用户名: 密码: 验证码:
甲基叔丁基醚在地下环境中迁移过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲基叔丁基醚(MTBE)由于其低辛醇/水分配系数及高水溶性,比汽油中其它组分更容易传递至地下水中。而且MTBE在土壤中的迟滞作用小,较难被生物降解,能形成较大范围的污染羽流,因而MTBE在地下水中的出现可以作为汽油泄漏最好的指示剂。本文从理论基础、过程参数、迁移过程影响因素等方面对MTBE在地下环境的迁移传质过程进行了系统的研究。
     通过非线性拟合由排水曲线获得砂土van Genuchten水分布常数;由吸附平衡实验确定了MTBE的吸附常数;运用分形理论和激光粒度仪测试手段确定了各土壤的粒度分形维数,结合土壤常规测试研究得到粒度分维值与土壤粘粒含量的线性关系;利用土柱迟滞扩散实验研究了MTBE在土壤孔隙中的有效气、液相扩散系数;利用二维砂箱实验测定水动力弥散系数。
     实验研究了饱和流动条件下非水相MTBE在二维不均匀介质中的溶解过程,实验结果表明非水相溶解过程初期水相中浓度很高,MTBE在水中的溶解度接近于饱和溶解度,之后逐渐降低进入拖尾期;非水相初始饱和度越高,溶出MTBE浓度出现最高点的时间越晚,完全溶解所需时间也越长;地下水流速提高会使平衡溶解期变短,并减少完全溶解所需的时间;NAPL源范围越大,出口峰值浓度越高,峰值出现时间越晚。建立了不均匀介质中NAPL溶解过程的数学模型并进行数值求解,得到了溶解过程中区域流场的变化和浓度分布。
     采用土柱实验研究了溶解态MTBE在不饱和区的迁移过程,在数学模拟的基础上考察渗流速度和多孔介质性质对传质过程的影响,结果显示在高渗流速度和高渗透率介质中MTBE的传质较快。利用数值模拟的方法,考察存在NAPL不动相时,MTBE在不饱和区的迁移过程并分析其传质过程的影响因素。
     利用二维砂箱系统地研究了MTBE在饱和区中的迁移过程,结果表明由于地下水流动,MTBE在水平方向的迁移速度明显大于垂直方向;提高地下水流速会加快污染羽流的发展,并加剧羽流的不规则程度。另外,其它条件相同的情况下,在渗透性较好的多孔介质中污染物迁移速度较快,羽流范围以较快的速度扩大。
     基于传质方程和流动方程,对MTBE在整个地下环境中的迁移过程进行了数值模拟,分析降雨、蒸发、蒸腾和植物根系对迁移过程的影响,同时探讨了土壤介质存在分层结构时对MTBE传质过程的影响。
Low octanol/water distribution coefficient and high solubility of MTBE cause it to dissolve into groundwater more readily than other gasoline components. Furthermore, MTBE’s very low retardation and minimal biodegradation in groundwater can cause a wide contaminant plume. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. This study focuses on the transport of MTBE in the underground environment. Theoretical basis, process parameters and factors of influence on transport have been investigated.
     Non-linear fittings have been adopted to obtain van Genuchten’s parameters from displacement curves. The adsorption partition coefficient of MTBE was determined from the adsorption isotherm experiments. Soils particle-size distributions fractal dimensions have been measured and a linear relation has been set up between particle-size fractal dimensions and clay content. Hysteretic diffusion experimental method has been chosen to investigate the effective diffusion coefficients of MTBE in soil gas and soil water. Coefficients of dispersion were measured in a two-dimensional hydrodynamic dispersion experiment under the condition of one-dimensional steady flow.
