用户名: 密码: 验证码:
南方水田土壤有机碳变化特征及保护性耕作增碳效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环境变化,尤其是以温室气体升高为起因的变化趋势日益明朗,世界各国学术界和政界对如何减缓全球环境变化趋势给予高度重视。土壤有机碳是大气和陆地生态系统地上部碳储量的2到2.5倍,土壤有机碳动态直接关系到大气CO2浓度的变化,对全球环境变化的作用巨大。
     耕作制度是以作物种植和土壤管理为核心的种植技术体系,对农田土壤有机碳的稳定和累积作用显著。越来越多的研究表明,我国近20年来耕作制度演变下农田土壤呈现碳汇效应,尤其是我国南方农区水田土壤碳汇效应尤其突出,固碳潜力大。本文在充分了解南方农区特征的前提下,通过历史数据收集、文献资料查阅、田间试验、农户调查、生产调研等手段,采用多种定量与定性结合的分析方法,重点研究了南方水田土壤有机碳氮特征、人为干扰对水田土壤有机碳的影响、农户行为与土壤碳氮的关系,拟为南方水田土壤增碳保氮提供理论依据、技术途径和相关配套政策建议。主要研究结果如下:
     水田土壤有机碳密度可能更多地受生产技术影响,人为调控潜力大。农田耕层土壤有机碳密度介于0.81~12.68 kg/m2,平均为3.15 kg/m2。农田土壤有机碳密度的变异系数为57%,显著比非农业土壤的变异系数低35个百分点。水田耕层有机碳密度比旱地的平均高13个百分点,但水田有机碳密度的区域变异显著低于旱地。农田土壤有机碳密度与降水和气温的相关性显著低于非农业土壤,农田中水田土壤有机碳密度与降水和气温的相关性又显著小于旱地。
     农田土壤有机碳氮之间存在显著的耦合关系,相同氮水平下水田土壤可能储存更多的有机碳。不同种植方式下,水田土壤平均有机碳和全氮含量比旱地分别高47.8%和41.4%,但水田碳氮的区域变异低于旱地。全国土壤有机碳氮在水田和旱地利用下平均分别为10.8和9.9,区域内水田土壤碳氮比普遍高于旱地,其中东北地区水田最高,而华东旱地和西北旱地为最低。区域之间相比,旱地碳氮比的区域变异显著,水田的不显著。
     不同类型水田土壤的有机碳氮特征及其关键影响因子差异显著,在增碳保氮技术选择上要充分考虑区域土壤类型差异。潜育型水田土壤有机碳密度最高,比最低的淹育型土壤高75.97%,两者的碳氮比差值为1.31,也达到显著水平。影响土壤有机碳密度关键因子是耕层厚度和土壤全氮含量,除潴育型土壤外,均达到了显著的正相关关系。不同类型土壤碳氮比的关键作用因子不同,其中耕层厚度与所有土壤的碳氮比相关不显著。
     有机无机肥配合施用是土壤增碳保氮的关键技术,秸秆还田能提高土壤有机碳密度,但提高幅度有限。无论是双季稻区或单稻区,长期有机无机肥配合施用下,土壤有机碳密度和土壤C/N比均显著提高。近20年来,有机无机肥配合施用与纯化肥区相比,土壤有机碳密度和C/N比在双季稻区分别提高了20.46%和6.43%,但肥力水平较高的单季稻区仅分别提高了3.73%和4.51%。秸秆还田达到一定值后,进一步提高秸秆还田,土壤增碳效应不明显。
     保护性耕作技术具有很好的增碳保氮效应,但技术之间的效应差异显著。以长三角区域为例,油菜面积的扩大、小麦的少免耕和作物秸秆的还田分别约增加土壤耕层有机碳0.94 Tg、2.76 Tg和3.95 Tg,其中以麦稻复种转向油稻复种的单位面积碳收集效应为最高。
     计量经济模型分析表明,农户生产行为及土地政策对土壤有机碳氮影响显著。农户行为主要与农户的年龄、受教育程度和土地政策相关,不同的农户对于不同土地使用权的土地投入方式不同。而投入的差异,尤其是有机肥投入,显著影响土壤有机碳和氮水平。完善土地使用权,扩大地块规模,可以促进农户采取有利于土壤质量提高的投入增加和技术选择。
As the global environmental change is going on,especially global warming,great emphasis is given on how to slow down the trend by the scientists and politicians all over the world.The storage of soil organic carbon is about 2 to 2.5 times of that in the atmosphere and the above of the terrestrial ecosystem and its dynamic changes are related to the concentration of CO_2 and then the global environmental change.Farming system which includes both the cropping system and soil management plays an important role in the soil organic carbon stability and accumulation.Researches showed that the farmland soil had been carbon sequestration storage under the farming system evolution about recent 20 years,especially in the paddy soil of South-China whereas little research had been done. Under the condition of knowing the characteristics of southem region adequately,and also based on the historic data,published literature,field experiments and household survey data, the characteristics of soil organic carbon and nitrogen in the paddy soil of south-China,the effect of anthropogenic disturbances on the paddy soil carbon and the relationship between farmer behavior and soil organic carbon and nitrogen was studied through the integration of qualitative analysis and quantitative analysis.The main results were as follows:
     The results suggested that anthropogenic disturbances had great impacts on soil organic carbon density in paddy soils,indicating a high control potential of soil organic carbon density.Results showed that soil organic carbon density in the plow layer was about 3.15 kg/m~2 in average which ranged from 0.81 kg/m~2 to 12.68 kg/m~2.The variation coefficient of soil organic carbon density in the plow layer of farmland was 57%,which was 35 percentages lower than that of non-farmland soils.Compared to soil organic carbon density in the dry land,SOC density in paddy soils was 13 percentages higher with a lower variation coefficient between different regions.In addition,the relationships between the climatic factors(annual average temperature and annual precipitation) and soil organic carbon density were lower in farmland than those in non-farmland soils,as well as in paddy soils than that in dry land of farmland.
