用户名: 密码: 验证码:
镧或氮掺杂TiO_2/Ti光电极制备及可见光下光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对TiO_2催化剂对太阳光利用率低的问题,采用阳极氧化法制备出TiO_2/Ti光电极,并通过镧元素和氮元素的掺杂制备出改性的La-TiO_2/Ti和N-TiO_2/Ti光电极,拓展了TiO_2对可见光的响应范围,同时对水中内分泌干扰素类物质-甲草胺的去除性能进行了研究。
     与常用的溶胶-凝胶法相比,阳极氧化法具有操作工艺简单、膜与基体结合牢固、不易脱落、膜层均匀等优点。在阳极氧化的过程中,通过向H_2SO_4电解质溶液中添加La(NO_3)_3的形式制备镧掺杂的TiO_2/Ti光电极,并对工艺条件进行了优化,重点考察了掺杂物的浓度、电压对改性TiO_2/Ti光电极性能的影响,其最佳的制备条件为制备电压160V,La(NO_3)_3的浓度为800mg/L。
     针对在制备电极的氧化过程中进行氮的掺杂较为困难,含氮化合物很难直接进入到TiO_2膜层中的问题,采用等离子体基离子注入技术(PII),以阳极氧化法制备的TiO_2/Ti光电极为基体,制备了氮掺杂的TiO_2/Ti光电极,其最佳的制备条件为制备电压160V ,离子注入电压-30KV ,注氮剂量4×10~(15)N/cm~2。
     利用扫描电镜(SEM)、原子力显微镜(AFM)、X-射线衍射光谱(XRD)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)、表面光电压谱(SPS)和电化学的方法等分析手段,对掺杂前后所得TiO_2/Ti光电极表面形貌、晶体结构、晶粒大小、表面成分和化学形态、吸收光谱、表面光电性能等进行了分析。研究结果表明,镧元素在TiO_2薄膜的表面以La2O3的形式存在,在界面处钛原子代替氧化镧晶格中的镧原子,形成Ti-O-La的键合;氮元素主要以三种形态存在于TiO_2的晶格或分子间隙之中,即β-N、γ-N和O-Ti-N。两种改性的TiO_2/Ti光电极对可见光的响应范围都有所提高,相对于未改性的TiO_2/Ti光电极,二者对染料废水的代表物质-罗丹明B的降解效果较好。
     用氮掺杂TiO_2/Ti光电极对饮用水中的内分泌干扰物质-甲草胺的光电催化氧化过程进行了研究,建立了准一级动力学模型。研究的结果显示,影响甲草胺光电催化降解的因素由强至弱的顺序为:光源的辐照强度>催化剂的面积>甲草胺的初始浓度>外加偏压。运用第一性原理对氮掺杂TiO_2/Ti光电极的能带结构进行了研究,计算结果表明氮掺杂后TiO_2的能带结构中产生了杂质能级,使其禁带宽度变窄,从而导致TiO_2吸收光谱的红移,计算结果与实验值符合较好。
     通过电助光催化的方法研究了恒电流法和恒电压法对甲草胺的降解效率,并证实了在光催化和电催化之间存在协同效应,反应溶液中加入Na_2SO_4电解质后,SO_4~(2-)可以被价带空穴氧化成强氧化性的S_2O_8~(2-),继而可以氧化处理物质,提高甲草胺的降解效率。利用荧光法研究了TiO_2/Ti光电极光电催化降解过程中·OH的生成规律。采用液-质联机(LC-MS)对甲草胺光电催化降解过程中的中间产物进行了分析。实验的结果表明:甲草胺在羟基自由基的作用下通过羟基化作用和脱烷作用,发生断键、开环等一系列的氧化还原反应,最终生成CO_2和H_2O等无机小分子物质。
The present work aimed to prepare TiO_2/Ti photoelectrode by means of anodic oxidation to solve the problem for low efficiency to solar of TiO_2 catalyst. La doped and N-doped TiO_2/Ti photoelectrodes were prepared via incorporation of lanthanum and nitrogen, respectively, which could extend the response of TiO_2 to visible light. The present work also investigated the degradation of endocrine disrupting chemicals-alachlor.
     Compared to sol-gel method, anodic oxidation was simple, and the film was uniform and it is hard to detach and combined firmly with the substrate. La-doped TiO_2/Ti photoelectrodes can be prepared and optimized by anodization, in situ formation of TiO_2 film on titanium substrate in the mixed solution of H2SO4 and La(NO_3)_3 . The preparation parameters, such as the concentration of dopants and voltage, were optimized. The La(NO_3)_3 concentration of 800 mg/L and the voltage of 160 V are the optimal conditions for preparation of La-doped TiO_2/Ti photoelectrodes.
     With respect to the fact that doping of nitrogen and nitrogen compounds is difficult to enter directly into the TiO_2 film in the anodic oxidation process, the N-doped TiO_2/Ti photoelectrode was prepared on TiO_2/Ti photoelectrode substrate by Plasma based ion implantation(PII) method. The optimal preparation conditions were preparation voltage 160 V, implantation voltage 30 KV and the doing content 4×10~(15) N/cm~2, respectively.