     Dissolution experiment of MTBE has been conducted in a two-dimensional saturated flow cell with simple heterogeneous packing. The experimental results showed that the MTBE concentration was initially close to the solubility limit, then decreased steadily until most of the NAPL mass was removed. Moreover, a higher NAPL saturation concentration could increase the lag time, but a higher groundwater flux shortened the lag time. Furthermore, when the width of NAPL source was enhanced, it would result in a significant increase of aqueous phase concentration, but the time for maximum concentration observed was later. A two-dimensional numerical model is developed to simulate the flow, transport of MTBE dissolution process in the saturated zone.
     The column experiment was used to investigate the transport of MTBE solution in unsaturated zone. Based on the model analysis and simulation, the effects of infiltration rate and soil character on transport have been considered. The results showed mass transport speed can be accelerated by a higher infiltration rate or in higher permeable soils. A transport model was used to simulation the mass transport of MTBE from a chronic-source release trapped in unsaturated zone and the factors which affect the transport process has been analyzed.
     A two-dimensional experimental cell was setup to investigate the transport of MTBE in saturated zone. The results showed the migration distance in transverse direction was smaller than that in longitudinal direction which paralleled to the groundwater flow, because the main impetus of flow direction were convection and dispersion, whereas it was diffusion in the transverse direction. In addition, the transport of MTBE was more quickly in porous media with high permeability, and the increase of groundwater velocity could accelerate the MTBE plume development, but the irregularity and randomicity of the plume were also enhanced.
     Based on the solute transport and water flow equations, a two-dimensional numerical model was developed to simulate the transport of MTBE in underground environment. The effects of rainfall, evapotranspiration and straticulate structure on the transport were studied in details.
引文
[1] 王连生.有机污染物化学.北京:科学出版社,1990
    [2] 刘兆昌,张兰生,聂永丰等.地下水系统的污染与控制.北京:中国环境科学出版社,1991
    [3] 黄国强.土壤气相抽提(SVE)中有机污染物的运移与数学模拟研究:[博士学位论文],天津,天津大学,2002
    [4] Campagnolo J F,Akgerman A.Modeling of soil vapor extraction (SVE) systems-Part ?.Water Management,1995,15(6):379-389
    [5] Truax D D,Brittu R,Sherrard J H.Bench-scale studies of reactor-based treatment of fuel-contaminated soils.Waste Management,1995,15(5-6):351-357
    [6] 庄志东.浅议地下储油库(罐)的防泄漏安全措施和地下水的污染防护.水文地质工程地质,1999,26(5):30-32
    [7] 龚子同,陈鸿昭,刘良梧.土壤环境变化与可持续发展.地理科学,2000,20(6):517-522
    [8] 胡枭,樊耀波,王敏健.影响有机污染物在土壤中迁移、转化行为的因素.环境科学进展,1999,7(5):14-21
    [9] Chrysikopoulos C V,Kim T J.Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media.Trans.Porous Media,2000,38(1-2):167-187
    [10] Stout S A,Uhler A D,McCarthy K J,et al.Environmental forensics, unraveling site liability.Enviromental Science & Technology,1998,32(11):260A-264A
    [11] Wilson S C,Jones K C.Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs):a review.Environmental Pollution,1993,81:229-249
    [12] Molhave L,Clausen G,Berglund B,et al.Total volatile organic compounds (TVOC) in indoor air quality investigation.Indoor Air,1997,7(4):225-240
