用户名: 密码: 验证码:
基于频率和温度的混凝土与沥青混合料介电模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路面材料如沥青混合料、水泥混凝土均是由几种不同材料组成的复合材料,复合材料介电常数与其组成成份介电常数及体积率有关,还与电磁波频率、环境温度等因素有关。通常将描述复合材料介电常数与其成份介电常数及体积率、频率和温度等参数之间的函数关系式,称为介电模型。若能建立复合材料介电模型,即可根据电磁无损检测技术测试的介电常数计算各成份的体积率,从而实现沥青混合料空隙率、沥青含量、压实度、和水泥混凝土配比、厚度、含水量等质量指标的检测。由此可见,水泥混凝土和沥青混合料介电模型的建立是应用电磁波技术进行路面材料质量检测的前提和基础。
     国内外学者先后对各种不同复合材料的介电特性进行研究,建立了多种介电模型,但针对水泥混凝土和沥青混合料的研究较少,鉴于这两种材料有各自的结构特点,已有模型是否适用有待研究和验证。此外,大多已有介电模型没有考虑温度和频率的影响,这样会造成使用不同频率的仪器在不同时间不同温度条件下测试出来的数据不能共享和对比。若忽略,势必会造成一定的误差。
     针对上述存在的问题,本文根据两种复合材料不同的介电特性,通过研究介电常数与组成成份之间的关系,确立了各自的介电模型;在分析频率、温度对介电常数影响的基础上,基于试验建立了综合考虑频率、温度的水泥混凝土和沥青混合料介电模型;结合试验数据,对两种复合材料的综合介电模型进行了验证;将综合介电模型应用于工程实践,进行了水泥混凝土结构层厚度、含水量的计算,以及沥青混合料含水量、沥青体积率、骨料体积率和空隙率的计算。
     本文主要研究成果和结论如下:
     1.以电磁波理论的Maxwell方程为基础,根据水泥混凝土、沥青混合料各自特点,理论推导了水泥混凝土和沥青混合料介电模型,因考虑了各自特点,与其他模型相比,本文模型更适合描述水泥混凝土和沥青混合料介电特性。
     2.基于理论和试验研究分析了影响两种复合材料介电常数的因素,两种复合材料的介电常数不仅与其成份的介电常数和体积率有关,还与测试频率和温度相关。研究表明:水泥混凝土的介电性能受温度和频率影响较大,随温度升高呈线性规律减小,随频率增加大致呈指数规律减小;而沥青混合料的介电特性随温度变化较小,随频率增加大致呈线性减小。
     3.鉴于频率和温度对介电常数的影响,建立了综合考虑频率、温度在内的水泥混凝土和沥青混合料介电模型,并根据试验数据进行了检验,确定了模型中的待定常数。
     4.结合相关文献的数据,基于综合介电模型,分别进行了水泥混凝土结构层厚度、含水量的计算,以及沥青混合料含水量和各成份体积率的计算,计算结果与实测数据较为接近,满足相关规范检测精度的要求,进一步验证了介电模型的适用性和精确度,也进一步说明应用电磁无损检测技术进行质量指标检测是行之有效,可为工程应用提供参考。论文主要创新点:
     1.在分析了组成成份对介电常数影响的基础上,研究了频率和温度对介电特性的影响,建立了综合考虑频率、温度影响的水泥混凝土介电模型。采用理论和试验相结合的方法分析了影响水泥混凝土介电特性的因素,建立了含频率、温度等因素的水泥混凝土的介电模型,并进行了试验验证。研究结果显示:水泥混凝土具有明显频散特性,随测试频率的增加,介电常数大致呈指数规律减小,且频率越大,降幅越小;随温度升高大致呈线性规律下降;与其他模型相比,所建模型比较适合描述水泥混凝土介电性能。
     2.分析了组成成份、频率和温度对沥青混合料介电特性影响,建立了综合考虑频率、温度的沥青混合料介电模型。根据沥青混合料的介电特性,通过研究介电常数与组成成份之间的关系,确立了介电模型的基本形式;在分析频率、温度对介电特性影响的基础上,建立了综合考虑频率、温度沥青混合料介电模型;结合试验数据,进行了介电模型验证。试验验证结果表明:介电常数随频率的增加大致呈线性减小;随着温度升高介电常数呈线性略有升高;所建模型比较适合描述沥青混合料介电性能。
     3.基于综合介电模型,建立了结构层厚度、含水量和成份体积率的计算方法,并在工程实践中得到检验。基于水泥混凝土介电模型,建立了由介电常数计算结构层厚度和含水量的关系式;以沥青混合料介电模型为基础,发展了由介电常数计算含水量和骨料、沥青以及空隙率的关系式;并结合相关文献的试验数据,分别根据实测介电常数进行了水泥混凝土结构层厚度和含水量的计算以及沥青混合料含水量、沥青体积率、骨料体积率和空隙率的计算,计算结果与实测结果较为接近,满足检测精度要求,进一步验证了模型的实用性、准确性和其工程实用价值。
Pavement materials, such as asphalt concrete and cement concrete, are composedof several different materials and named as composite materials. The dielectricconstant of the composite material is related not only to the dielectric constant and thevolume ratio of each component but also to the test frequency and the environmentalfactors such as temperature. Usually it is called the dielectric model that the functionis used to describe the relationship between composite dielectric constantand thepermittivity, the volume ratio of each component, the frequency and temperature. Ifdielectric model is established, the volume of each component can be calculatedbased on the dielectric constantwhich is tested by the electromagnetic non-destructivetesting techniques. It is possible that the porosity, water content/asphalt content,degree of compaction and other important quality indicators are detected. Therefore,the dielectric model establishment of cement concrete and asphalt concrete is thepremise and foundation technology for quality testing of pavement materials.
