用户名: 密码: 验证码:
二氧化钛光催化性能研究及纳米复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛半导体材料由于其强氧化性、化学性质稳定、无毒和价格低廉等优点而被广泛应用于气体传感器、太阳能电池、污水处理和空气净化等领域。然而由于二氧化钛的禁带宽度较大(锐钛型及金红石型二氧化钛的禁带宽度分别为3.2eV和3.0eV),只能吸收紫外光,而紫外光仅占太阳光的5%左右,对太阳能的利用率低。因此使二氧化钛对可见光产生响应从而提高二氧化钛半导体材料的太阳光利用效率是目前的研究热点。不同形态结构的二氧化钛半导体材料由于其独特的性能在不同的领域有各自潜在的应用。一维纳米结构材料(纳米线、纳米棒、纳米管、纳米棒)由于其独特的几何结构及新奇的物理化学性能而在纳米器件、药物释放、微电子和纳米传感器等领域具有潜在的应用。静电纺丝技术是制备一维二氧化钛纳米材料相对简单通用的方法。本论文采用简单可行的非水溶胶-凝胶法,以四氯化钛为前驱体,以乙醇为溶剂,不需要添加任何稳定剂即可成功制备带有醇盐结构的二氧化钛纳米粉体,然后利用二氧化钛纳米粉体制备了锐钛型二氧化钛水溶胶、DMF溶胶和碳掺杂二氧化钛纳米粉体。并利用锐钛型二氧化钛水溶胶的光催化聚合反应制备了PMMA/二氧化钛纳米杂化材料;以锐钛型二氧化钛DMF溶胶及PMMA聚合物为纺丝液,利用静电纺丝技术制备PMMA/锐钛型二氧化钛复合纤维,经过高温处理得到了具有可见光响应碳掺杂二氧化钛纳米纤维,并以亚甲基蓝为降解模型考察了碳掺杂二氧化钛纳米纤维的光催化降解活性;利用碳掺杂的二氧化钛纳米粉体在可见光下催化聚合制备PMMA聚合物,并对聚合产物进行了一系列的表征。本论文的主要研究工作和结果如下:
     (1)利用非水溶胶-凝胶法简单方便的合成了结晶二氧化钛纳米粉体,把制备得到的二氧化钛纳米粉体分散到水中即可得到不同质量浓度的二氧化钛水溶胶。同时将二氧化钛纳米粉体分散到DMF溶剂中得到了不同质量浓度的二氧化钛DMF溶胶。当二氧化钛含量较低时,两种溶胶均保持较好的光学透明性和存放稳定性。XRD测试表明制备得到的二氧化钛水溶胶及DMF溶胶中的二氧化钛纳米颗粒保持了初始纳米粒子的锐钛型结晶结构,且结晶度较高。DLS测试显示随着二氧化钛质量浓度的增加,溶胶中的二氧化钛颗粒的尺寸也逐渐增大。
     (2)不同含量的MAA偶联剂对二氧化钛水溶胶进行了表面改性,FT-IR分析证明MAA对二氧化钛的改性是有效的。利用改性后的二氧化钛水溶胶对MMA单体进行光催化聚合制备了PMMA二氧化钛杂化材料。结果显示MAA的引入有助于二氧化钛纳米粒子在PMMA聚合物基体中的均匀分散,从而有助于提高杂化材料的玻璃化温度、热稳定性和光学透明性。
     (3)利用静电纺丝技术,以PMMA聚合物和锐钛型二氧化钛DMF溶胶为纺丝液制备了PMMA/结晶二氧化钛杂化纤维。再经高温处理得到具有可见光响应的锐钛型碳掺杂二氧化钛纳米纤维。XRD分析证明PMMA/二氧化钛杂化纤维中的无机组分仍保留了锐钛型二氧化钛的晶型。XPS结果表明可以通过对PMMA/二氧化钛杂化纤维的高温处理得到了碳掺杂二氧化钛纳米纤维。相对于PMMA/二氧化钛杂化纤维而言,碳掺杂二氧化钛纳米纤维表现出更高的可见光催化活性。具有可见光吸收的碳掺杂二氧化钛纳米纤维在污水处理及空气净化领域具有潜在的应用。
     (4)利用制备得到的二氧化钛纳米粉体,经过热处理得到了碳掺杂二氧化钛纳米粉末。XRD分析表明碳掺杂的二氧化钛纳米粉体具有完美的锐钛型结晶相。根据XPS分析可知,制备得到的碳掺杂的二氧化钛纳米粉体具有两种掺杂形式碳原子。UV-Vis测试表明碳掺杂二氧化钛纳米粉体除了在紫外区域具有强的吸收之外,对可见光也具有很好的响应。利用碳掺杂二氧化钛纳米粉体在可见光条件下成功合成了PMMA聚合物。聚合物的数均分子量为1.28×106g/mol,分散系数为3.0。聚合物的玻璃化转变温度为127℃左右。碳掺杂的二氧化钛纳米颗粒有助于在光催化过程中更好的利用太阳光。
Titania has been widely used as gas sensors, solar-energy conversion and a promising photocatalyst for water and air purification because of its high oxidative power, chemical stability, low cost and nontoxicity. Unfortunately, one severe disadvantage of the titania semiconductor material is the large band gap of 3.0 or 3.2 eV in the rutile or anatase crystalline phase respectively and only absorbs the UV light which accounts for merely-5% of the solar spectrum.Therefore, there have been many efforts to extend activity of titania into the visible region to improve utilize efficiency of titania. Titania materials with different morphology and structure have applications in different fields. For their distinctive geometries, novel physical and chemical properties and potential applications in nanodevices, drug delivery, nanosensors and microelectronics,one-dimensional(1D)chemical nanostructures such as nanorods, nanowires, nanotubes, and nanobelts have attracted a great attention. Titania nanofibers and nanotubes had been successfully prepared by the electrospinning technique because it is a relatively simple and versatile method for fabricating ultrafine fibers. Herein, we used a convenient controlled nonhydrolytic sol-gel method to prepare alkoxide-bonded titania nanoparticles. The whole reaction procedure between TiCl4 and ethanol is simple without using any additional peptizing agent. Anatase titania hydrosol, anatase titania DMF sol and carbon-doped titania nanoparticles were prepared using the as-synthesized alkoxide-bonded titania nanoparticles. Then the PMMA/titania hybrid materials were prepared by the photocatalytic polymerization of the anatase titania hydrosol under the Xe light. The PMMA/titania hybrid nanofibers were prepared via the electrospinning method using the PMMA solution containing an anatase titania nonaqueous sol.After the calcination, the carbon-doped anatase titania nanofibers responded to the visible light were obtained. The PMMA polymer was also synthesized by the photocatalytic polymerization of the carbon-doped titania nanoparticles under visible light illumination. The main research content and results are as follows.
     (1)The anatase titania nanoparticles prepared by a facile nonhydrolytic sol-gel reaction. Then the anatase titania nanoparticles were dispersed into water to form stale hydrosol.The titania DMF sol were also obtained by dispersing the anatase titania nanoparticles into DMF solvent. The two kinds of titania sols were stale and kept good transparency when the concentration of titania was low. The XRD patterns showed that the crystals of the titania in titania sols still retained the anatase phase and high crystalline. The DLS results exhibited the size of titania nanoparticles in the two kind sols gradually became large with increasing titania concentration.
     (2) The surface modification of the titania nanoparticles was achieved by the formation of the bidentate coordination between titania and methacrylic acid molecules. The photocatalytic polymerization of methyl methacrylate was initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. The transparency of PMMA hybrid films was maintained because the modified titania nanoparticles were well dispersed in the polymer matrix.The glass transition temperatures and the thermal stabilities of PMMA nanocomposites prepared via photocatalytic polymerization were greatly improved compared with pure polymer.