    [13] Julian F,Milton O.Determination of methyl tert-butyl ether (MTBE) in gasoline.Analytical Letters,1993,26(2):357-365
    [14] Gablle P A,Pyle S M.Emissions from two outboard engines operation on reformulated gasoline containing MTBE . Enviromental Science & Technology,2000.34 (2):368-372
    [15] Keller A,Froines J,Koshland C,et al.Health & Environmental Assessment of MTBE:Report of the Governor and Legislature of the State of California as Sponsored by SB521:Vol.1,Summary & Recommendations,Nov,1998
    [16] 钱梅.我国甲基叔丁基醚生产应用展望.化肥设计,1999,37(4):34-36
    [17] 余其杰.汽油添加剂 MTBE 的最新研究及替代品.石油化工环境保护,2001,2:59-60
    [18] Smith D F,Kleindienst T E,Hudgens E E,et al.The photooxidation of methyl tertiary butyl ether.Int.J.Chem.Kinet.,1991,23(10):907-924
    [19] 周伟,叶舜华,朱惠刚.甲基叔丁基醚毒性研究综述.环境医学,1998, 17(1): 43-45
    [20] 钱伯章.汽油禁用 MTBE 的预测分析.石油化工技术经济,2001,30(3):33-35
    [21] Squillace P J,Zogorski J S,Willber W G,et al.Preliminary Assessment of the Occurrence and Possible Sources of MTBE in Groundwater in the United States,1993-1994.Enviromental Science & Technology,1996,30(5):1721-1730
    [22] Reuter J E,Allen R C,Richards R C,et al.Concentrations,sources and fate of the gasoline oxygenate methyl tert-butyl ether (MTBE) in a multiple-use lake.Enviromental Science & Technology,1998,32 (23):3666-3672
    [23] Squillace P J,Moran M J,Lapham W W,et al.Volatile organic compounds in untreated ambient ground water in United States,1985-1995.Enviromental Science & Technology,1999,33(23):4176-4187
    [24] Office of Pollution Prevention and Toxics.Chemical Summary for Methyl- Tert-Butyl Ether,U.S.EPA 749-F-94-017a,1994
    [25] Johnson R,Pankow J,Bender C,et al.MTBE:to what extent will past releases contaminate community water supply wells.Environmental Science and Technology/News,2000,May 1:2A-9A
    [26] Church C D,Isabelle L M,Pankow J F,et al.Method for determination of methyl tert-butyl ether and its degradation products in water.Environmental Science & Technology,1997,31(12):3723-3726
    [27] Squillace P J,Pope D A,Price C V.Occurrence of the gasoline additive MTBE in shallow groundwater in urban and agricultural areas.Washington:USGS Fact Sheet FS-114-95,1995
    [28] Happel A M,Beckenbach E H,Halden R U,An evaluation of MTBE impacts to California groundwater resources , Lawrence Livermore National Laboratory.Environmental Protection Department,Environmental Restoration Division,University of California.UCRL-AR-130897,1998
    [29] Davidson J M,Creek D N.Using the gasoline additive MTBE in forensic environmental investigations.Environmental Forensics,2000,1(1):31-36
    [30] 李凌波,林大泉,籍伟等.某石油化工厂区有机污染物的表征Ⅱ.地下水.石油学报,2001,17(6):84-90
    [31] 武晓峰,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处置.环境污染治理技术与设备,2000,1(4):46-51
    [32] Hunt J R,Sitar N,Udell K S.Nonaqueous phase liquid transport and cleanup: 1.Analysis of mechanisms.Water Resources Research,1988,24(8):1247-1258
    [33] Unger A J A,Sudicky E A,Forsyth P A.Mechanisms controlling vacuum extraction coupled with air sparging for remediation of heterogeneous formations contaminated by dense nonaqueous phase liquids.Water Resources Research,1995,31(8):1913-1925
    [34] 修伍德 T K,皮克福特 R L,威尔基 C R 著,时钧等译.传质学.北京:化学工业出版社,1988
    [35] Miller C T,Poirier-McNeill M M,Mayer A S.Dissolution of trapped nonaqueous phase liquids:Mass transfer characteristics.Water Resources Resesrch,1990,26(11):2783-2796