     By using scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-vis DRS), surface photovoltage spectroscopy (SPS) and electrochemical methods and other methods, the doped and undoped TiO_2/Ti photoelectrode surface morphology, crystal structure, grain size, surface composition and chemical form, absorption spectra, surface optical properties were analyzed. The results showed that lanthanum at the surface of TiO_2 film was in the form of La_2O_3, and in the interface titanium atoms replaced lanthanum atoms in the lattice of lanthanum oxide to form Ti-O-La bonding; Three kinds of nitrogen existed in the TiO_2 lattice or molecular gap among theβ-N,γ-N, and O-Ti-N. The reposes of two modified TiO_2/Ti to visible light were superior to that of unmodified TiO_2/Ti and the degradation of Rhodamine B was better for modified TiO_2/Ti than that of unmodified TiO_2/Ti photoelectrode.
     N-doped TiO_2/Ti photoelectrode were used for the photocatalytic oxidation of endocrine disrupting chemicals-alachlor whose photocatalytic oxidation process was proved to be pseudo first order kinetic. The results showed that the influencing factors of alachlor degradation were in the following orders: light irradiation intensity>catalyst area> catalyst initial concentration of alachlor>external bias. The energy band structure of N-doped anatase TiO_2 was studied by first principles. The calculation revealed that impurity energy level was generated in the energy band of TiO_2 after the incorporation of nitrogen, which resulted in a narrower band gap and a red shift of the absorption spectra of TiO_2. The calculating result was in good agreement with experimental data.
     The electro-assisted photocatalytic efficiency for the degradation of alachlor was studied by means of potentiostatic and galvanostatic models, whose results confirmed the synergistic effect between the photocatalysis and electrocatalysis. When Na_2SO_4 electrolyte was added into the reaction solution, the SO_4~(2-) can be oxidized by strong valence band hole to S_2O_8~(2-), which could improve the degradation efficiency of alachlor. The·OH generation in the process of TiO_2/Ti photocatalytic degradation was studied by fluorescence method, and the intermediate products were analyzed by liquid chromatography-mass line (LC-MS) in the course of alachlor degradation. Experimental results showed that a series of redox reactions including bond-breaking and ring-open of alachlor took place via hydroxylation and dealkylation under the force of hydroxyl radicals. Eventually, this kind of organic compound was decomposed into inorganic molecules such as CO_2 and H_2O.
引文
1韩世同,习海玲,史瑞雪,等.半导体光催化研究与进展.化学物理学报. 2003, 16(5):339-349
    2 A. Fujishima, K. Honda. Electrochemical photocatalysis of water at a semiconductor electrode. Nature. 1972, 238(5358):37-38
    3 J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCBs in the presence of TiO2 in aqueous suspensions. Bull. Environ. Contam Toxicol, 1976,16:697-700
    4 R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001, 293:269-271
    5 T. Colborn, D. Dumanoski, J. P. Myers. Our Stolen Future: Are we threatening our fertility, intelligence, and surival? ScientificDetective Story. New York: Dutton Books, 1996
    6 H. A. Greim. The endocrine and reproductive system: adverse effects of hormonally active substances?. Pediatrics. 2004, 113(4S):1070-1075
    7 J. Ge, J. Cong, Y. Sun, et al. Determination of endocrine disrupting chemicals in surface water and industrial wastewater from Beijing, China. Bull Environ Contam Toxicol. 2010, 84:401-405
    8 W. Shi, X Y. Wang, W. Hu, et al. Endocrine-disrupting equivalents in industrial effluents discharged into Yangtza River. Ecotoxicology. 2009, 18:685-692
    9 J. M. Zhou, Z. F. Qin, L. Cong, et al. Research progress of the endocrine disrupting activities of polychlorinated biphenyls. Chinese Sci. Bull. 2004, 49(3):215-219
    10 R. Brix, C. Postigo, S. González, et al. Analysis and occurrence of alkylphenplic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants. Anal. Bioanal. Chem. 2010, 396:1301-1309
    11刘兆民,隋利军.环境激素研究进展概述.西北民族大学学报. 2007, 28(67):55-58
    12 T. H. Hutchinson, P. Matthiessen. Endocrine disruption in wildlife: identification and ecological relevance. Sci. Total Environ. 1999, 233:1-3
    13 T. Colborn, F. S. vom Saal, A. M. Soto. Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ. Health Perspec. 1994,14(5-6):469-489
    14 S. W. Key. New study highlights hazards on hormone disrupting chemicals. World Disease (weekly Plus). 1998, (9):11-12
    15 R. M. Sharp, N. E. Skakkebaek. Are eatrogens involved in falling sperm count and disorders of male reproductive tract Luncat, 1993, 341.