     Domestic and foreign scholars have conducted research on dielectric propertiesof different composites and established many various dielectric models. But the studyon the cement concrete and asphalt mixture is relatively less, because the twomaterials have their own structure characteristics. The existing models are to bestudied and verified if they are suitale to the two materials respectively. In addition,most of the existing dielectric models do not contain the effects of temperature andfrequency factors. Thus, it will cause the data not to be shared and contrasted whichare tested by the different instruments using different frequency in different time anddifferent temperature conditions. If ignored, it is bound to cause some error.
     In view of the above problems, based on the dielectric properties of two differentcomposites and through the study of the relationship between the dielectric constantand dielectric of components, the models are established respectively in this paper.On the basis of the frequency and temperature influence on the dielectric constant, thedielectric models of asphalt mixture and cement concrete are established consideringthe frequency and temperature. Combined with experimental data, the comprehensivedielectric models of the two kinds of composites were verified. The dielectric models are applied to calculate cement concrete layer thickness, water content and asphaltmixture water content and the volume ratio of asphalt, aggregate and void in theengineering practice.
     The main results and conclusions are as follows:
     1. On the basis of the Maxwell equation in electromagnetic theory andaccording to the respective characteristics of cement concrete and asphalt mixture,dielectric models are derived in theory. Compared with other models, these modelsare more suitable to describe the cement concrete and asphalt mixture dielectricproperties respectively.
     2. The dielectric influence factors of two composite materials are studiedtheoretically and experimentally. The dielectric property is related not only to thepermittivity and the volume ratio of the component but also to the test frequency andtemperature. Research shows that cement concrete dielectric properties are affectedby temperature and frequency significantly. The dielectric constant linearly decreaseswith the temperature rising and exponentially decreases with the frequency increase.The dielectric properties of asphalt mixture increase slightly with the temperature andlinearly decrease with the increase of the frequency.
     3. Considering the frequency and temperature effects on the dielectric constant,dielectric models of cement concrete and asphalt mixture are established andexamined ccording to the test data. In addition, the undetermined constants aredetermined in the model.
     4. Combined with the data in these literatures and based on the comprehensivedielectric models, the structure of cement concrete layer thickness and moisturecontent are calculated as well as the asphalt mixture water content and the volumefraction of each component. The calculated results are close to the measured data andmeet the relevant standard detection accuracy requirements. The applicability and theaccuracy of dielectric model are further verified. It is illustrated that the qualityindex detection is effective using electromagnetic wave nondestructive testingtechnology to provide reference for engineering application.
引文
[1]郭成超.路面结构层材料介电特性反演及路面雷达应用[D].郑州:郑州大学硕士论文,2004(5).
    [2]蔡迎春.层状非均匀介质介电特性反演分析[D].大连:大连理工大学博士论文;2008(4).