     (3) The PMMA/anatase titania hybrid nanofibers were prepared via electrospinning technique using the PMMA solution containing an anatase titania DMF sol. The carbon-doped titania nanofibers were also obtained by calcining the hybrid nanofibers. The XRD results showed that the anatase phase in the PMMA/titania hybrid nanofibers was preserved during the spinning. The XPS results demonstrated that the carbon doping into titania nanofibers was achieved via the calcination at 400℃. Compared with hybrid nanofibers, the carbon-doped titania nanofibers had higher photocatalytic activities toward the degradation of methylene blue under visible light irradiation. Therefore, the carbon-doped titania nanofibers showed promising applications in water cleaning and air purification.
     (4) Carbon-doped titania nanoparticles in a pure anatase phase colored dark brown were successfully prepared using a convenient controlled nonhydrolytic sol-gel method followed by annealing at 400℃. The XPS indicated that substitutional and interstitial carbon atoms coexist in the lattice of titania. The UV-Vis spectrum showed that these carbon-doped titania nanoparticles exhibit significant photo response from UV to near infrared region in excess of 950 nm. The PMMA polymer was prepared by photocatalytic polymerization of the carbon-doped titania nanoparticles under the visible light illumination. The Mn of the purified PMMA was~1.28×106 g/mol and its polydispersity was 3.0. The glass transition temperature of obtained PMMA was about 127℃. This carbon-doped titania would be benefit to allow the more efficient use of sunlight in photocatalysis and photochemistry.
引文
[1]Fujishima A, Honda K. Electrochemical photo-catalysis of water at semiconguctor electrode[J].Nature 1972,238,37-39.
    [2]Hoffmann M R, Martin S T, Choi W,Bahnemann D W. Enviromental applications of semiconductor photocatalysis[J].Chem. Rev.1995,95,69-96.
    [3]Gratzel M. Photoelectrochemical cells[J].Nature 2001,414,338-344.
    [4]Mills A, Hunte S L. An overview of semiconductor photocatalysis[J].J. Photochem. Photobio.A,1997,108,1-35.
    [5]Linsebigler A L, Lu G Q, Yates Jr J T. Photocatalysis on TiO2 surfaces-Principles, mechanisms, and selected results[J].Chem. Rev.1995,95, 735-758.
    [6]Minabe T, Tryk D A, Sawunyama P, Kikuchi Y, Hashimoto K, Fujishima A. TiO2-mediated photodegradation of liquid and solid organic compounds [J]. J. Photochem. Photobio.A 2000,137,53-62.
    [7]Tryk D A, Fujishima A, Honda K.Recent topics in photoelectrochemistry: achievements and future prospects [J].Electrochimica Acta 2000,45,2363-2376.
    [8]Ireland J C, Klostermann P, Rice E W, Clark R M.Inactivation of escherichia-coli by titanium-dioxide photocatalytic oxidation[J].Appl.Environ. Microbio.1993, 59,1668-1670.
    [9]Sjogren J C, Sierka R A. Inacitivation of phage MS2 by iron-aided titanium-dioxide photocatalysis[J].Appl.Enuiron. Microbio.1994,60,344-347.
    [10]Cai R X, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcited TiO2 particles[J].Cancer Res.1992,52,2346-2348.
    [11]Cai R, Hashimoto K, Kubota Y, Fujishima A.Increment of photocatalytic killing of cancer-cells using TiO2 with the aid of superoxide-dismutase[J].Chem. Lett.1992,3,427-430.
    [12]Karakitsou K E, Verykios X E.Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage[J].J.Phys.Chem.1993, 97,1184-1189.
    [13]Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M. Photochemical cleavage of water by photocatalysis[J].Nature 1981,289,158-160.
    [14]Kalyanasundaram K, Borgarello E, Duonghong D, Gratzel M. Cleavage of water by visible-light irradiation of coll oidal cds solutions-inhibition of photocorrosion by RuO2[J].Angew. Chem.Int. Ed.Engl.1981,20,987-988.
    [15]Duonghong D, Borgarello E, Gratzel M. Dynamics of light-induced water cleavage in colloidal systems[J].J. Am. Chem. Soc.1981,103,4685-4690.
    [16]Wold A. Photocatalytic properties of TiO2[J].Chem. Mater.1993,5,280-283.
    [17]Martin S T, Herrman H, Choi W, Hoffmann M R. Time-resolved microwave conductivity.LTiO2 photoreactivity and size quantization[J].Trans. Faraday Soc.1994,90,3315-3322.
    [18]Martin S T, Herrman H, Hoffmann M R. Time-resolved microwave conductivity.2.Quantum-sized TiO2 and the effect of adsorbates and light-intensity on charge-carried dynamics[J].Trans. Faraday Soc.1994,90,3323-3330.
    [19]Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Visible light photodegradation of 4-chlorophenol with a coke-containing dioxide photocatalyst[J]. Appl.Cata. B 2001,32,215-227.
    [20]Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions [J].J.Phys. Chem.1997,101,3746-3752.
    [21]Muscat J,Swamy V, Harrison N M.First-principles calculations of the phase stability of TiO2[J].Phys. Rev. B 2002,65,224112-224127.
    [22]Mitsuhashi T, Kleppa O J.Transformation enthalpies of the TiO2 Polymorphs[J]. J.Cera. Soc.1979,62,356-357.
    [23]Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J].J.Chem. Phys.1984,80,4403-4409.
    [24]Salvador P, Garcia Gonzalez M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001)n-titanium(IV) oxide rutile [J].J.Phys. Chem,1992,96,10349-10353.
    [25]Shaw K, Christensen P, Hamnett A. Photoelectrochemical oxidation of organics on single-crystal TiO2:An in situ FTIR study [J].Electrochemica Acta 1996,41, 719-728.
    [26]Chen Y M, Cao Y A, Bai Y B,Yang W S,Yang J H,Jin H Y,Li T J.Study on photoelectric properties of a TiO2 nanoparticle [J].J. Vacu. Sci.Techno.B 1997, 940,1442-1444.
    [27]Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C.Quantum size effect in TiO2 nanoparticles:does it exist? [J].J. Appl.Sur. Sci 2000,162,565-570.
    [28]Sanchez E, Lopez T, Gomez R, Bokhimi, Morales A, Novaro O.Synthesis and characterization of sol-gel Pt/TiO2 catalyst[J].J. sol. Sta. Chem.1996,122,309-314.
    [29]Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles[J].J.Phys. Chem.1991,95, 5261-5267.
    [30]Micic O I, Zhang Y N, Cromack K R, Trifunac A D, Thurnauer M C.Trapped holes on titania colloids studied by electron paramagnetic resonance [J].J.Phys. Chem.1993,97,7277-7283.
    [31]Kamat P V, Fox M A. Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile[J].Chem. Phys. Lett.1983,102,379-384.
    [32]Patrick B,Kamat P V. Photoelectrochemistry in semiconductor particulate systems.17.Photosensitization of large-bandgap semiconductors:charge injection from triplet excited thionine into zinc oxide colloids[J].J.Phys. Chem.1992, 96,1423-1428.
    [33]Vlachopoulos N, Liska P, Augustynski J,Gratzel M. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films[J].J.Am. Chem. Soc.1988,110,1216-1220.
    [34]Desilvestro J, Gratzel M, Kavan L, Moser J, Augustynski J.Highly efficient sensitization of titanium dioxide[J].J.Am. Chem. Soc.1985,107,2988-2930.
    [35]Mest'ankova H, Krysa J, Jirkovsky J,Mailhot G, Bolte M.The influence of Fe(Ⅲ) speciation on supported TiO2 efficiency:example of monuron photocatalytic degradation[J].Appl.Cata. B 2005,58,185-191.
    [36]Uekawa N, Kurashima Y, Kakegawa K, Sasaki Y. Preparation and nonstoichiometric property of wide compositional Fe(Ⅲ)-doped TiO2 (anatase)[J].J. Mater. Res.2000,15,967-973.