    16 Y. Allen, P. Matthiessen, A. P. Scott, et al. The extent of estrogenic contaminants in the UK estuarine environments-further surveys of founder. Sci. Total Environ. 1999, 233:5-20
    17匡少平,张书圣.环境激素污染研究进展及污染防治.环境污染治理技术与设备. 2002, 3(6):8-12
    18苏玲丽.生存杀手—环境激素.德宏师范高等专科学校学报. 2006, 1:70-73
    19 H. Strathman. Economic assessment of membrane processes[C]. In: Proceeding of the EEC Brazil Work Shop on Membrane Separation Processes. Brazil: Riode Janelno,1992.
    20 S. H. Safe, K. Gaido. Pytoestrogens and anthropogenic estrogenic compounds. Environ. Toxicol. Chem. 1998, 17:119-126
    21 H. R. Anderson, A. M. Anderson. Comparison of short-term estrogen city rests for identification or hormone-disrupting chemicals. Environ. Health Perspective. 1999, 107(Sup):89-100
    22林喜燕,于瑞莲,胡恭任.环境激素对水生动物干扰效应及机制研究进展.环境科学与技术. 2009, 32(9):98-104
    23郭艳英,段昌群,杨良.环境激素研究进展探讨.云南环境科学. 2004, 23(3):12-15
    24 Fox. GAI Effect of endocrine disruption chemicals on wildlife in Canada: past、present and future. Water quality research of Canada 2001, 361.
    25许立.扰乱内分泌的化学物质—环境荷尔蒙.化学教育. 2001, 3:1-2
    26马军,于颖慧,候艳君,等. O_3/H_2O_2高级氧化工艺去除饮用水微量对硝基甲苯研究.黑龙江大学自然科学学报. 2006, 23(1):1-5
    27齐文启,孙宗光.环境荷尔蒙物质及其监测与分析.上海环境科学. 1999, 18(12):531-534
    28赵美萍,李元宗,常文保.酚类环境雌激素的分析研究进展.分析化学. 2003, 31(1)103-109
    29 K. V. David. Structure and apparent topography of TiO_2(110) surfaces. Phy. Rev. B. 1997. 56(16):10544-10548
    30李金田,耿世彬.纳米二氧化钛光催化机理及应用分析.洁净与空调技术. 2006, 1:23-31
    31姜艳丽. TiO_2/Ti光催化剂改性及光电催化降解水中腐植酸的研究.哈尔滨工业大学博士学位论文. 2007, 6-7
    32 H. K. Dong, M. A. Anderson. Photoelectrocatalytic degradation of formic acid using a porous TiO_2 thin-film electrode. Environ. Sci. Technol. 1994, 28:479-483
    33刘守新,刘鸿.光催化及光电催化基础与应用.化学工业出版社, 2006, 59-69
    34 L. Q. Jing, Z. L. Xu. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci. 2001, 180(324):308-314
    35 A. J. Hoffmann, G. Mills, M. R. Hoffmann. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. J. Phy. Chem. 1992,96(13):5546-5552
    36许并设.纳米材料及其应用技术.化学工业出版社, 2004:14-16
    37谢恒参,张弛,苏苓.光催化剂改性技术的研究进展.江苏化工. 2008, 36(5):1-6
    38 G.. T. Brown, R. D. James. Methyl orange as a probe for photooxidation reactions of colloidal TiO_2. J. Phys. Chem. 1984, 88:4955-4959
    39高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002
    40刘春英,弓晓峰.玻璃负载TiO_2膜光催化降解垃圾渗滤液的研究.生态科学. 2006, 25(4):363-366
    41王挺,蒋新.硅胶载体上制备纳米TiO_2.化工学报. 2003, 54(12):1779-1782
    42 B. Wu, R H Cui, Y. Gao ,et al. Ethanol electrocatalytic oxidation on highly dispersed Pt-TiO_2/C catalysts. Russian J. Electrochemi. 2009, 45(7):731-735
    43 C. He, X. Z. Li, N. Graham, et al. Preparation of TiO_2/ITO and TiO_2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl. Catal. A: General . 2006, 305:54-63
    44 W. Ho, J. C. Yu, S. C. Lee. Photocatalytic activity and photo-induced hydrophilicity of mesoporous TiO_2 thin films coated on aluminum subst rate. Appl. Catal. B: Environ. 2007, 73:135-143
    45徐瑞芬,马卓尔,刘丽敏,等.粘土作为廉价载体增强纳米TiO_2光生自由基的研究.化工新型材料. 2010, 38(2):49-51
    46朱永法,李巍.不锈钢丝网上薄膜TiO_2光催化剂的Raman光谱研究.光谱学与光谱分析. 2003, 23(3):494-497
    47 K. S. Yao, D. Y. Wang, W. Y. Ho, et al. Photocatalytic bactericidal effect of TiO_2 thin film on plant pathogens. Surf. Coat. Technol. 2007, 201: 6886-6888
    48鲍长利,周波,刘淑霞,等.沸石负载TiO_2的制备及其对农药敌敌畏的光降解性能.应用化学. 2003, 20(12):1222-1224
    49 F. B. Li and X. Z. Li. Photocatalytic properties of gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A: General. 2002, 228:15-17
    50 M. Nayal, T. Y. Tseng. Dielectric tenability of barium strontium titanate films prepared by a sol-gel method. Thin solids films. 2002, 408:194-199