    [3]张蓓.路面结构层材料介电特性及其厚度反演分析的系统识别方法——路面雷达关键技术研究[D].重庆:重庆大学博士论文;2003(4).
    [4]钟燕辉.层状体系介电特性反演及其工程应用[D].大连:大连理工大学博士论文;2006(4).
    [5]张勇.路面结构层材料介电特性实验研究[D].郑州:郑州大学,硕士学位论文,2005.
    [6]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [7]黎春林.探地雷达检测路面含水量、空隙率和压实度的应用研究[D].郑州:郑州大学,硕士学位论文,2003.
    [8]陈赟.高电导率岩土介质介电常数及含水量TDR测试研究[D].杭州:浙江大学,博士学位论文,2011.
    [9]赵艳丽.典型地物微波介电特性及其室内测量方法研究[D].成都:电子科技大学,硕士学位论文,2008.
    [10]王政平,任维赫.材料复介电常数测量方法研究进展[J].光学与光电技术,2011,9(1):93-96.
    [11] Meng Meili,Wang Fuming. Theoretical Analyses and Experimental Research on CementConcrete Dielectric Model. Journal of Materials in Civil Engineering.2013,25(12):1183-1192.
    [12] Chernyak G.Ya,Dielectric Method for Investigating Moist Soils[M]. Jerusalem: Israelprogram for Scientific Translations,1967.
    [13] Topp G.C.,J.L. Davis,and A.P. Annan. Electromagnetic Determination of Soil Water Content:Measurement in Coaxial Transmission lines [J]. Water Resources Research,1980,16(3):574-582.
    [14] F.N. Dalton,W.N. Herkelrath,D.S. Rawlin,and J.D. Rhoades. Time-Domain Reflectometry:Simultaneous Measurement of Soil Water Content and Electrical Conductivity with a SingleProbe [J]. Science,1984,224(4652):989-990.
    [15] Amara Loulizi. Development of Ground Penetrating Radar Signal Modeling andImplementation for Transportation Infrastructure Assessment[D].Virginia: the VirginiaPolytechnic Institute and State University,2001:11-13.
    [16]钟燕辉等.路面结构层材料介电常数模型研究[J].公路交通科技,2006(4).
    [17]郭秀军等.基于探地雷达技术的土方路基铺筑质量无损检测[C].山东地球物理六十年会议;2009(8)
    [18]王海涛.路面雷达在路基压实质量控制中的应用研究[D].郑州:郑州大学,硕士学位论文,2007.
    [19]巨兆强.中国几种典型土壤介电常数及其于含水量的关系.北京:中国农业大学,2005.
    [20] R. H. Haddad,I. L. AI-Qadi.Characterization Of Portland Cement Concrete UsingElectromagnetic Waves Over The Microwave Frequencies [J].Cement and ConcreteResearch,1998,28(10):1379-1391.
    [21]陈伟,申培亮,李远.基于相对介电常数的新拌混凝土拌合物含水率测定方法与模拟[J].硅酸盐通报,2011,30(6):1233-1238.
    [22]周道传.地质雷达检测砼结构性能的试验研究和应用[D].郑州:郑州大学,硕士学位论文,2006.
    [23]王涛.水泥混凝土材料介电特性及复合介电模型研究[D].郑州:郑州大学,硕士学位论文,2011.
    [24]杜军,黄宏伟,谢雄耀.注浆材料介电常数在雷达图像识别中的应用[J].岩土力学2006,27(7):1219-1223.
    [25]张春宇.公路隧道衬砌介电常数理论试验与应用研究[D].长沙:长沙理工大学,硕士学位论文,2009.
    [26]刘化学.沥青混合料材料复合介电模型研究[D].郑州:郑州大学,硕士学位论文,2011.
    [27]蔡明伦.流动性沥青混合料(Guss)之工程性质[D].台湾:国立成功大学,硕士学位论文,1998.
    [28]李羿贤.流动性沥青混合料(Guss)的介电性质分析[D].台湾:国立成功大学,硕士学位论文,1998.
    [29]吴资彬.沥青混合料介电性质与工程性质之关系[D].台湾:国立成功大学,硕士学位论文,1997.
    [30] Lord Rayleigh.On the influences of obstacles arranged in rectangular order on the propertiesof a medium[J].Phil,1892,34(3):481-502.