    [37]Gulkova D, Kaluza L, Vit Z, Zdrazil M. Preparation of MoO3/TiO2 Catalysts with Eggshell and Uniform Mo Distribution by Water-Assisted Spreading of MoO3[J]. Cata. Lett.2006,112,193-196.
    [38]Berko A, Magony A, Szoko J.Characterization of Mo Deposited on a TiO2(110) Surface by Scanning Tunneling Microscopy and Auger Electron Spectroscopy[J]. Languire 2005,21,4562-4570.
    [39]Yang Y, Li X J,Chen J T, Wang L Y.Effect of doping mode on the photocatalytic activities of Mo/TiO2[J].J. Photochem. Photobio.A 2004,163,517-522.
    [40]Kim S S, Kwon B,Kim J.Plasma catalytic methane conversion over sol-gel derived Ru/TiO2 catalyst in a dielectric-barrier discharge reactor[J].Cata. Comm.2007,8,2204-2207.
    [41]Zhao X Y, Hrbek J, Rodriguez J A. The decomposition and chemistry of Ru-3(CO)(12) on TiO2(110) studied with X-ray photoelectron spectroscopy and temperature programmed desorption[J].Sur. Sci.2005,575,115-124.
    [42]Kera Y, Matsukaze Y. Dynamical change in the crystal field around the V(IV) ion on titanium dioxide (rutile) surface accompanied by the interaction with adsorbed oxygen molecules[J].J.Phys. Chem.1986,90,5752-5755.
    [43]Paganini MC, DallAcqua L, Giamello E, et al.An EPR study of the surface chemistry of the V2O5-WO3/TiO2 catalyst:redox behaviour and state of Ⅴ(Ⅳ)[J]J.Cata.1997,166,195-205.
    [44]Boudeville Y, de Montgolfier P. g tensor of transition ions in a crystalline matrix: Interstitial Ⅴ(Ⅳ) and Ti(Ⅲ) in rutile TiO2[J].Chem.Phys. Lett.1975,30,469-471.
    [45]Yamashita H,Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N.Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water[J].J.Phys.Chem. B 1998,102,10707-10709.
    [46]Wang Y Q, Cheng H M, Hao Y Z, Ma J M, Li W H, Cai S M. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes[J].Thin Sol.Films 1999,349,120-125.
    [47]Burda C, Lou Y B,Chen X B, et al.Enhanced nitrogen doping in TiO2 nanoparticles[J].Nano lett.2003,3,1049-1051.
    [48]Gole J L, Stout J D, Burda C, et al.Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J].J. Phys. Chem.B 2004,108,1230-1240.
    [49]Chen X B,Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles[J].J. Phys. Chem. B 2004,108,15446-15449.
    [50]Sakthivel S,Kisch H.Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide[J].ChemPhysChem 2003,4,487-490.
    [51]Sano T, Negishi N, Koike K, Takeuchi K, Matsuzawa S.Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand [J].J.Mater. Chem.2004,14,380-384.
    [52]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J].Chem. Lett.2003,32,364-365.
    [53]Umebayashi T, Yamaki T, Tanaka S,et al.Visible light-induced degradation of methylene blue on S-doped TiO2[J].Chem. Lett.2003,32,330-331.
    [54]Hattori A, Yamamoto M, Tada H, Ito S.A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J].Chem. Lett.1998,27,707-708.
    [55]Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J].Chem. Mater.2002,14,3808-3816.
    [56]Luo H M, Takata T, Lee Y G,et al.Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J].Chem.Mater.2004,16,846-849.
    [57]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science 2001,293,269-271.
    [58]Diwald O, Thompson T L, Goralski E G,Walck S D, Yates Jr J T. Photochemical activity of nitrogen-doped rutile TiO2(111)in visible light[J].J. Phys.Chem. B 2004,108,6004-6008.
    [59]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J].J.Phys.Chem. B 2003,107, 5483-5486.
    [60]Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J].J.Phys. Chem. B 2004,108,10617-10620.
    [61]Subbarao S N, Yun Y H, Kershaw R, Dwinghta K, Wold A. Electrical and optical-properties of the system TiO2-xFx[J].Inorg. Chem.1979,18,488-492.
    [62]Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J].J.Mater. Sci.2004,39,1837-1839.
    [63]Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J].Chem. Lett.2003,32,712-113.
    [64]Ohno T, Mitsui T, Matsumura M. Photocatalytie activity of S-doped TiO2 photocatalyst under visible light[J].Chem. Lett.2003,32,364-365.
    [65]Umebayashi T, Yamaki T, Itoh H, et al.Band gap narrowing of titanium dioxide by sulfur doping[J].Appl. Phys.Lett.2002,81,454-456.
    [66]Lindgren T, Lu J, Hoel A, Granqvist C G, Torres G R, Lindquist S E. Photo electrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte[J].Sol.Ener. Mater. Sol. Cells 2004,84,145-157.
    [67]Diwald O, Thompson T L, Zubkov T, Goralski E G, Walck S D, Yates Jr J T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals[J]. J.Phys. Chem. B 2004,108,52-57.
    [68]Umebayashi T, Yamaki T, Yamamoto S,et al.Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies[J].J.Appli.Phys.2003,93,5156-5160.
    [69]Yamaki T, Umebayashi T, Sumita T, Yamamoto S,Maekawa M, Kawasuso A, Itoh H. Fluorine-doping in titanium dioxide by ion implantation technique[J].Nucl. Instr. Meth. Phys.Res.2003,206,254-258.
    [70]Sato S.Photocatalytic activity of NOx-doped TiO2 in the visible-light region[J]. Chem. Phys. Lett.1986,123,126-128.
    [71]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl.Cata.2003,42,403-409.
    [72]Yin S, Zhang Q W, Saito F, et al.Preparation of visible light-activated titania photocatalyst by mechanochemical method[J].Chem. Lett.2003,32,358-359.
    [73]Khan S U M, Al-Shahry M, Ingler W B.Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science 2002,297,2243-2245.
    [74]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide[J].Angew. Chem. Int. Ed.2003,42,4908-4911.
    [75]Nakano Y, Morikawa T, Ohwaki T, Taga Y.Electrical characterization of band gap states in C-doped TiO2 films[J].Appl.Phys. Lett.2005,87,052111-052113.
    [76]Enache C S,Schoonman J, de Krol R V.Addition of carbon to anatase TiO2 by n-hexane treatment-surface or bulk doping? [J]. Appl. Surf. Sci.2006,252,6342-6347.
    [77]Xu C K, Killmeyer R, GrayM L, et al.Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting[J].Electrochem.Comm.2006, 8,1650-1654.
    [78]Hahn R, Ghicov A, Salonen J, et al.Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment[J]. Nanotechnology 2007,18,105604-105607.
    [79]Zhao W, Ma W H, Chen C C, et al.Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J].J.Am. Chem. Soc.2004,126,4782-4783.
    [80]Wang J S,Yin S,Zhang Q W, et al.Mechanochemical synthesis of Sr-TiO3-xFx with high visible light photocatalytic activities for nitrogen monoxide destruction[J]. Mater. Chem.2003,13,2348-2352.
    [81]Yu J G, Yu J C, Cheng B,et al.The efect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders[J].J.Sol.State Chem.2003,174,372-380.
    [82]Li D, Haneda H, Hishita S,et al.Fluorine-doped TiO2 powers prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J].J.Fluorine Chem.2005,126,69-77.
    [83]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版社,2002.
    [84]khtar M K, Yun X O, Pratsinis S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J].Aiche J.1991,37,1561-1570.
    [85]Akhtar M K, Xiong Y, Pratsinis S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J].J.Aerosol Sci.1991,22,S35-S38.