    51 W. F. Shangguan, A. Yoshida and M. X. Chen. Physicocemical properties and photocatalytic hydrogen evolution of TiO_2 films prepared by sol-gel processes. Sol. Energ. Mate. Sol. C. 2003, 80:433-441
    52 M. Keshmiri, M. Mohseni, T. Troczynski. Development of novel TiO_2 sol-gel derved composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal. B. 2004, 53:209-219
    53 J. G. Yu, X. J. Zhao, Q. N. Zhao. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method. Thin Solid Films. 2000, 379:7-14
    54王世敏,许祖勋,傅品.纳米材料制备技术.北京:北京工业出版社. 2002:7-58
    55 S. Deki, Y. Aoi, Y. Asaoka, et al. Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal. microbalance. Mater. Chem. 1997, 7(5):733-736
    56王晓萍,于云,高濂,等. TiO_2薄膜的液相沉积法制备及其性能表征.无机材料学报. 2000, 15(3):573-576
    57雷乐成,汪大翚.水处理高级氧化技术.北京:北京工业出版社, 2001:251-286
    58 D. K. Lee, I. C. Cho. Characterization of TiO_2 thin film immobilized on glass tube and its application to PCE photocatalytic destruction. Microchem. J. 2001, 68:215-225
    59陈俊水.纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究.华东师范大学博士学位论文. 2004, 46
    60杨辉,卢文庆.应用电化学.北京:科学出版社, 2001:149-153
    61 H. L. Liu, X. Z. Li, D. Zhou, et al. Preparation of TiO_2/Ti mesh photoelectrode and properties. J. Environ. Sci. 2003, 15(3):311-314
    62 X. Z. Li, H. S. Liu. Developmet of an E-H2O_2/TiO_2 photoelectrocatalytic oxidation system for water and wastewater treatmenr. Environ. Sci. Technol. 2005, 39(12):4614-4620
    63 J. Q. Li, L. Zheng, L. P. Li, et al. Fabricatijon of TiO_2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methulene blue. J. Hazard. Mater. B. 2007, 139:72-78
    64刘惠玲.高效二氧化钛/钛催化剂制备及其应用.哈尔滨工业大学博士学位论文. 2003:42-47
    65 X. S. Liao, X. Wang, K. H ,et al. Photocatalytic inhibition of cyanobacterial growth using silver-doped TiO_2 under UV-C light. Journal of Wuhan University of Technology-Materials Science Edition. 2009, 24(3):402-408
    66 Y. F. Shen, T. Y. Xiong, H. Du, et al. Phosphorous, nitrogen, and molybdenum ternary co-doped TiO_2: preparation and photocatalytic activities under visible light. Sol-Gel Sci Technol. 2009, 50:98-102
    67 M. R. Bayati, F. Golestani-Fard and A. Z. Moshfegh. Photo-degradation of methelyne blue over V2O5–TiO_2 nano-porous layers synthesized by micro arc oxidation. Catal. Lett. 2010, 134(1-2):162-168
    68 T. Matsumoto, Y. Hashimoto, M. Sakai, et al. Fine control of nitrogen content in N-doped titania photocatalysts prepared from layered titania/isostearate nanocomposites for high visible-light photocatalytic activity. Top Catal. 2009, 52:1584-1591
    69 M. Gratzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chemistry. 2004, 164(1-3):3-14
    70盛国栋,李家星,王所伟,等.提高TiO_2可见光催化性能的改性方法.化学进展. 2009, 21(12):2492-2504
    71杨华明,史蓉蓉,张科,等.纳米二氧化钛光催化剂改性研究进展.化工新型材料. 2005, 33(6): 57-59
    72 X. X. Han, R. X. Zhou, G. H. Lai, et al. Effect of trasition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene overPt/TiO_2 catalysts. J. Mol. Catal. A. Chem. 2004, 209:83-87
    73 P. N. Kapoor, S. Uma, S. Rodriguez, et al. Aerogel processing of MTi2O5 (M=Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior. J. Mol. Catal. A. Chem. 2005, 229:145-150
    74 Y. M. Wang, S. W. Liu, M. K. Lu, et al. Preparation and photocatalytic properties of Zr4+-doped TiO_2 nanocrystals. J. Mole. Catal. A. 2004, 215:137-142
    75孙海健.改性TiO_2/Ti光电极制备及可见光下降解内分泌干扰素研究.哈尔滨工业大学博士学位论文. 2008, 13-14
    76 Y. N. Huo, J. Zhu, J. X. Li, et al. An active La/TiO_2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions. J. Mol. Catal. A: Chem. 2007, 278: 237-243
