thieme Medieal Publishers,1998:240-317.
    [8]Kadom N, Sze RW. Radiological reasoning:congenital sensorineural hearing loss. AJR Am J Roentgenol,2010,194(3 Suppl):1-4.
    [9]Molter DW, Pate BR, McElveen JT. Cochlear implantation in the congenitally malformed ear[J]. Otolaryngol Head Neak Surg,1993,108:174-177.
    [10]兰宝森.中华影像医学头颈部卷[M].北京:人民卫生出版社,2002:93-94.
    [11]Bitner-Glindzicz, M., Hereditary deafness and phenotyping in humans. Br Med Bull,2002.63:p.73-94.
    [12]Dai, P., et al., GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med,2009.7:p.26.
    [13]Dai, P., et al., Molecular etiology of hearing impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis. J Transl Med, 2008.6:p.74.
    [14]Dai, P., et al., Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss. Physiol Genomics,2009. 38(3):p.281-90.
    [15]Jackler RK, Hwang PH. Enlargement of the cochlear aqueduct:fact or fiction? Otolaryngol Head Neck Surg,1993,109:14-25.
    [16]Schuknecht HF. Pathology of the Ear,2nd ed. Philadelphia:Lea and Febiger, 1993:180-181.
    [17]Phelps PD. Mondini and pseudo-Mondini. Clin Otolaryngol,1990, 15:99-101.
    [18]Mori T, Westerberg BD, Atashband S,et al. Natural history of hearing loss in children with enlarged vestibular aqueduct syndrome. J Otolaryngol Head Neck Surg,2008,37(1):112-118.
    [19]戴朴,黄德亮,王嘉陵,等.SLC26A4基因检测- 诊断大前庭水管综合征的新方法.中华耳科学杂志,2005,3(4):241-244.
    [20]McKay IJ, Lewis J, Lumsden A. The role of FGF-3 in early inner ear development:an analysis in normal and Kreisler mutant mice. Dev Biol, 1996,174:370-378.
    [21]Hardys T, Brown T, Brandt SR, et al. Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development,1998,125:33-39.
    [22]Torres M, Gomez-Pardo E, Gruss P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development,1996,122:3381-3391.
    [23]Kara C, Kilic M, Ucakturk A, et al. Congenital goitrous hypothyroidism, deafness and iodide organification defect in four siblings:pendred or pseudo-pendred syndrome? J Clin Res Pediatr Endocrinol,2010 Jun, 2(2):81-84.
    [24]Arndt S, Beck R, Schild C, et al. Management of cochlear implantation in patients with malformations. Clin Otolaryngol,2010,35(3):220-227.
    [25]Kabatova Z, Profant M, Simkova L, et al. Cochlear implantation in malformed inner ear. Bratisl Lek Listy,2009,110(10):609-613.
    [26]Shim HJ, Shin JE, Chung JW, et al. Inner ear anomalies in cochlear implantees:importance of radiologic measurements in the classification. Otol Neurotol,2006 Sep,27(6):831-837.
    [27]Ding X, Tian H, Wang W, et al. Cochlear implantation in China:review of 1237 cases with an emphasis on complications. ORL J Otorhinolaryngol Relat Spec,2009,71(4):192-195.
    [28]Cheng L, Yang J, Wu H, et al. Evaluation with functional magnetic resonance imaging in 1 case of cochleovestibular nerve malformation in children before cochlear implantation and review of the iterature. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2010 Mar,24(5):217-220.
    [29]Yu Z, Han D, Gong S, et al. Facial nerve course in congenital aural atresia-identified by preoperative CT scanning and surgical findings. Acta Otolaryngol,2008,128(12):1375-1380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700