    [86]Yang G X, Zhuang H R, Biswas P. Characterization and sinterability of nanophase titania particles processed in flame reactors[J].Nanostru. Mater.1996, 7,675-689.
    [87]Jang H D, Kim S K. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reacter[J].Mater. Res. Bull.2001,36,627-637.
    [88]Nagase T, Ebina T, Iwasaki T, et al.Hydrothermal synthesis of brookite[J].Chem. Lett.1999,9,911-912.
    [89]Wang C C, Ying J Y.Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J].Chem. Mater.1999,11,3113-3120.
    [90]Bacsa R R, Gratzel M. Rutile formation in hydrothermally crystallized nanosized titania[J].J.Am.Ceram. Sci.1996,79,2185-2188.
    [91]Zheng Y Q, Shi E W,Cui S X, et al.Hydrothermal preparation of nanosized brookite powders[J].J.Am.Ceram.Sci.1996,83,2634-2636.
    [92]Zhang Q H, Gao L, Guo J K. Preparation and characterization of nanosized TiO2 powders from aqueous TiC14 solution[J].Nanostru. Mater.1999,11,1293-1300.
    [93]Park H K,Kim D K,Kim C H.Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4[J].J.Am. Ceram. Sci.1997,80, 743-749.
    [94]Sekhar S,Michael J H.Influence of stirrer speed on the precipitation of anatase particles from titanyl sulphate solution[J].J.Crys. Growth 2001,223,225-234.
    [95]Chhabra V, Pillai V, Mishra B K, Morrone A, ShahSynthesis D O. Characterization, and properties of microemulsion-mediated nanophase TiO2 particles[J].Langmuir 1995,11,3307-3311.
    [96]Moulik S P, Paul B K. Structure, dynamics and transport properties of microemulsions[J].Adver. Collo. Inter. Sci.1998,78,99-195.
    [97]Li G L, Wang G H.Synthesis of nanometer-sized TiO2 particles by a microemulsion method[J].Nanostru. Mater.1996,11,663-668.
    [98]Ribot F, Toledano P, Sanchez C. Hydrolysis-condensation process of.beta.-diketonates-modified cerium(Ⅳ) isopropoxide[J].Chem. Mater.1991,3, 759-764.
    [99]Ayres J, Simendinger W H, Balik C M. Characterization of titanium alkoxide sol-gel systems designed for anti-icing coatings:Ⅰ. Chemistry[J].J.Coat. Technol. Res.2007,4,463-471.
    [100]Eiden-Assmann S,Widoniak J,Maret G.Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles[J].Chem. Mater.2004,16,6-11.
    [101]Matijevic E, Budnick M, Meites L. Preparation and mechanism of formation of titaniu-dioxide hydrosols of narrow size distribution[J],J.Colloid Interface Sci.1977,61,302-311.
    [102]Dislich H, Hinz P. History and principles of the sol-gel process, and some new multicomponent oxide coating[J].J.Non-cryst Sol.1982,48,11-16.
    [103]Arnal P, Corriu R J P, Leclercq D, et al.Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods[J].J.Mater. Chem.1996,6,1925-1932.
    [104]Arnal P, Corriu R J P, Leclercq D, et al.A solution chemistry study of nonhydrolytic sol-gel routes to titania[J].Chem. Mater.1997,9,694-698.
    [105]Hay J N, Raval H M.Preparation of inorganic oxides via a non-hydrolytic sol-gel route[J].J.sol-gel Sci.technol.1998,13,109-112.
    [106]Corriu R J P, Leclercq D, et al.Preparation of monolithic metal-oxide gels by a non-hydrolytic sol-gel process[J].J.mater. Chem.1992,2,673-674.
    [107]Zhang BL, Chen BS,Shi KY, et al.Preparation and characterization of nanocrystal grain TiO2 porous microspheres[J].Appl.Cata. B 2003,40,253-258.
    [108]Alam M J,Cameron D C.Preparation and characterization of TiO2 thin films by sol-gel method[J].J.sol-gel Sci Technol.2002,25,137-145.
    [109]Nad S,Sharma P, Roy I, et al.Anomalous nanostructured titanium dioxide[J].J. Colloid inter. Sci.2003,264,89-94.
    [110]Chen K Y, Chen Y W. Synthesis of spherical titanium dioxide particles by homogeneous precipitation in acetone solution[J] J. sol-gel Sci Technol.2003,27,111-117.
    [111]Bessekhouad Y, Robert D, Weber J V.Preparation of TiO2 nanoparticles by sol-gel route[J].Inter. J.Photoenergy 2003,5,153-158.
    [112]Harizanov O, Harizanova A. Development and investigation of sol-gel solutions for the formation of TiO2 coatings[J].Sol.Ener. Mater. Sol.cells 2000,63,185-195.
    [113]Falaras P, Xagas A P. Roughness and fractality of nanostructured TiO2 films prepared via sol-gel technique[J].J.Mater. Sci.2002,37,3855-3860.
    [114]Cozzoli PD, Kornowski A, Weller H.Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods[J].J.Am.Chem. Soc.2003,125,14539-14548.
    [115]Kim K D, Kim H T. Synthesis of titanium dioxide nanoparticles using a continuous reaction method[J].Collo. Surf. A 2002,207,263-269.
    [116]Xie Y B, Yuan C W. Characterization and photocatalysis of Eu3+-Ti02 sol in the hydrosol reaction system[J].Mate. Res.Bull.2004,39,533-543.
    [117]Zhu Y F, Zhang L, Gao C, Cao L L. The synthesis of nanosized TiO2 powder using a sol-gel method with TiC14 as a precursor[J].J. Mater. Sci.2000,35,4049-4054.
    [118]Zima T M, Karakchiev L G, Lyakhov N Z. Synthesis and physicochemical properties of hydrated titanium dioxide sol[J].Collo.J.1998,60,431-434.
    [119]Zhu Y F, Zhang L, Gao C,Yao W Q, Cao L L. The preparation of nanosized anatase TiO2 powder by using TiC14 as a precursor[J].Acta Physica-chimica Sinica 1999,15,784-788.
    [120]Lee D S,Liu T K. Preparation of TiO2 sol using TiCl4 as a precursor[J].J. sol-gel Sci.Technol.2002,25,121-136.
    [121]Ishibai Y, Nishikawa T, Miyagishi S.Synthesis of nano-sized TiO2 colloidal sol and its optical properties[J].J.Disper. Sci.Technol.2006,27,1093-1098.
    [122]Khan S U M, Sultana T. Photoresponse of n-TiO2 thin film and nanowire electrodes [J].Sol. Energy Mater. Sol.Cells 2003,76,211-221.
    [123]Sun L, Zuo J, Lai Y K, Nie C G, Lin C J.Electrical transport properties of individual TiO2 nanowire in one dimension[J].Acta Physico-chimica sinica 2007,23,1603-1606.
    [124]Lakshmi B B, Patrissi C J, Martin C R.Sol-gel template synthesis of semiconductor oxide micro-and nanostructures[J].Chem.Mater.1997,9,2544-2550.
    [125]Michailowski A, AlMawlawi D, Cheng GS,et al.Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J].Chem.Phys. Lett.2001,349,1-5.
    [126]Kobayashi S,Hanabusa K, Hamasaki N, et al.Preparation of TiO2 hollow-fibers using supramolecular assemblies[J].Chem. Mater.2000,12,1523-1526.
    [127]Caruso R A, Schattka J H, Greiner A.Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers[J].Adv. Mater.2001,13,1577-1580.
    [128]Imai H, Takei Y, Shimizu K, et al.Direct preparation of anatase TiO2 nanotubes in porous alumina membranes[J].J. Mater.Chem.1999,9,2971-2972.
    [129]Xiong C R, Balkus K J.Fabrication of TiO2 nanofibers from a mesoporous silica film[J]Chem. Mater.2005,17,5136-5140.