    [36] Braida W J,Ong S K.Air sparging:air-water mass transfer coefficients.Water Resources Research,1998,34(12):3245-3253
    [37] Wilkins M D,Abriola L M, Pennell K D.An experimental investigation of rate-limited nonaqueous phase liquid volatilization in unsaturated porous media:Steady state mass transfer.Water Resources Research,1995,31(9):2159-2172
    [38] Yoon H,Kim J H,Liljestrand H M,et al.Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction.Journal of contaminant hydrology,2002,54(1):1-18
    [39] Soerens T S,Sabatini D A,Harwell J H.Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution.Water Resources Research,1998,34(7):1657-1673
    [40] Powers S E.Dissolution of nonaqueous phase liquids in saturated subsurface systems,Ph.D.Dissertation,The University of Michigan,Ann Arbor,MI,1992
    [41] Geller J T,Hunt J R.Mass transfer from nonaqueous phase organic liquids in water-saturated porous media.Water Resources Research,1993,29(4):833-845
    [42] Imhoff P T,Thyrum G P,Miller C T.Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media 2.experimental observations.Water Resources Research,1996,32(7): 1929-1942
    [43] Frind E O,Molson J W,Schimer M,et al.Dissolution and mass transfer of multiple organics under field condition:the Borden emplaced source.Water Resources Research,1999,35(3):683-694
    [44] Powers S E,Loureiro C O,Abriola L M,et al.Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems.Water Resources Research,1991,27(4):463-477
    [45] Sleep B E,Sykes J F.Modeling of transport of volatile organics in variably saturated media.Water Resources Research,1989,25(1):81-92
    [46] Wilson E J,Geankoplis C J.Liquid mass transfer at very low Reynolds numbers in packed beds.Ind.Eng.Chem.Fund.,1966,5(1):9-14
    [47] Dwivedi P N,Upadhyay S N.Particle-fluid mass transfer in fixed and fluidized beds.Ind.Eng.Chem.,Process Des.Dev.,1977,16(2):157-165
    [48] Kumar S,Upadhyay S N,Mathur V K.Low Reynolds number mass transfer in packed beds of cylindrical particles.Ind.Eng.Chem.,Process Des.Dev.,1977,16(1):1-8
    [49] Williamson J E,Bazaire K E,Geankoplis C J.Liquid-phase mass transfer at low Reynolds numbers.Ind.Eng.Chem.Fund.,1963,2(2):126-129
    [50] Pfannkuch H O.Determination of the contaminant source strength from mass exchange processes at petroleum-groundwater interface in shallow aquifer systems . In : Proceedings of the NWWA Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater.pp.111-129,Dublin,Ohio,1984
    [51] Friedlander S K.Mass and heat transfer to single spheres and cylinders at low Reynolds numbers.American Institute of Chemical Engineers Journal,1957,3(1):43-47
    [52] Bowman C W,Ward D M,Johnson A I,et al.Mass transfer from fluid to solid spheres at low Reynolds numbers.Can.J.Chem.Eng.,1961,39(1):9-13
    [53] Silka L R.Simulation of vapor transport through the unsaturated zone:Interpretation of soil-gas surveys.Ground Water Monitoring Review,1988,8(2):115-123
    [54] Semer R,Reddy K R.Mechanisms controlling toluene removal from saturated soils during in situ air sparging,Journal of Hazardous Materials,1998,57(1):209-230
    [55] Lyman W J,Reehl W F,Rosenblatt D H.Handbook of Chemical Property Estimation Methods.New York: McGraw-Hill Pub.,1982
    [56] Jensen H M,Arvin E.Solubility and degradability of the gasoline additive MTBE , methyl tert-buty-ether , and gasoline compounds in water.Contaminated Soil’90,1990,445-448