    77 K. M. Parida, Nruparaj Sahu. Visible light induced photocatalytic activity of rate earth titania nanocomposites. J. Mol. Catal. A: Chem. 2008, 287: 151-158
    78 M. Martsuoka, M. Kitano, M. Takeuchi, et al. Preparation and characterization of the visible light responsive TiO_2 thin film photocatalysts prepared by magnetron sputtering method and their photocatalytic activities for the water splitting reactions. Eco-Mater. Process. Design VI Mater. Sci. Forum. 2005, 486:81-84
    79 Y. Tian, H. Notsu, T. Tatsuma. Visible-light-induced patterning of Au-and Ag-TiO_2 nanocomposite film surfaces on the basis of plasmon photoelectrochemistry. Photochem. Photobiol. Sci. 2005, 4(8):598-601
    80 M. Kitano, M. Takeuchi, M. Matsuoka, et al. Preparation of visible light-responsive TiO_2 thin film photocatalysts by an RF mafnetron sputtering deposition method and their photocatalytic reactivity. Chem Lett. 2005, 34(4):616-617
    81井立强,周强,王百齐,等.表面修饰Ru的TiO_2纳米粒子的表征及其光催化活性.哈尔滨工业大学学报. 2005, 37(11):1543-1545
    82刘国聪,司士辉,杨政鹏,等. Pd敏化TiO_2光催化剂的制备、表征和性能研究.河南化工. 2004, 5:12-14
    83 G. Martra. Lewis acid and base sites at the surface of microcrystalline TiO_2 anatase: relationships between surface morphology and chemical behavior. Appl. Catal. A. 2000, 200(2):275-283
    84 N. Serpone, I. Texier, A. V. Emeline, et al. Postirradation effect and reductive dechlorination of chlorophenols at Oxygen-free TiO_2/water interfaces in the presence of prominent holscavengers. J. Photochem. Photobiol. A. 2000, 136(3):145-152
    85柳丽芬,董晓艳,杨凤林. Ag/TiO_2光催化还原硝酸氮.无机化学学报. 2008, 24(2): 211-217
    86沈学优,李华英.载铂二氧化钛对3B艳红染料溶液光催化降解性能的研究.水处理技术. 2001, 27(1):33-36
    87洪孝挺,王正鹏,陆峰,等.可见光响应型非金属掺杂TiO_2的研究进展.化工进展. 2004, 23(10):1077-1080
    88吴雪松,唐星华,张波. TiO_2光催化剂非金属掺杂的机理研究进展. 2009, 38 (5):33-35
    89 K. Nagaveni, M. S. Hegde, N. Ravishankar, et al. Synthesis and structure of nanocrystalline TiO_2 with lower band gap showing high photocatalytic activity. Langmuir. 2004, 20(7):2900-2907
    90冯彩霞,王岩,金振声,等. N掺杂纳米TiO_2可见光催氧化丙烯的动力学行为.物理化学学报, 2008, 24(4): 633-638
    91 J. S. Wang, S. Yin, Q W. Zhang, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and its photooxidation properties. Chem Lett. 2003, 32(6):540-541
    92 T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic activity of S-doped TiO_2 Photocatalyst uder visible light. Chem Lett. 2003, 32(4):364-365
    93 T. Ohno. Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatalytic activities. Water Sci. Technol. 2004, 49(4):159-163
    94刘志强,李先国,冯丽娟.二氧化钛薄膜的改性技术研究进展.表面技术. 2006, 35(1):9-12.
    95 P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh, et al. Charge-discharge Be havior of TiO_2-WO3 photocatalysis systems with energy storage ability. Phys. Chem. Chem. Phys. 2003, 5:3234-3237
    96 H. C. Liang, X. Z. Li. Visible-induced photocatalytic reactivity of polymer–sensitized titania nanotube films. Appl. Catal. B: Environ. 2009, 86(1-2):8–17
    97臧丹炜,杨亚君.纳米TiO_2光催化剂的改性进展.化学工业与工程. 2010, 27(1): 79-82
    98李旦振,郑宜,付贤智.微波场助光催化氧化及其应用.高等学校化学学报. 2002, 23(12):2351-2356
    99王涵慧,俞稼镛,罗曾义.超声对多相光催化光解H2S作用的初步探讨.感光科学与光化学. 1998, 16(2):182-185
    100 X. Z. Fu, W. A. Zeltner, M. A. Anderson, et al. Application photocatalytic purification of air, Amsterdam: Elsevier Science B V, Vol. 103, 1996
    101 K. Vinodgopal, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin films. J. Environ. Sci. Technol. 1995, 29:841-845
    102 A. R. Khataee, M. N. Pons, O. Zahraa. Photocatalytic degradation of three azo dyes using immobilized TiO_2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 2009, 168(1):451- 457
    103马骁轩. TiO_2光催化技术降解废水有机物的研究.安徽农业科学. 2009, 37 (8):3739-3742.