    [31] C.J.F.B ttcher.Theory of Electric Polarization[M]. Amsterdam: Elsevier,1952:11-13.19(4):566-569.
    [32] J.R.Birchak,C.G.Gardner,J.E.Hipp,and J.M.Victor.High dielectric constantmicrowave probes for sensing soil moisture[J].Proc.IEEE,1974,62(1):93-98.
    [33] Anatolij ML.Shutko,E.M.Reutov.Mixture formulas applied in estimation of dielectricand radiative characterristics of soils and grounds at microwave frequencies[J].IEEEtransactions on geoscience and remote sensing,1982,20(1):11-13.
    [34]张俊荣,张德海,王丽巍.微波遥感中的介电常数[J].遥感技术与应用,1994,9(2):30-43.
    [35]张德海,张俊荣,王丽巍.海洋微波遥感中的介电常数[J].遥感技术与应用,1994,9(3):43-52..
    [36]张俊荣,张德海,王丽巍等.微波遥感典型地物介电常数实地测量[J].电子科学学刊,1997,19(4):566-569.
    [37]张俊荣,王丽巍,张德海.植被和土壤的微波介电常数[J].遥感技术与应用,1995,10(3):40-50.
    [38]康士峰,孙芳,罗贤云等.地物介电常数测量和分析[J].电波科学学报,1997,12(2):161-168..
    [39]王湘云,郭华东,王超等.干燥岩石的相对介电常数研究[J].科学通报,1999,44(13):1384-1391.
    [40]唐炼,韩有信,张守谦等.大庆油田泥质砂岩介电特性实验研究[J].大庆石油学院学报,1994,18(4):1-5..
    [41]冯启宁,李晓明,郑和华.1kHZ~15MHz岩石介电常数试验研究[J].地球物理学报,1995,38(1):331-336.
    [42]康国军,陈森鑫,佟文琪.岩矿石电磁频散规律的实验研究[J].长春地质学院学报,1995,25(4):435-451.
    [43]黄志洵.关于空气的相对介电常数与折射率的理论[J].北京广播学院学报,1996,3(总16期):1-10.
    [44]孙宇瑞.非饱和土壤介电特性测量理论与方法的研究[D].北京:中国农业大学,2000..
    [45]刘格非.利用微波侦测地下水位与河川变化[J].中国地质灾害与防治学报,2001,12(2):44-50.
    [46]李剑浩.混合物电导率和介电常数的研究[J].地球物理学报,1996,39(增刊):364-370.
    [47]李剑浩.混合物介电常数的新公式[J].地球物理学报,1989,32(6):716-719.
    [48]潘书民,韩德利,陆海英.高含泥地层25MHz介电常数解释模型[J].大庆石油地质与开发,1998,17(3):41-49.
    [49]何大明,李大心.探地雷达探测公路路基质量的可能性探讨[J].地质科技情报,2000,19(3):90-92..
    [50]郭云开等.探地雷达在高等级公路工程质量无损检测中的应用[J].华东公路,2002,1(1):55-57.
    [51] Hilhorst M.A. Dielectric Characterization of Soil [D]. Ph.D. Thesis, Wageningen,p.141,1998.
    [52] Zakri T., Laurent J.P., Theoretical evidence of the “Lichtenecker’s mixture formulae” basedon the effective medium theory, Vauclin M., Jounral of Physics D, Vol31,pp.2184-2190,1998..
    [53]郭秀军等.渠道衬砌混凝土介电特性研究及工程应用[J].土木建筑与环境工程,2011,33(1):79-83.
    [54] Subedi, P., and Chatteriee, I. Dielectric Mixture Model for Asphalt-Aggregate Mixtures[J].Journal of Microwave Power and Electromagnetic Energy, Vol28, pp.68-72,1993.
    [55]王淼.高等级公路路面路基GPR量化检测技术研究[D].青岛:中国海洋大学,硕士学位论文,2011.
    [56]赵凯华,陈熙谋.电磁学[M],北京:高等教育出版社,1985
    [57] Kingery W.D., Bowen, H.K., and Uhlmann, D.R. Introduction to Ceramics, John Wiley andSons, New York,1976.