    [57] Suflita J M,Mormile M R.Anaerobic biodegradation of know and potential gasoline oxygenate in the terrestrial subsurface.Environmental Science & Technology,1993,27(5):976-978
    [58] Squillace P J,Pankow J F,Korte N E,et al.Review of the environmental behavior and fate of methyl tertbutyl ether.Environmental Toxicology and Chemistry,1997,16(9):1836-1844
    [59] Nauman E B,Buffham B A.Mixing in continuous flow systems.John Wiley and Sons,Inc.,New York,1983
    [60] Sardin M,Schweich D.Modeling the nonequilibrium transport of linearly interacting solutes in porous media:A review.Water Resources Research,1991,27(9):2287-2307
    [61] Clendening L D,Jury W A,Ernst F F.A field mass balance study of pesticide volatilization,leading and persistence,In:Kurtz D A eds.,Long Range Transport of Pesticides.Lewis,Chelsea,Mich,1990
    [62] Yates S R,Papiernik S K,Gao F.Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems.Water Resources Research,2000,36(8):1993-2000
    [63] Bear J.Dynamics of fluids in porous media.Elsevier Pub.,New York,1972
    [64] 杨金忠.一维饱和与非饱和水动力弥散系数的实验研究.水利学报,1986,3(1):10-21
    [65] 杨金忠.土壤非饱和纵向与横向弥散系数确定方法的研究.水利地质工程地质论丛(二).北京:地质出版社,1987
    [66] Bresler E.Sodine and sodic principles-dynamics-modeling.New York:Springer-Verlay, 1980
    [67] van Genuchten M Th,Wierenga P J.Mass transfer studies in sorbing porous media: 1.analytical solutions.Soil Sci.Soc.Am.J.,1976,40(4):473-480
    [68] Seyfried M S,Rao P.Solute transport in undisturbed columns of an aggregated tropical soil:preferential flow effects.Soil Sci .Soc.Am.J,1987,51(6):1434-1444
    [69] van Genuchten M Th,Wagenet P J.Two-site/two-region models for pesticide transport and degradation : the theoretical development and analytical solutions.Soil Sci.Soc.Am.J,1989,53(5):1303-1310
    [70] James C S,Gujin T.Evaluation of continuous distribution models for rate-limited solute adsorption to geologic media.Water Resources Research,2000,36(7):1627-1639
    [71] Mercer J W,Cohen R M.A review of immiscible fluids in the subsurface: properties,models,characterization and remediation.Journal of Contaminant Hydrology,1990,6(2):107-163
    [72] Lenhard R J,Parker J C.A model for hysteretic constitutive relations governing multiphase flow:2.Permeability–saturation relations.Water Resources Research,1987,23(12):2197-2206
    [73] Lenhard R J,Parker J C.Measurement and prediction of saturation– pressure relationships in three phase porous media systems.Journal of Contaminant Hydrology,1987,1(4):407-424
    [74] Eckberg D K , Sunada D K . Nonsteady three-phase immiscible fluid distribution in porous media.Water Resources Research,1984,20(12):1891-1897
    [75] Lenhard R J,Parker J C.Experimental validation of extending two phase saturation-pressure relations to three-fluid phase systems for monotonic drainage paths.Water Resources Research,1988,24(3):373-380
    [76] Oostrom M,Hofstee C,Dane J H.Light nonaqueous-phase liquid movement in a variably saturated sand.Soil Sci.Soc.Am.J.,1997,61:1547-1554
    [77] Hofstee C,Dane J H,Hill W E.Three-fluid retention in porous media involving water,PCE and air.J.Contam.Transp.1997,25:235-247
    [78] Lenhard R J,Johnson T G,Parke J C.Experimental observations of non-aqueous-phase liquid subsurface movement.Journal of Contaminant Hydrology,1993,12(1):79-101
    [79] Oostrom M,Lenhard R J.Comparison of relative permeability-saturation- pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in a sandy porous media.Advances in Water Resources,1998,21(2):145-157