     There existed close coupled relationship between soil organic carbon and total nitrogen in the plow layer of farmland,and maybe more carbon could be sequestrated in the paddy soil than that of in the upland soil under the same nitrogen level.Results showed that soil organic carbon and total nitrogen contents were higher in paddy fields than in upland fields by 47.8%and 45.5%,respectively,but spatial variation of soil organic carbon and total nitrogen were found higher in upland than in paddy fields.Soil organic carbon and total nitrogen ratio(C/N) was about 10.8 in paddy fields,higher than 9.9 in upland fields.The highest C/N ratio value was found in the paddy fields in Northeast China while the lowest in the up land fields in Northwest China and East China.Meanwhile,results also show significant regional variation of C/N ratio in up land fields,but little significant variation in paddy fields.
     The soil organic carbon and total nitrogen characteristics and its key effect factors were differ between different paddy soil types,so the different technologies must be selected according to the variation of regional soil types.Results showed that the highest soil organic carbon density was found in the gleyed paddy soil,which was about 75.97%higher than the lowest(submergenic paddy soil).The gap of the total nitrogen between the above two types of soil was 1.31,and showed significant difference between them.Correlation analysis indicated that the soil organic carbon density was significantly and positively correlated with the plow layer depth and total nitrogen content.But to the carbon and nitrogen ratio,the key factor were much more complicated and differed for each other.
     Integrated fertilization with organic mature and chemical fertilizers was the key technology to the carbon sequestration and nitrogen utilization.Straw application could increase the soil organic carbon density but with limited extent.Long application of integrated fertilization with organic mature and chemical fertilizers could not only enhance the soil organic carbon density but the carbon and nitrogen ratio whether in double cropping rice region or single cropping rice region.Compared to the region where only the chemical fertilizers was used,the soil organic carbon density and C/N ratio in the integrated fertilization region was about 20.46%and 6.43%higher,respectively.But it was only 3.37%and 4.15%respectively in the single cropping rice region where the soil was much fertilizer.In addition,the carbon sequestration effect was not so significant through the straw applications when the quantity of the residues reached to some level.
     Conservational farming system technology was beneficial to the increasing of carbon and nitrogen in the soil,but the effect of each technology differed from each other.Taken the Yangtze delta plain for example,results showed that the increases in sown oilseed rape area,reduced-tillage wheat area and straw application area had increased organic carbon about 0.94 Tg,2.76 Tg and 3.95 Tg in surface soils(15 cm),respectively.The highest effect of carbon sequestration occurred under the transformation of Wheat-rice system to Oilseed rape-rice system.