    [130]Kasuga T, Hiramatsu M, Hoson A, et al.Formation of titanium oxide nanotube[J].langmuir 1998,14,3160-3163.
    [131]Su Y F, Weng Y C,Chou T C.Templateless nanofiber photoelectrode prepared using mild hydrothermal conditions[J].J.Electrochem. Soc.2008,155,K23-K29.
    [132]Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires[J]. Collo.Surf. A 2004,241,173-183.
    [133]Zwilling V, Aucouturier M, Darque-Ceretti E.Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J].Electrochim. Acta 1999,45,921-929.
    [134]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J].J.Mater. Res.2001,16,3331-3334.
    [135]Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes [J].Electrochem. Solid-State Lett.2003,6, B12-B14.
    [136]Macak J M, Tsuchiya H, Schmuki P.High-aspect-ratio TiO2 nanotubes by anodization of titanium[J].Angew. Chem. Int. Ed.2005,44,2100-2102
    [136]Ghicov A, Tsuchiya H, Macak JM, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J].Electrochem. Commun.2005,7,505-509.
    [138]Tsuchiya H,Macak JM, Taveira L, et al.Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J].Electrochem. Commun.2005,7,576-580.
    [139]Taveira LV, Macak J M, Tsuchiya H, et al.Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)(2)SO4 electrolytes[J].J.electrochem. Soc.2005,152,B405-B410.
    [140]Macak J M, Ghicov A, Hahn R, et al. Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses[J].J.Mater. Rech.2006,21,2824-2828.
    [141]Ghicov A, Macak JM, Tsuchiya H, et al.TiO2 nanotube layers:Dose effects during nitrogen doping by ion implantation[J].Chem. Phys. Lett.2006,419,426-429.
    [142]Ghicov A, Macak JM, Tsuchiya H, et al.Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes[J].Nano lett.2006,6,1080-1082.
    [143]Hahn R, Ghicov A, Salonen J,et al.Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment[J]. Nanotechnology 2007,18,105604-105607.
    [144]Li D, Xia Y N.Electrospinning of nanofibers:Reinventing the wheel?[J].Adv. Mater.2004,16,1151-1170.
    [145]Li D, McCann J T, Xia Y N.Electrospinning:A simple and versatile technique for producing ceramic nanofibers and nanotubes[J].J.Am. Ceramic Soc.2006, 89,1861-1869.
    [146]McCann J T, Li D, Xia Y N.Electrospinning of nanofibers with core-sheath, hollow, or porous structures[J].J.Mater. Chem.2005,15,735-738.
    [147]Son W K, Cho D,Park W H.Direct electrospinning of ultrafine titania fibres in the absence of polymer additives and formation of pure anatase titania fibres at low temperature[J].Nanotechnology 2006,17,439-443.
    [148]Aminian MK, Taghavinia N, Iraji-zad A, et al.Highly porous TiO2 nanofibres with a fractal structure[J].Nanotechnology 2006,17,520-525.
    [149]Li D, Xia Y N.Fabrication of titania nanofibers by electrospinning[J].Nano Lett.2003,3,555-560.
    [150]Li D, Xia Y N.Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J].Nano Lett.2004,4,933-938.
    [151]Li D, McCann J T, Gratt M, et al.Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania[J].Chem. Phys. Lett.2004,394,387-391.
    [152]Ostermann R, Li D, Yin Y D, et al.V2O5 nanorods on TiO2 nanofibers:A new class of hierarchical nanostructures enabled by electrospinning and calcinations[J].Nano Lett.2006,6,1297-1302.
    [153]Song M Y, Kim D K, Ihn K J, et al.New application of electrospun TiO2 solid-state dye-sensitized solar electrode to cells[J].Synth.Metals 2005,153,77-80.
    [154]Jin M, Zhang X T, Nishimoto S, Liu Z Y, Tryk D A, Emeline A V, Murakami T, Fujishima A. Light-stimulated composition conversion in TiO2-based nanofibers[J].J. Phys.Chem. C 2007,111,658-665.
    [155]Madhugiri S, Sun B, Smirniotis P G, Ferraris J P, Balkus K J. Electrospun mesoporous titanium dioxide fibers[J].Micropor. Mesopo. Mater.2004,69,77-83.
    [156]Carey J H, Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].Bull.Environ. Contam. Toxicol.1976,16,697-701.
    [157]Mills A, LeHunte S.An overview of semiconductor photocatalysis[J].J. Photochem. Photobio.A 1997,108,1-35.
    [158]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes[J].J.sol.Enge. Engin.1997,119,101-107.
    [159]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J].Chem. Rev.1995,95,735-758.
    [160]Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J].Chem. Rev.1995,95,49-68.
    [161]Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J].Appl.Cata. A 2002,228,15-27.
    [162]沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用[J].化学进展1998,10,349-361.
    [163]Herrmann J M, Guillard C, Pichat P. Heterogenous photocatalysis-an emerging technology for water-treatment[J].Cata. Today 1993,17,7-20.
    [164]董震,杨建忠,赵钊辉.纳米材料在光催化净化空气领域中的应用[J].纺织科技进展2005,1,42-44.
    [165]祖庸,李晓娥,曲晓光.纳米二氧化钛光催化性能与应用[J].钛工业进展1999,2,23-26.
    [166]Cai R X, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A.Induction of cytotoxicity by photoexcited TiO2 particles[J].Cancer Res.1992,52,2346-2348.
    [167]Cai R, Hashimoto K, Itoh K. Photokilling of malignant cells with ultra-fine TiO2 powder[J].Bull.Chem. Soc. Jpn.1991,64,1268-1273.
    [168]Sakai H,Baba R, Hashimoto K, Kubota Y, Fujishima A.A Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under
    irradiation[J].Chem. Lett.1995,3,185-186.
    [169]Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M,Watanabe T. Light-induced amphiphilic surfaces[J]. Nature 1997,388,431-432.
    [170]Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K. Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces[J].Langmuir 1998,14,5918-5920.
    [171]Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M,Watanabe T. Photogeneration of Highly Amphiphilic TiO2 Surfaces[J].Adv. Mater.1998,10,135-138.
    [172]Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. Studies of surface wettability conversion on TiO2 single-crystal surfaces[J].J.Phys. Chem. B 1999,103,2188-2194.
    [173]Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S,Fujishima A, Hashimoto K. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J].Thin Sol. Films 1999,351,260-263.
    [174]Schrauzer G N, Guth T D.Photocatalytic reactions.1.Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. J. Chem. Soc.1977,99, 7189-7193.
    [175]Fox M A, Dulay M T. Heterogeneous photocatalysis[J].Chem. Rev.1993, 93,341-357.
    [176]Boucher D L, Davies J A, Edwards J G, Mennad A.An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides[J].J. Photochem. Photobio. A 1995,88,53-64.
    [177]Yue P L, Khan F, Rizzuti L. Photocatalytic ammonia synthesis in a fluidised bed reactor[J].Chem. Eng. Sci.1983,38,1893-1900.
    [178]Dunn W W, Aikawa Y, Bard A. Heterogeneous photosynthetic production of amino-acids at Pt-TiO2 suspensions by near ultraviolet-light[J].J.Am.Chem. Soc.1981,103,6893-6897.
    [179]Hoffman A J, Carraway E R, Hoffman M R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids[J].Environ.Sci. Technol.1994,28,776-785.
    [180]Kuriacose J C, Markham M C, Giaquintt C, Kuriacose J C.Effects of amides on photochemical processes at zinc oxide surfaces[J].J.Phys. Chem.1962,66,932-934.
    [181]Kamat P V, Todesco R V. Photoelectrochemistry in particulate systems.5. Visible light-induced polymerization of 1-vinylpyrene in semiconductor suspensions[J].J.Polym.Sci.A1987,25,1035-1040.