    [80] van Dam J.The migration of hydrocarbons in a water-bearing stratum.In P. Haply (ed.),The Joint Problems of the Oil and Water Industries,Proceedings of a Symposium,Institute of Petroleum,London. 1967,pp.55-88
    [81] Faust C R,Mercer J W.Groundwater modeling:Recent developments.Ground Water,1980,18(6):569-577
    [82] Falta R W , Pruess K , Finsterle S , et al . T2VOC User’s Guide , Rep.LBL-36400 UC-400,Berkeley,CA,1995,154 pp
    [83] Abriola L M,Rathfelder K.Mass balance errors in modeling two-phase immiscible flow:Causes and remedies.Advances Water Resources,1993,16(4):223-239
    [84] Abriola L M,Dekker T J,Pennell K D.Surfactant-enhanced solubilization of residual dodecane in soil columns:2.Mathematical modeling.Environmental Science & Technology,1993,27 (12):2341-2351
    [85] Faust C R,Guswa J H,Mercer J W.Simulation of three-dimensional flow of immiscible fluids within and below the unsaturated zone.Water Resources Research,1989,25(12):2449-2464
    [86] Kaluarachchi J J,Parker J C.An efficient finite element method for modeling multiphase flow.Water Resources Research,1989,25(1):43-54
    [87] Kaluarachchi J J,Parker J C ,Lenhard R J.A numerical model for areal migration of water and light hydrocarbon in unconfined aquifers.Adv.Water Resour.,1990,13(1):29-40
    [88] 叶常明,雷志芳,王宏等.有机污染物在多介质环境的稳态非平衡模型.环境科学学报,1995,15(21):92-198
    [89] 王洪涛,罗剑.石油污染物在土壤中运移的数值模拟初探.环境科学学报, 2000,20(6):755-760
    [90] Kueper B H,Frind E O.Two-phase flow in heterogeneous porous media: 1.Model development.Water Resources Research,1991,27(6):1049-1057
    [91] Kueper B H,Frind E O.Two-phase flow in heterogeneous porous media: 2.Model application.Water Resources Research,1991,27(6):1059-1070
    [92] 薛强.石油污染物在地下环境系统中运移的多相流模型研究:[博士学位论文],辽宁:辽宁工程技术大学,2003
    [93] 孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999
    [94] Simmons C S.A stochastic-convective transport representation of dispersion in one-dimensional porous media.Water Resources Research,2000,18(4):1193-1214
    [95] Jury W A,Roth K.Transfer functions and solute movement through soil:theory and applications.Birkhauser,Verlag,Basel,1990
    [96] Nicolai B.Modeling and uncertainty propagation analysis of Thermal Food Processes.PhD thesis.Dissertationes de Agriculture,1994
    [97] Yeh T C.Stochastic modeling of groundwater flow and solute transport in aquifers.Hydrological Processes,1992,6:369-395
    [98] Harter T,Yeh T.Flow in unsaturated random porous media,nonlinear numerical analysis and comparison to analytical stochastic models.Advances in Water Resources,1998,22(3):185-195
    [99] 杨金忠,蔡树英.非饱和土壤统计特性对宏观弥散度影响的分析.水动力学研究与进展,1997,12(3):45-49
    [100] 蔡树英,杨金忠,伍靖伟.土壤渗透参数空间变异性的试验研究.中国农村水利水电,2002,2(11):13-19
    [101] 石辉,邵明安.土壤系统中溶质运移研究.水土保持学报,2000,14(4):118-120
    [102] Abriola L M,Pinder G F.A multiphase approach to the modeling of porous media contamination by organic compounds 1 equation development.Water Resources Research,1985,21(1):11-18
    [103] van Genuchten M Th.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci.Soc.Am.J.,1980,44:892-898
    [104] Parker J C,Lenhard R J,Kuppusamy T.A parametric model for constitutive properties governing multiphase flow in porous media.Water Resources Research,1987,23(4):618-624
    [105] Wang C Y , Cheng P . A multiphase mixture model for multiphase multicomponent transport in capillary porous media-1 model development.Int.J.Heat Mass Transfer,1996,39(17):3607-3618