    104 N. Wang, X Y. Li, Y X. Wang, et al. Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO_2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 2009, 146:30-35
    105 X. R. Xu, S. X. Li, X. Y. Li, et al. Degradation of n-butyl benzyl phthalate using TiO_2/UV. J. Hazard. Mater. 2009, 164:527-532
    106陆赛飞,伏广龙,王飞.纳米TiO_2处理垃圾渗滤液的试验研究.南通纺织职业技术学院学报(综合版). 2009, 9(1):6-9
    107张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究.化工进展. 2003, 22 (1):67-70.
    108汤宝寅.等离子源离子注入(Ⅰ).物理. 1994, 23:41-45
    109季红兵,夏立芳,马欣新,等. Ti6Al4V合金氮离子注入层成分、组织结构及摩擦学性能.金属热处理. 2000, 2:7-11
    110李金龙.钛及钛合金离子注入微孔氧化层的结构控制与光催化性能.哈尔滨工业大学博士学位论文. 2008, 6-7
    111 K. Y. Li, D. J. Wang, F. Q. Wu, et al. Surface electronixc states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3. Maer. Chem. Phys. 2000, 64(3):269-272
    112 X. M. Qian, D. Q. Qin, Q. Song, et al. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructuredTiO_2 electrodes. Thin Solid Films. 2001, 385(1/2):152-161
    113 Y. Ma, J. B.Qiu, Y. A. Cao, et al. Photocatalytic activity of TiO_2 films grown on different substratea. Chemosphere. 2001, 44(5):1087-1092
    114 R. Gopalan, Y. S. Lin. Evolution of pore and phase structure of sol-gel derived lanthana doped titania at high temperatures. Ind. Eng. Chem. Res. 1995, 34(4):1189-1195.
    115 R. K. T, C. H, W. I, et al. Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for degradation of organic pollutants. J. Mater. Sci. 1999, 34: 5273-5280.
    116 M. S. P. Francisco, V. R. Mastelaro. Inhibition of the anatase-rutile phasetransformation with addition of CeO_2 to CuO-TiO_2 system: raman spectroscopy, X-ray diffraction, and textural studies. Chem. Mater. 2002, 14: 2514-2518.
    117 H. Tang, K. Prasad, R. Sanjines, et al. Electrical and optical properties of TiO_2 anatase thin films. J. Appl. Phys. 1994, 75:2042-2047.
    118 T. Fujii, N. Sakata, J. Takada, et al. Characteristics of titanium oxide films deposited by an activated reactive evaporation method. J. Mater. Res. 1994, 9: 1468-1473.
    119 Y. H. Zhang, H. X. Zhang, Y. X. Xu, et al. Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties. Mater. Chem. 2003, 13:2261-2265
    120 J. C. Yu , J. G. Yu, W. K. Ho , et al. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation. Chem Com mun. 2001, 19:1942-1943
    121 J. C. Yu, J. G. Yu, W. K. Ho, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater. 2002, 14 : 3808-3816
    122 F. B. Li , X. Z. Li , M. F. Hou , et al. Enhanced ptotocatalytic activity of Ce3+-TiO_2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl Cata A. 2005, 285 (1/2): 181-189
    123张桂琴,高祖庆,王庆辉,等.热处理温度对TiO_2薄膜光催化活性影响的研究.云南大学学报(自然科学版). 2003, 25(4): 348-351
    124 J. Biener, M. Baumer, J. Wang, et al. Elactronic structure and growth of vanadium on TiO_2(110). Surf. Sci. 2000, 450: 12-26
    125 Q. G. Wang, R. J. Madix. Preparation and reactions of V2O5 supported on TiO2(110). Surf. Sci. 2001, 474: 213-216
    126 H. Li, S.W. Yao, W.G. Zhang, et al. Photoelectrochemical properties of TiO2 nanotube arrays electrodes. Rare Met. Mate. Eng. 2007,36: 1749-1753
    127 M. Tamimi, S. Qourzal, A. Assabbane, et al. Photocatalytic degradation of pesticide methomyl: determination of the reaction pathway and identification of intermediate products. Photochem. Photobiol. Sci. 2006, 5:477-482.
    128 Y. M. Lin, Y. H. Tseng, J. H. Huang, et al. Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts. Environ. Sci. Technol. 2006, 40: 1616-1621.