    [182]Hoffman A J, Yee H, Mills G, Hoffmann M R. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids[J].J.Phys.Chem.1992,96, 5540-5546.
    [183]Hoffman A J, Mills G, Yee H, Hoffmann M R. Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers [J].J. Phys. Chem.1992,96,5546-5552.
    [184]Popovic I G,Katslkas L, Muller U, Velickovic J S,Weller H.The homogeneous photopolymerization of methyl methacrylate by colloidal cadmium sulfide[J]. Macromol.Chem. Phys.1994,195,889-904.
    [185]Kraeutler B,Reiche H, Bard A J, Hocker RG. Initiation of free radical polymerization by heterogeneous photocatalysis at semiconductor powders[J].J.Sci. Polym.Lett.1979,17,535-538.
    [186]Funt B L, Tan S R.The photoelectrochemical initiation of polymerization of styrene[J].J.Polym. Sci.Polym.Chem. Ed.1984,22,605-608.
    [187]Kamat P V, Basheer R, Fox M A.Polymer-modified electrodes.Electrochemical and photoelectrochemical polymerization of 1-vinylpyrene[J]. Macromolecules 1985,18,1366-1371.
    [188]Fox M A, Worthen K L. Comparison of the physical properties of polypyrrole produced by anodic oxidation and by photoelectrochemical activation of titanium dioxide[J].Chem. Mater.1991,3,253-257.
    [189]Tada H, Hyodo M, Kawahara H.Photoinducted polymerization of 1,3,5, 7-tetramethylcyclotetrasiloxane by TiO2 particles[J].J.Phys. Chem.1991, 95,10185-10188.
    [190]Qu J F, Zhang S W,Song J H,Huang W. Solar photocatalytic polymerization of methyl methacrylate in aqueous medium with TiO2/Na2SO3 system[J].Acta Polymerica Ainica[J].2001,5,656-659.
    [191]Dong C, Ni X Y. The photopolymerization and characterization of methyl methacrylate initiated by nanosized titanium dioxide[J].J.Macromol.Sci. pure Appl. Chem.2004,41,547-563.
    [192]Ye J, Ni X Y, Dong C.Electric charge scavenger effects in PMMA photopolymerization initiated by TiO2 semiconductor nanoparticles[J].J.Macromol. Sci.pure Appl.Chem.2005,10,1451-1461.
    [193]Ni X Y, Ye J, Dong C. Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J].J. Photochem. Photobio.A 2006,81,19-27.
    [194]Damm C.An acrylate polymerisation initiated by iron doped titanium dioxide[J]. J. Photochem. Photobiol. A 2006,81,297-305.
    [1]Traversa E, Di Vona M L, Licoccia S,Sacerdoti M, Carotta M C, Gallana M, Martinelli G.Sol-gel nanosized semiconducting titania-based powders for thick-film gas sensors[J].J.Sol-gel Sci.technol.2000,19,193-196.
    [2]Peltola T, Paldan H, Moritz N,Areva S,Korventausta J,Jokinen M, Narhi T, Happonen R P, Yli-Urpo A.Methods to enhance biomimetic activity and ability to tissue bonding of sol-gel-derived nanoporous titania[J]. Bioceramics 2002,218-2,207-211.
    [3]Hsu J-P, Nacu A. On the factors influencing the preparation of nanosized titania sols[J].Langmuir 2003,19,4448-4454.
    [4]Parga J R, Shukla S S, Carrillo-Pedroza F R. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol[J].Waste Management 2003,23,183-191.
    [5]Xie Y B,Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation[J].Appl.Cata. B 2003,46,251-259.
    [6]Zheng M P, Jing Y P, Jin G L, Gu M Y, Tao P. Photochromism of titania sol and gel[J].Acta Chimica Sinica 2001,1,142-145.
    [7]Li M Q, Li C Y. TiO2 film formed by ultrasonically spraying titania sol[J].Euro Ceramics VII,PT1-3 2002,206-2,495-498.
    [8]Langlet M, Kim A, Audier M, Guillar C, Herrmann JM. Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols[J].Thin Solid Films 2003,429,13-21.
    [9]Asif K M, Sarwar M I, Rafiq S,Ahmad Z. Properties of PVC-titania hybrid materials prepared by the sol-gel process[J].Polymer Bulletin 1998,40, 583-590.
    [10]Li C F, Zhong S H.Polyimide-titania hybrid membrane prepared by the sol-gel process[J].Acta Polymerica Sinica 2002,3,326-330.
    [11]Xiong M N, You B, Zhou S X, Wu L M. Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process[J]. Polymer 2004,45,2967-2976.
    [12]Baiju K V, Sibu C P,Rajesh K, Krishna Pillai P, Mukundan P, Warrier K G K, Wunderlich W. An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application[J]. Mater. Chem. Phys 2005,90,123-127.
    [13]Luo X S,Zha C J, Luther-Davies B.Anhydrous sol-gel synthesis of titania-doped siloxane polymer for integrated optics[J].J.Sol-Gel Sci.Technol 2004,32,297-301.
    [14]Arnal P, Corrium R J P,Leclercq D, Mutin H, Vioux A. A Solution Chemistry Study of Nonhydrolytic Sol-Gel Routes to Titania[J].Chem.Mater.1997,9,694-698.
    [15]Ohya T, Ito M. Yamada K, Ban T, Ohya Y, Takahashi Y. Aqueous Titanate Sols from Ti Alkoxide-a-Hydroxycarboxylic Acid System and Preparation of Titania Films from the Sols[J].J.Sol-Gel Sci.Technol 2004,30,71-81.
    [16]Zhang Y H, Xiong G X, Yao N, Yang W S, Fu X Z. Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method[J].Cata. Today 2001,68,89-95.
    [17]Agag T, Tsuchiya H, Takeichi T. Novel organic-inorganic hybrids prepared from polybenzoxazine and titania using sol-gel process[J].Polymer 2004,45,7903-7910.
    [22]Park J K, Kim H K. Preparation and characterization of hydrophilic TiO2 film[J]. Bull.Korean Chem.Soc.2002,23,745-748.
    [19]Deng C, James P F, Wright P V. Poly(tetraethylene glycol malonate) titanium oxide hybrid materials by sol-gel methods[J].J.Mater. Chem.1998,8,153-159.
    [18]Park H K, Kim D K, Hee C.Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4[J].J.Am. Ceram. Soc.1997,80, 743-749.
    [20]Yasumori A, Shinoda H, Kameshima Y, Hayashi S.Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods[J].J.Mater. Chem.2001,11,1253-1257.
    [21]Xie Y B,Yuan C W.Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation[J].Appl.Cata. B 2003,46,251-259.
    [1]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms,and Selected Results[J].Chem.Rev.1995,95,735-758.
    [2]Lachheb H.,Puzenat F, Houas A, Ksibi M, Elaloui F, Guillard C, Herrmann J M. Photocatalytic degradation of various types of dyes (Alizarin S,Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J].Appl. Catal. B 2002,39,75-90.
    [3]Tanguay J F, Suib S L, Coughlin, R W. Dichloromethane photodegradation using titanium catalysts[J].J.Catal.1989,17,335-347.
    [4]Sivalingam G, Nagaveni K, Hegde M S, Madras G. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2[J].Appl. Catal.B: Environ.2003,45,23-38.
    [5]Wold A. Photocatalytic properties of titanium dioxide (TiO2)[J].Chem. Mater.1993,5,280-283.
    [6]Oregan B,Gratzel M.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature 1991,353,737-740.
    [7]Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J].Nature 1998,395,583-585.
    [8]Feldmann C.Preparation of nanoscale pigment particles[J].Adv. Mater.2001,13,1301-1303.
    [9]Hayakawa I, IwamotoY, Kikuta K, Hirano S.Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor[J].Sens. Actuat. B 2000,62,55-60.