    [106] Pinder G F,Abriola L M.On the simulation of nonaqueous phase organic compounds in the subsurface.Water Resources Research,1986,22(9):109S-119S
    [107] 李韵珠,李保国.土壤溶质运移.北京:科学出版社,1998
    [108] Fried J J.Groundwater Pollution.New York:Elsevier Pub,1975
    [109] 陈崇希,李国敏.地下水溶质运移理论及模型.武汉:中国地质大学出版社,1996
    [110] Millington R J,Quirk J P.Permeability of porous solids.Trans.Faraday Soc., 1961,57(10):1200-1207
    [111] Kawamoto K,Urano K.Parameters for predicting fate of organochlorine pesticides in the environment (Ⅱ):Adsorption constant to soil.Chemosphere,1989,19(2-3):1223-1231
    [112] Michel E Rahbeh.Analysis of mass transfer process during advective air movement in contaminated soil:[Doctor Dissertation],Indiana:Purdue University,2004
    [113] Weber W J.Physiochemistry processes for water quality control.New York:John Wiley & Sons,1972
    [114] Schwazenbach R P,Gschwend P M,Imboden D M.Environmental organic chemistry.New York:John Wiley & Sons,1993
    [115] Bekins B A,Warren E,Godsy E M.A comparison of zero-order,first-order,and monod biotransformation models.Ground Water,1998,36(2):261-268
    [116] 袁聚云.土木试验与原理,上海:同济大学出版社,2003
    [117] 水利电力部.土工实验规程 SDS01-79.北京:水利出版社,1981
    [118] Milly P C D.Estimation of the Brooks-corey parameters from water retention data.Water Resources Research,1987,23(6):1085-1089
    [119] Gardner W R.Hillel D,Benyamini Y.Post irrigation movement of soil water: 1.Redistribution.Water Resources Research,1970,6(4):800-810
    [120] Gardner W R.Hillel D,Benyamini Y. Post irrigation movement of soil water: 2.Simulations Redistribution and evaporation.Water Resources Research,1970,6(4):811-819
    [121] 杨忠芳,朱立,陈岳龙.现代环境地球化学.北京:地质出版社,1999年
    [122] 高太忠,黄群贤,刘野等.有机污染物在包气带中迁移转化试验研究.环境污染治理技术与设备,2004,5(2):42-45,55
    [123] 罗雪梅,杨志峰,何孟常等.土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用.土壤,2005,37(1):25-31
    [124] Giles C H , MacEwan T H , Nakhwa S N , et al . Studies in adsorption.J.Chem.Soc.,1960,111:3973-3993
    [125] Chiou C T,Shoup T D.Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity.Environ.Sci.Technol.,1985,19(7):1196-1200
    [126] 郑艳梅.原位曝气去除地下水中 MTBE 及数学模拟研究:[博士学位论文], 天津,天津大学,2005
    [127] Chien S H,Clayton W R.Application of Elovich equation to the kinetic of phosphate release and sorption in soils.Soil Sci.Soc.Am.J.,1980,44:265-268
    [128] Sparks D L.Kinetics of Soil Chemical Processes.London,Academic Press, 1989
    [129] Hougen Q A,Marshall W R.Adsorption from fluid stream flowing through a stationary granular bed.Chem.Eng.Prog.,1974,43(4):197-208
    [130] Mandelbrot B B.The fractal geometry of nature.San Fransisco,Freeman,1982
    [131] Burrough P A.The fractal dimension of landscapes and other environmental data.Nature,1981,294:240-242
    [132] Armstrong A C . On the fractal dimension of some transient soil properties.J.Soil Sci.,1986,37(4):641-652
    [133] Davis H T . On the fractal character of the porosity of natural sandstone.Europhys Lett.,1989,8(7):629-632
    [134] Pfeifer P,Avnir D.Chemistry in noninteger dimensions between two and three:?.Fractal theory of heterogeneous surfaces.J.Chem.Phys.,1983, 79:3358-3565
    [135] Tyler S W,Wheatcraft S W.Fractal scaling of soil particle-size distributions:Analysis and limitations.Soil Sci.Soc.Am.J.,1992,56:362-369
    [136] Kravchenko A,Zhang R D.Estimating the soil water retention from particle-size distribution:A fractal approach.Soil Sci.,1998,163(3):171-179