    129 D. Z. Li, Z. X. Chen, Y. L. Chen, et al. A new route for degradation of volatile organic compounds under visible light: Using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 Atmosphere, Environ. Sci. Technol. 2008, 42: 2130-2135
    130 A. Kar, Y. F. Smith, V. R. Subramanian. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 2009, 43: 3260-3265
    131 J. A. Rengifo-Herrera, K. Pierzchata, A. Sienkiewicz, et al. Abatement of organics and escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl. Catal B: Environ. 2009, 88: 398-406
    132 G.. Li, T. An, J. X. Chen, et al. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions. J. Hazard. Mater B. 2006, 138: 392-400
    133 Y. Irokawa, T. Morikawa, K. Aoki, et al. Photodegradation of toluene over TiO2-xNx under visible light irradiation. Phys. Chem. Chem. Phys. 2006, 8: 1116-1121
    134 B. Kosowska, S. Mozia, Antoni W. Morawski, et al. The preparation of TiO2–nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells. 2005, 88:269–280
    135 M. Y. Xing, J. L. Zhang, F. Chen. New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal. B: Enviro. 2009, 89: 563-569
    136 I. C. Kang, Q W, Z, S. Yin, et al. Novel method for preparation of high visible active N-doped TiO_2 photocatalyst with its grinding in solvent. Appl. Catal. B: Enviro. 2008, 84:570–576
    137 Y. Cong, J. L. Zhang, F. Chen, et al. Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C. 2007, 111(19): 6976-6982
    138 T. C. Jagadale, S. P. Takale, R. S. Sonawane, et al. N-doped TiO_2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J. Phys. Chem. C. 2008, 112: 14595-14602
    139 M. Pelaez, A. A. Cruz, E. Stathatos, et al. Visible light-activated N-F-codoped TiO_2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal. Today. 2009, 144: 19-25
    140 S. Livraghi, M.C. Paganini, E. Giamello, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 2006, 128: 15666-15671.
    141 X. B. Chen, C. Burda. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B. 2004, 108: 15446-15449
    142 C. D. Valentin, G. Pacchioni, A. Selloni, et al. Characterization of paramagnetic species in N-doped TiO_2 powdeers by EPR spectroscopy and DFT calculations. J. Phys. Chem. B. 2005, 109: 11414-11419
    143 D. M. Chen, Z. Y. Jiang, J. Q. Geng, et al. Carbon and nitrogen co-doped TiO_2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 2007, 46: 2741-2746
    144 Z. Q. Liu, Y. P. Zhou, Z. H. Li, et al. Preparation and characterization of (metal, nitrogen)-codoped TiO_2 by TiCl4 sol-gel auto-igniting synthesis. Rare Met. 2007,26: 263-270
    145 R. G. Duan, G. D. Zhan, J D. Kuntz, et al. Spark plasma sintering (SPS) consolidated ceramic composites from plasma-sprayed metastable Al2TiO5 powder and nano-Al2O3, TiO_2 and MgO powders . Materials Science and Engineering A-Structural Materials Properties. Microstruct. Process. 2004, 373(1/2): 180-186
    146 L. Q. Jing, X. Q. Li, S D. Li, et al. XPS and SPS studies on nanometer Au/TiO_2 photocatalyst. Chinese J. Catal. 2005, 26(3):189-193
    147 Y. Xiang, D H. Xie, K X. Song, et al. Bao-Nd2O3-TiO_2 nanao-ceramics prepared by SPS technology. Key Eng. Mater. 2005, 280-283:775-778
    148 M. R. Hoffmann, S. T. Martin, W. Choi, et al. Bahnemann environmenntal applications of semiconductor photocatalysis. Chem. Rev. 1995, 95:69-96
    149 Y. Nosaka, M. Kishimoto and J. Nishino. Factors governing the initial process of TiO_2 photocatalysis studied by means of in-situ electron spin resonance measurements. J. Phys. Chem. B. 1998, 102(50): 10279-10283
    150 P. F. Schwarz, N. J. Turro, S. H. Bossmann, et al. A new method to determine the generation of hydroxyl radicals in illuminated TiO_2 Suspensions. J. Phys. Chem. B. 1997, 101(36): 7127-7134
    151 T. Hirakawa, K. Yawata, Y. Nosaka. Photocatalytic reactivity for O_2 and OH radical formation in anatase and rutile TiO_2 suspension as the effect of H2O_2 addition. Appl. Catal. A: General, 2007, 325:105-111
    152 Y. Nosaka, S. Komori, K. Yawata, et al. Photocatalytic OH radical formation in TiO_2 aqueous suspension studied by several detection methods. Phys. Chem. Chem. Phys. 2003, 5:4731-4735
    153 L. Choiwan, J. Z. Lu, K. Masaaki. Chemiluminescence determination of tetracycline based on radical production in a basic acetonitrileydrogen peroxide reaction. Anal. Chimi. Acta. 2004, 503(2): 235-239
    154 S. Horikoshi, H. Hidaka, N. Serpone. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of·OH radicals probed by ESR techniques in microwave–assisted photocatalysis in aqueous TiO_2 dispersions. Chem. Phys. Lett. 2003, 376: 475-480
    155 M. M. Ballesteros Martín, J. A. Sanchez Pérez, J. L.García Sanchez, et al. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. J. Hazard. Mater. 2008, 155: 342-349
    156 Z. M. Qiang, C. Liu, B. Z. Dong, et al. Degradation mechanism of alachlor during direct ozonation and O3/H2O_2 advanced oxidation process. Chemosphere. 2010, 78:517-526
    157 S. Fukui, Y. Hanasaki, S. Ogawa. High-performance liquid chromatographic determination of methanesulphinic acid as a method for the determination of hydroxyl radicals. J. Chromatography A. 1993, 630(1/2): 187-193
    158 B. L. Yuan, X. A. Li, N. Graham. Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO_2-UV reaction system. Water Res. 2008, 42: 1413-1420
    159 S. Cheng, Wai-Kit Fung, Kwong-Yu Chan et al. Optimizing electron spin resonance detection of hydroxyl radical in water. Chemosphere. 2003, 53: 1797-1805
    160 S. Kaneco, N. Li, Kumi-Ko Itoh, et al. Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution:Kinetics and mineralization. Chem. Eng. 2009, 148: 50-56
    161徐瑞银,宋存义. TiO_2/SiO_2光催化剂制备及对偶氮染料降解的研究.能源环境保护. 2004, 18(6):19-22.