    [58] Roland Coelho,Bernard Aladenize著,张冶文,陈玲译.电介质材料及其介电性能[M]..北京:科学出版社,2000.
    [59] Clipper Controls Inc. Dielectric Constant Reference Guide,http://www.clippercontrols.com/info/dielectric-constants.html, Clipper Controls Inc.,2005.
    [60] Evans, R., Frost, M., Stonecliffe-Jones, M., and Dixon, N.(2006).“Assessment of the In-SituDielectric Constant of Pavement Material,” TRB2007Annual Meeting CD-ROM.,Transportation Research Board of the National Academies, Washington, D.C..
    [61]周琦,刘新芽.多层介质中电磁波的反射与透射[J].南昌大学学报,2003,(01).
    [62] Lichtenecker, K., Rother, K.“Die herleitung des logarith-mischen mischungsgesetzes alsallegemeinen prinzipien der stationaren stromung”, Physik. Zeitschr.,1981,32, p.255-260
    [63] Roth, K., R. Schulin, H. Fluhler, and W. Attinger (1990), Calibration of time domainreflectometry for water content measurement using a composite dielectric approach[J],Water Resour. Res.,26,2267–2273.
    [64] Dobson et al.“Microwave Dielectric Behaviour of Wet Soil-part Ⅱ: Dielectric MixingModels”[J], IEEE Trans. on Geoscience and Remote Sensing GE-23, pp35-46.
    [65] J.A.Reynolds, J.M.Hough.Formulate for Dielectric Constant of Mixtures [J]. Proc.Phys.Soc.London,1957,708(452):765-769
    [66] W.F.Brown. Dielectrics in Encyclopedia of Physics [M]. Berlin:Springer,1956:15-16
    [67] Kimmo Karkkainen, Ari Sihvola, Keijo Nikoskinen.nalysis of a Three-DimensionalDielectric Mixture with Finite Different Method [J]. IEEE Transactions on Geoscience andRemote Sensing,2001,39(5):1013-1018.
    [68] Jianjun Liu,Chun-Gang Duan,Wei-Guo Yin,W. N. Mei,R. W. Smith,John R. Smith.Dielectric Permittivity and Electric Modulus in Bi2Ti4O11[J]. Journal of Chemical Physics,2003,119(5):2811-2819
    [69] Mirko Dinulovic,Bosko Rasuo. Dielectric Properties Modeling of Composite Materials[J].FME Transactions,2009,37:117-122.
    [70]倪尔瑚.材料科学中的介电谱技术[M].北京:科学出版社,1999.30-32.
    [71] Zonghou Xiong, Alan C. Tripp. Ground Penetrating Radar Responses of DispersiveModels[J]. Geophysics,1978,62(4):1127-1131.
    [72]陈季丹,刘子玉.电介质物理学[M].北京:机械工业出版社,1982.11
    [73]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000.06
    [74]肖金凯.固体沥青的微波介电特性研究[J].地球化学,1983.3:24-31.
    [75] Michael Ballou. Dielectric Properties Measurement, Agilent Application Note,2005.9.
    [76]王秀丽.典型地物介电常数测量方法研究[D].成都:电子科技大学,硕士学位论文,2011.
    [77]卢子焱,唐宗熙,张彪用自由空间法测量材料复介电常数的研究[J].航空材料学报,2006.26(2):62-66.
    [78] Lee, S. and Zollinger, D. Estimating Volume Fraction of Free Water in Hardening Concreteby Interpretation of Dielectric Constant [J]. J. Mater. Civ. Eng.,24(2),159-167.
    [79] Chang, C., Chen, J. and Wu, T.Dielectric Modeling of Asphalt Mixtures and Relationshipwith Density [J].Transp. Eng.,2011,137(2):104-111.
    [80] Kimmo Karkkainen, Ari Sihvola, Keijo Nikoskinen.nalysis of a Three-DimensionalDielectric Mixture with Finite Different Method [J]. IEEE Transactions on Geoscience andRemote Sensing,2001,39(5):1013-1018.
    [81] Jianjun Liu,Chun-Gang Duan,Wei-Guo Yin,W. N. Mei,R. W. Smith,John R. Smith.Dielectric Permittivity and Electric Modulus in Bi2Ti4O11[J]. Journal of Chemical Physics,2003,119(5):2811-2819
    [82] Mirko Dinulovic,Bosko Rasuo. Dielectric Properties Modeling of Composite Materials[J].FME Transactions,2009,37:117-122.