    [137] Ochiai M,Ozao P,Yamazaki Y.Self-similarity law of particle size distribution and energy laws in size reduction of solids.Physica A,1992,191:295-300
    [138] Rieu M,Sposito G.Fractal fragmentation,soil porosity and soil water properties:?.Theory.Soil Sci.Soc.Am.J.,1991,55:1231-1238
    [139] 王域辉,廖淑华.分形与石油.北京:石油工业出版社,1994 年
    [140] Krohn C E,Thompson A H.Fractal sandstone pores:Automated measurements using scanning-electron-microscope images.Phys.Rev.B,1986,33(9):6366-6374
    [141] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征.科学通报,1993,38(20):1896-1899
    [142] 吴承祯,洪伟.采伐剩余物分解过程中土壤分形维数与土壤性质变化关系研究.农业系统科学与综合研究,1998,14(3):192-196
    [143] 刘云鹏.土壤结构的分形特征及土壤水分运动模型研究:[硕士学位论文],陕西:西北农林科技大学,2002
    [144] Tong J,Ma Y H,Ren L Q,et al.Fractals of particle-size distribution of the main soils in China and soil adhesion.In:13th Int.Conf.ISTVS,Sep.14-17,1999
    [145] Powers S E,Abriola L M,Weber W J.An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems:steady state mass transfer rates.Water Resources Research,1992,28(10):2691-2705
    [146] Schmidt T C,Duong H A,Berg M,et al.Analysis of fuel oxygenates in the environment.Analyst,2001,126(3):405-413
    [147] Lahvis M A,Rehmann L C.Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone,in Stanley, A.,ed.,Proceedings of the 2000 Petroleum Hydrocarbons and Organic Chemicals in Ground Water--Prevention , Detection , and Remediation,Houston,Texas,November 17-19,1999:National Ground Water Association,p.247-259
    [148] Powers S E,Abriola L M,Weber W J.An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems:Transient mass transfer rates.Water Resources Research,1994,30(2):321-332
    [149] Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media.Water Resources Research,1976,12(3):593-622
    [150] Baehr A L,Stackelberg P E,Baker R J.Evaluation of the atomosphere as a source of volatile organic compounds in shallow ground water.Water Resources Research,1999,35(1):127-136
    [151] 郎印海,蒋新,赵振华等.土壤中 13 种有机氯农药超声波提取方法研究.环境科学学报,2004,24(2):291-296
    [152] Lahvis M A,Baehr A L.Documentation of R-UNSAT,a computer model for the simulation of reactive,multispecies transport in the unsaturated zone: U.S.Geological Survey Factsheet,FS-019-98,104P
    [153] 翟瑞彩,谢伟松.数值分析.天津:天津大学出版社,2000
    [154] 施妙根,顾丽珍.科学和工程计算基础.北京:清华大学出版社,2001
    [155] 崔怡.Matlab 5.3 实例详解.北京:航空工业出版社,2000
    [156] Feddes R A,Kowalik P J,Zaradny H.Simulation of field water use and crop yield.New York,John Wiley & Sons,1978
    [157] Neuman S P,Fedds R A,Bresler E.Finite element simulation of flow in saturated-unsaturated soils considering water uptake by plants,Third annual report,1974,Project No.A10-SWC-77,Hydraulic Engineering Lab.,Technion,Haifa,Israel
    [158] Carsel R F,Parrish R S.Developing joint probability distributions of soil water retention characteristics.Water Resources Research,1988,24(5):755-769
    [159] Panigrahi B,Panda S N.Field test of a soil water balance simulation model.Agricultural Water Management,2003,58(3):223-240
    [160] Taylor S A,Ashcroft G L.Physical edaphology:The physics of irrigated and nonirrigated soils.San Francisco,Freeman & Comp.,1972
    [161] Wesseling J G . Meerjarige simulaties van groundwateronttrekking voor verschillende bodemprofielen, grondwatertrappen en gewassen met het model SWATRE.Rep.152.Winand Staring Centre,Wageningen,the Netherlands,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700