    162 L. A. De Faria, S. Trasatti. Effect of composition on the point of zero charge of RuO_2 + TiO_2 mixed oxides. Electro. Chemi. 1992, 340(1-2):145-152
    163 P. H. Chen and C. H. Jenq. Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide. Environ. Intern. 1998, 24(8): 871-879
    164 W. H. Leng, H. Liu, S. Cheng, et al. Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel. Photochem. Photobiol. A Chem. 2000,131: 125–132
    165 Y. H. Gong, X. Zhang, L. J. Bai, et al. Kinetic and mechanistic study of photocatalytic degradation of 4,4′-biphenol in TiO_2 suspension. Reac. kinitics and Catal. Lett. 2009, 98(2): 249-258
    166王磊,夏璐,鲁栋梁,等.二氧化钛紫外光催化降解甲基橙废水的动力学研究.化学与生物工程. 2010, 27(3): 27-31
    167程伟. AIN和TiO_2掺杂体系的电子结构和光学性质的理论研究.曲阜师范大学硕士学位论文. 2009: 9
    168孙学勤.几种材料结构与性质的理论研究.山东大学博士学位论文. 2008:13
    169 W. H. Leng, Z. Zhang, Ji Q. Zhang. Photoelectro-catalytic degradation of aniline over rutile TiO 2/Ti electrode thermally formed at 600 degrees C. J. Mol. Catal A: Chem. 2003, 206(1-2): 239-252.
    170 H. Hidaka, T. Shimura, K. Ajisaka, et al. Photoelectrochemical decomposition of amino acids on a TiO_2/OTE particulate film electrode. Photochem. Photobiol. A Chem. 1997, 109: 165-170
    171 J. Fernandez, J. Kiwi, J. Baeza, et al.. Orange II photocatalysis on immobilised TiO_2: Effect of the pH and H2O_2. Appl Catal B Environ. 2004, 48(3): 205-211
    172王海燕,蒋展鹏,杨宏伟.溶液pH对电助光催化氧化苯甲酰胺的影响研究.环境科学研究. 2008, 21(5):14-18
    173蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展.化学进展. 2005, 17(4): 622-630
    174杨世迎,陈友媛,胥慧真,等.过硫酸盐活化高级氧化新技术.化学进展. 2008, 20(9): 1433-1438
    175 C. W. Lau, J. Z. Lu, M. Kai. Chemiluminescence determinatin of tetracycline based on radical production in a basic acetonitrileydrogen peroxide reaction. Anal. Chimi. Acta. 2004, 503(2): 235-239
    176 T. Keizo, F. Kaori, A. Kazunori,et al. In vivo monitorig of hydroxyl radical generation caused by X-ray irradiation of rats using the spin trapping/EPR technique. Free Radic. biomed. 2004, 36(9): 1134-1143
    177 L. Diez, M. H. Livertoux, A. A. Stark, et al. Hig- performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation duringin vitroexperi ments involving thiols. J. Chromatography B-Anal. Technol. in the Biomed. Life Sci. 2001, 763(1/2):185-191
    178 S. A. Cheng, Wai-Kit Fung, Kwong-Yu Chan, et al. Optimizing electron spin resonance detection of hydroxyl radical in water. Chemosphere. 2003,52: 1797-1805
    179姜艳丽,刘惠玲,姜兆华,等. TiO_2/Ti光电催化体系中羟自由基的测定.材料科学与工艺. 2006, 14(2): 162-164
    180史载锋,孔令仁,展宗城. TiO_2薄膜光催化体系中羟基自由基的水杨酸分子探针法测定.环境科学学报. 2008, 28(4): 705-709
    181张雯,王绪绪,林华香,等.磁场对光催化反应羟基自由基生成速率的影响.化学学报. 2005, 63(18): 1765-1768
    182唐建军,范小江,邹原,等.自由基抑制剂对不同晶型TiO_2光催化反应的影响.北京化工大学学报(自然科学版). 2009, 36(3): 36-39
    183 X. K. Wang, Y. Zhang. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J. Mater. 2009, 161:202-207
    184 W. Chu, C. C. Wong. Study of Herbicide Alachlor removal in a photocatalytic proces through the examination of the reaction mechanism. Ind. Eng. Chem. Res. 2004, 43: 5027-5031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700