    [83]赵淑芳.岩石介电常数与各种影响因素的关系[J].测井技术,1986.6.
    [84] Beek A van,Breugel van K,Hilhorst M A. In situ monitoring system based on dielectricproperties of hardening concrete[J]. Structure Faults and Repair Edinburgh,1997:407-414.
    [85]中华人民共和国交通部.公路路面基层施工技术规范(JTJ034—2000)[S].北京:人民交通出版社,2000:10-11.
    [86]中华人民共和国交通部.公路土工试验规程(JTG E40-2007)[S].北京:人民交通出版社,2007:128-129.
    [87] Scherocman, J.A. and Martenson, E.D.(1984).“Placement of Asphalt Concrete Mixtures,”Placement and Compaction of Asphalt Mixture STP829, F.T. Wagner, Ed., ASTM,Philadelphia, PA., p3-27.
    [88] Kandhal, P.S. and Koehler, W.C.(1984).“Pennsylvania’s Experience in the Compaction ofAsphalt Pavement,” Placement and Compaction of Asphalt Mixture STP829, F.T.Wagner,Ed., ASTM, Philadelphia, PA., pp.93-106.
    [89]中华人民共和国交通部.公路路基路面现场测试规程(JTJ.059-95)[S].北京:人民交通出版社,2002.
    [90]中华人民共和国交通部.公路工程质量检验评定标准(JTJ.071-2004)[S].北京:人民交通出版社,2005.
    [91]周瑞丰,杨晓青,李彦杰.核子密度仪检测沥青混凝土路面压实度的应用[J].中外公路.2003,Vol.23(4):85-87
    [92]张蓓.无核密度仪PQI在沥青路面施工质量控制中的应用[J].公路交通科技应用技术版,2006,(4):16-18
    [93]付玉,吴少鹏,邱健等.无核密度仪在沥青路面压实度检测中的应用[J].武汉理工大学学报,2007(9):22-23
    [94] Al-Qadi, I. L. The Penetration of Electromagnetic Waves Into Hot-Mix Asphalt, Proceedingsof the Nondestructive Evaluation of Civil Structures and Materials1992, May, Boulder, CO,195-209.
    [95] Shang, J.Q., Umana, J.A., Bartlett, F.M., and Rossiter, J.R.(1999).“Measurement ofComplex Permittivity of Asphalt Pavement Materials,” Journal of TransportationEngineering, Vol.125, No.4, pp.347-356.
    [96] Al-Qadi, I.L., Lahouar, S., and Loulizi, A.(2001).“In-Situ Measurements of Hot-MixAsphaltDielectric Properties,” Journal of Non-Destructive Testing and Evaluation, Vol.34, No.6, pp.427-434.
    [97] P. Subedi e I. Chatterjee,"Dielectric Mixture Model For A sphalt-Aggregate M ixtures", TheJournal of microwave power and electromagnetic energy, Vol.28No.2,1993, pp.68-72.
    [98] Sihvola,,A. and Lindell, I. V.(1989).“Polarizability and effective permittivity of layeredand continuously inhomogeneous dielectric spheres,”Journal of Electromagnetic WavesApplication,3(1),37-60.)
    [99]赵淑芳.高频场中岩石介电性质的实验研究[J].石油学报,1982.8
    [100] Jaselskis, E.J., Grigas, J., and Brilingas, A.(2003).“Dielectric Properties of AsphaltPavement,” Journal of Materials in Civil Engineering, ASCE, Vol.15, No.5, pp.427-434.
    [101]李垒.介质介电常数的变温测量及其应用[D].成都:电子科技大学硕士论文,2009.
    [102]吕晨光等.沥青混合料复介电常数的测量[C].第七届中国功能材料及其应用学术会议论文集(第6分册),2010.
    [103]中华人民共和国交通运输部.公路路基路面现场测试规程(JTG E60-2008)[S].北京:人民交通出版社.
    [104]杨建.雷达技术在混凝土湿度检测中的应用[D].北京:北京交通大学,硕士学位论文,2010.
    [105]杨兵.基于改进介电模型的沥青路面面层压实度反演[D].郑州:郑州大学,硕士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700