    [10]Guidi V, Carrota MC, Ferroni M,Martinelli G, Paglialonga L, Comini E, Sberveglieri G. Preparation of nanosized titania thick and thin films as gas-sensors[J]. Sens. Actuat. B 1999,57,197-200.
    [11]Huang J S,Ding H L, Dodson W S,Li Y Z.Application of TiO2 Sol for UV radiation measurements[J].Analy. Chimica Acta,1995,311,115-122.
    [12]Yoldas B E. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters[J].J.Mater. Sci.1986,21,1087-1092.
    [13]Yoldas B E. Modification of polymer-gel structures[J].J.Non-Cryst. Solids 1984,63,145-154.
    [14]Hsu J P, Nacu A. On the Factors Influencing the Preparation of Nanosized Titania Sols[J].Langmuir,2003,19,4448-4454.
    [15]Langlet M, Kim A.Audier M, Guillard C, Herrmann J M. Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols[J].Thin Sol.Film 2003,429,13-21.
    [16]Wang B L, Hu L L. Effect of water content in sol on optical properties of hybrid sol-gel derived TiO2/SiO2/ormosil film[J].Mater. Chem. Phys.2005,89,417-422.
    [17]Jansen M, Guenther E. Oxide Gels and Ceramics Prepared by a Nonhydrolytic Sol-Gel Process[J].Chem.Mater.1995,7,2110-211.4.
    [18]Ohya T, Ito M, Yamada K, Ban T, Ohya Y.,TakaHashi Y.Aqueous Titanate Sols from Ti Alkoxide-a-Hydroxycarboxylic Acid System and Preparation of Titania Films from the Sols[J].J.Sol-Gel Sci.Technol.2004,30,71-81.
    [19]Yamazaki S,Nakamura N, Photocatalytic reactivity of transparent titania sols prepared by peptization of titanium tetraisopropoxide[J].J.Photochem.Photobiol.A: Chem.2008,193,65-71.
    [20]Ni X Y, Ye J, Dong C. Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J].J Photochem Photobiol A 2006,81,19-27.
    [21]Damm C, Voltzke D.Abicht H P, Israel G. Influence of the properties of TiO2 particles on a photocatalytic acrylate polymerisation[J].J.Photochem. Photobio. A 2005,174,171-179.
    [22]Damm C.An acrylate polymerisation initiated by iron doped titanium dioxide[J]. J.Photochem.Photobio.A 2006,81,297-305.
    [23]Yuwono A H, Xue J M, Wang J, Elim H I, Ji W, Li Y, White T J.Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior[J].J.Mater. Chem.2003,13,1475-1479.
    [24]Yang Y N, Wang P.Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process[J].Polymer 2006,47,2683-2688.
    [25]Goto K, Tamura J, Shinzato S,Fujibayashi S,Hashimoto M, Kawashita M, Kokubo T, Nakamura T. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes[J].Biomaterials 2005,26,6496-6505.
    [26]Ma D L, Hugener T A, Siegel R W, Christerson A, Martensson E, Onneby C, Schadler LS.Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites[J].Nanotechnology 2005,16,724-731.
    [27]Yoshida K, Taira Y.Atsuta M. Properties of opaque resin composite containing coated and silanized titanium dioxide[J].J. Dent. Res.2001,80,864-868.
    [28]Sidorenko A, Minko S,Gafijchuk G, Voronov S,Radical polymerization initiated from a solid substrate.3.Grafting from the surface of an ultrafine powder[J]. Macromolecules 1999,32,4539-4543.
    [29]Erdem B, Sudol E D, Dimonie V L, El-Aasser M S.Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer[J].J. Polym.Sci. A 2000,38,4419-4430.
    [30]Erdem B, Sudol E D, Dimonie V L, El-Aasser M S.Encapsulation of inorganic particles via miniemulsion polymerization. Ⅱ.Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles[J].J.Polym. Sci. A 2000,38,4431-4440.
    [31]Rong Y, Chen H Z, Wu G, Wang M.Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization[J].Mat. Chem. Phys.2005,91,370-374.
    [32]Khaled SM,Sui RH,Charpentier PA, Rizkalla AS.Synthesis of TiO2-PMMA Nanocomposite:Using Methacrylic Acid as a Coupling Agent[J]. Langmuir 2007,23,3988-3995.
    [33]Yamazaki S,Nakamura N.Photocatalytic reactivity of transparent titania sols prepared by peptization of titanium tetraisopropoxide[J].J.Photochem. Photobio. A 2008,193,65-71.
    [34]Hojjati B, Sui R H,Charpentier P A.Synthesis of TiO2/PAA nanocomposite by RAFT polymerization[J].Polymer 2007,48,5850-5858.
    [35]Rotzinger F P,Kesselman-Truttmann J M, Hug S j,Shklover V, Gratzel M, Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile(110) surface[J].J.phys.Chem. B 2004,108,5004-5017.
    [36]Wang H T, Meng S, Xu P, Zhong W, Du Q G. Effect of traces of inorganic content on thermal stability of poly(methyl methacrylate) nanocomposites[J].Polym.Eng. Sci 2007,47,302-307.
    [1]Oregan B, Gratzel M.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature 1991,353,737-740.
    [2]Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J].Nature 1998,395,583-585.
    [3]Lachheb H, Puzenat F, Houas A, Ksibi M, Elaloui F, Guillard C, Herrmann J M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J].Appl. Catal. B 2002,39,75-90.
    [4]Tanguay J F, Suib S L, Coughlin, R W. Dichloromethane photodegradation using titanium catalysts[J].J.Catal.1989,17,335-347.
    [5]Sivalingam G, Nagaveni K, Hegde M S,Madras G. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2[J].Appl. Catal. B 2003,45,23-38.
    [6]Wold A. Photocatalytic properties of titanium dioxide (TiO2) [J].Chem. Mater.1993,5,280-283.
    [7]Hayakawa I, IwamotoY, Kikuta K, Hirano S.Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor[J].Sens. Actuators, B 2000,62, 55-60.
    [8]Guidi V, Carrota M C, Ferroni M, Martinelli G, Paglialonga L, Comini E, Sberveglieri G. Preparation of nanosized titania thick and thin films as gas-sensors[J]. Sens. Actuat. B 1999;57,197-200.
    [9]Hoffmann M R, Martin S T, Choi W, Bahnemann D W, Environmental Applications of Semiconductor Photocatalysis[J].Chem. Rev.1995,95,69-96.
    [10]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J].Science 2001,293,269-271.
    [11]Irie H,Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J].J. Phys. Chem.B 2003,107, 5483-5486.
    [12]Diwald O, Thompson T L, Goralski E G, Walck S D,Yates J T, The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals[J].J.Phys. Chem.B2004,108,52-57.
    [13]Gole J L, Stout J D, Burda C, Lou Y B,Chen X B.Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J].J.Phys.Chem. B 2004,108,1230-1240.
    [14]Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders[J]. Chem. Mater.2002,14,3808-3816.
    [15]Hattori A, Yamamoto M, Tada H, Seishiro I. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J].Chem. Lett.1998,8, 707-708.
    [16]Umebayashi T, Yamaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide by sulfur doping[J].Appl.Phys. Lett.2002,81,454-456.
    [17]Umebayashi T, Yamaki T, Yamamoto S,Miyashita A, Tanaka S,Sumita T. Asai K. Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies[J].J. Appl.Phys.2003,93, 5156-5160.
    [18]Irie H, Watanake Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J].Chem. Lett.2003,32,772-773.
    [19]Khan S U M, Al-Shahry M, Ingler Jr W B.Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science 2002,297,2243-2245.
    [20]Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide[J].Angew. Chem.Int.Ed.2003,42,4908-4911
    [21]Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J].J.Mater. Sci.2004,39,1837-1839.
    [22]Xu C K, Killmeyer R, Gray M L, Khan S U M.Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination[J].Appl. Catal.B 2006,64,312-317.
    [23]Huang Y, Duan X F, We Q Q, Lieber C M. Directed assembly of One-dimensional nanostructures into functional networks[J]. Science 2001,291,630-633.
    [24]Bachtold A, Hadley P,Nakanishi T, Dekker C.Logic circuits with carbon nanotube transistors[J].Science 2001,294,1317-1320.
    [25]Huang M H, Mao S, Feick H,Yan H Q, Wu Y Y, Kind H, Webe E r, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers[J]. Science 2001,292,1897-1899.
    [26]Bockrath M, Liang W J,Bozovic D, Hafner J H, Lieber C M, Tinkham M, Park H K. Resonant electron scattering by defects in single-walled carbon nanotubes[J]. Science 2001,291,283-285.
    [27]Li D, Xia Y N, Fabrication of titania nanofibers by electrospinning[J].Nano Lett.,2003,3,555-560.
    [28]Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J].Nano Lett.2004,4,933-938.
    [29]Zhan S H, Chen D R, Jiao X L, Tao C H. Long TiO2 Hollow Fibers with Mesoporous Walls:Sol-Gel Combined Electrospun Fabrication and Photocatalytic Properties[J].J.Phys.Chem.B 2006,110,11199-11204.
    [30]Fong H, Chun I, Reneker D H, Beaded nanofibers formed during electrospinning[J].Polymer 1999,40,4585-4592.
    [31]Yang J, Bai H Z, Tan X C, Lian J S.IR and XPS investigation of visible-light photocatalysis-Nitrogen-carbon-doped TiO2 film[J].Appl.Surf. Sci.2006,253,1988-1994.
    [32]Kumar P M, Badrinarayanan S,Sastry M.Nanocrystalline TiO2 studied by optical,FTIR and X-ray photoelectron spectroscopy:correlation to presence of surface states[J].Thin Sol.Films 2000,358,122-130.
    [33]Papirer E, Lacroix R, Donnet J B, Nanse G, Fioux P.XPS study of the halogenation of carbon black-Part 2.chlorination[J].Carbon 1995,33,63-72.
    [34]Zang L H, Koka R V. A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy[J].Mater. Chem. Phys.1998,57,23-32.
    [35]Tang J W, Zou Z G, Yin J, Ye J H. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation[J].Chem. Phys. Lett.2003,382,175-179.
    [36]Qu P,Zhao J C, Shen T, Hidaka H.TiO2-assisted photodegradation of dyes:A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution[J].J.Mol.Catal.A 1998,129,257-268.
    [1]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J].Chem. Rev.1995,95,735-758.
    [2]Tanguay J F, Suib S L, Coughlin R W. Dichloromethane photodegradation using titanium catalysts[J].J.Catal.1989,17,335-347.
    [3]Sivalingam G, Nagaveni K, Hegde M S,Madras G. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2[J].Appl.Catal. B 2003,45,23-38.
    [4]Wold A. Photocatalytic properties of titanium dioxide (TiO2)[J].Chem. Mater.1993,5,280-283.
    [5]Bach U, Lupo D, Comte P, Moser J E.,Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J].Nature 1998,395,583-585.
    [6]Ziolkowski L, Vinodgopal K, Kamat P V. Photostabilization of organic dyes on poly(styrenesulfonate)-capped TiO2 nanoparticles[J].Langumuir 1997,13,3124-3128.
    [7]Nasr C, Vinodgopal K, Fisher L, Hotchandani S,Chattopadhyay A K, Kamat P V. Environmental photochemistry on semiconductor surfaces-visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles[J].J. Phys.Chem.1996,100,8436-8442.
    [8]Oregan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature 1991,353,737-740.
    [9]Kisch H, Macyk W. Visible-light photocatalysis by modified titania[J].ChemPhys Chem 2002,3,399-400.
    [10]Dvoranova D, Brezova V, Mazur M, Malati M A. Investigations of metal-doped titanium dioxide photocatalysts[J].Appl.Catal.B 2002,37,91-105.
    [11]Khan S U M, Al-Shahry M, Ingler Jr W B.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J].Science 2002,297,2243-2245.
    [12]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science 2001,293,269-271.
    [13]Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N. Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water[J].J.Phys.Chem. B 1998,102,10707-10711.
    [14]Torres G R, Lindgren T, Lu J, Granqvist C G, Lindquist S E. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation[J]. J.Phys. Chem. B 2004,108,5995-6003.
    [15]Burda C, Lou Y B, Chen X B,Samia A C, Stout J, Gole J L. Enhanced Nitrogen Doping in TiO2 Nanoparticles[J].Nano Lett.2003,3,1049-1051.
    [16]Sakthivel S, Kisch H.Daylight Photocatalysis by Carbon-Modified Titanium Dioxide[J].Angew. Chem. Int. Ed.2003,42,4908-4911.
    [17]Xu C K, Killmeyer R, Gray M L, Khan S U M. Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination[J].Appl. Catal.B:Environ.2006,64,312-317.
    [18]Yamashita H, IchihashiY, Anpo M, Hashimoto M, Louis C, Che M. Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities:The structure and role of the active sites[J].J.Phys. Chem.1996,100,16041-16044.
    [19]Yamashita H, IchihashiY, Harada M, Stewart G, Fox M A, Anpo M, Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2 powder catalysts[J].J.catal.1996,158,97-101.
    [20]Khalil L B, Mourad W E, Rophael M W, Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination [J].Appl. Catal.B 1998,17,267-273.
    [21]Serpone N.Brief introductory remarks on heterogeous photocatalysis Solar [J]. Energ. Mat. Sol.C.1995,38,369-379
    [22]Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces[J]. Nature 1997,388,431-432
    [23]Kraeutler B,Reiche H,Bard A J,Hocker R G.Initiation of free radical polymerization by heterogeneous photocatalysis at semiconductor powders[J]. J.Sci. Polym.Lett.1979,17,535-538.
    [24]Funt B L, Tan S R. The photoelectrochemical initiation of polymerization of styrene[J].J. Polym.Sci.Polym.Chem. Ed.1984,22,605-608
    [25]Tada H, Hyodo M, Kawahara H.Photoinduced polymerization of 1,3,5,7-tetramethylcyclotetrasiloxane by titania particles [J],J.Phys.Chem.1991, 95,10185-10188
    [26]Ni X Y, Ye J, Dong C. Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J].J Photochem. Photobio.A 2006,81,19-27.
    [27]Damm C, Voltzke D, Abicht H P, Israel G.Influence of the properties of TiO2 particles on a photocatalytic acrylate polymerisation[J].J Photochem. Photobio. A 2005,174,171-179.
    [28]Damm C.An acrylate polymerisation initiated by iron doped titanium dioxide[J]. J Photochem. Photobio.A 2006,81,297-305.
    [29]Papirer E, Lacroix R, Donnet J B, Nanse G, Fioux P.XPS study of the halogenation of carbon black-Part2.chlorination[J].Carbon 1995,33,63-72.
    [30]Irie H, Watanake Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J].Chem. Lett.2003,32,772-773.
    [31]Zang L H, Koka R V. A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy[J].Mater. Chem. Phys.1998,57,23-32.
    [32]Khan S U M, Al-Shahry M, Ingler Jr W B.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J].Science 2002,297,2243-2245.
    [33]Sakthivel S,Kisch H.Daylight Photocatalysis by Carbon-Modified Titanium Dioxide[J].Angew. Chem. Int. Ed.2003,42,4908-4911
    [34]Li Y Z, Hwang D S,Lee N H, Kim S J.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst [J].Chem. Phys.Lett.2005,404,25-29.
    [35]Di Valentin C, Pacchioni G, Selloni A. Theory of Carbon Doping of Titanium Dioxide[J].Chem.Mater.2005,17,6656-6665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700