     Based on the econometric model,results showed that the farming production behaviors and the land policy had great effect on soil organic carbon and soil nitrogen.Farmer behavior was closely correlation with the farmer's age,their educational level and land policy.Besides those,different individual opted dissimilar land management especially in the application of organic manure which was greatly related to the soil organic carbon and nitrogen content.Consequently,Perfecting the land use and enlarging the land scale may promote the farmer to increase the investment on the soil and select appropriate technology which will contribute to the enhancement of soil quality.
引文
[1]Watson RT.Climate Change:The Political Situation[J].Science,2003,302:1925-1926.
    [2]IPCC.Climate change 1995- Impacts,adaptations and mitigation of climate change:Scientific technical analyses[M].Cambridge:Cambridge University Press,1996.
    [3]Schar C,Vidale PL,Ltithi D,et al.The role of increasing temperature variability in European summer heatwaves[J].Nature,2004,427:332-336.
    [4]Luo Y,Wan S,Hui D,et al.Acclimatization of soil respiration to wanning in a tall grass prairie[J].Nature,2001,413:622-625.
    [5]Schlesinger WH,Lichter J.Limited carbon storage in soil and litter of experimental forest plots under elevated atmospheric CO2[J].Nature,2001,411:466-469.
    [6]肖玉,谢高地,鲁春霞等.稻田生态系统气体调节功能及其价值[J].自然资源学报,2004,19(5):617-623.
    [7]USEA.Carbon sequestration leadership forum,http://www.usea.org/onlineCSLFagenda.pdf,2003.
    [8]Hasselmann K,Lafif M,Hooss G,et al.The Challenge of long-term climate change[J].Science,2003,302:1923-1924.
    [9]Tilman D,Cassman KG.Matson PA et al.Agricultural sustainability and intensive production practices[J].Nature,2000,418:671-677.
    [10]Six J,Conant R T,Paul E A,et al.Stabilization mechanisms of soft organic matter:Implications for C-saturation of softs[J].Plant and Soil,2002,241(2):155-176.
    [11]Martens DA,Reedy TR,Lewi DT.Soil organic carbon content and composition of 130-year crop,pasture and forest land-use managements[J].Global Change Biology,2004,10(1):65-78.
    [12]Smith WN,Desjardins RL,Pattey E.The net flux of carbon from agricultural soils in Canada 1970-2010[J].Global Change Biology,2000,6(5):557-568.
    [13]Sherrod LA,Peterson GA,Westfall DG et al.Cropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem[J].Soil Science Society of American Journal,2003,67(5):1533-1543.
    [14]Sperow M,Eve M,Paustian K.Potential soil C sequestration on U.S.Agricultureal soils[J].Climatic Change,2003,57(3):319-339.
    [15]Batjes N H.Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil.Proceedings 16th World Congress of Soil Science(CD-ROM).ISSS,Montpellier,1998.
    [16]Coleman D C,Crossley D A.Fundamentals of soil ecology.Academic Press,San Diego,CA,USA,1996.
    [17]Kuzyakov Y,Domanski G.Carbon input by plants into the soil.Review[J].Plant Nutrient and Soil Science,2000,163:421-431.
    [18]Zhang W,Feng J,Parker K,2004.Differences in soil microbial biomass and activity for six agroecosystems with a management disturbance gradient[J].Pedosphere,14(4):441-417.
    [19]Zhang Weijian,K.M.Parker,Yiqi Luo et al..Soil microbial responses to experimental warming and clipping in a tallgrass prairie[J].Global Change Biology,2005,11(2):23-32.
    [20]杨景成,韩兴国,黄建辉,潘庆民.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):788-796.
    [21]张卫建,李昌新,柯建国等.农区农牧系统生产布局的区际空间转移分析方法及实例[J].应用生态学报,2001a,12(5):706-710.
    [22]张卫建,谭淑豪,江海东等.南方农区草业在中国农业持续发展中的战略地位.草业学报,2001b,10(2):1-6.
    [23]潘根兴,李恋卿,张旭辉等.中国土壤碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展.2003,18(4):609-618.
    [24]Pan G,Li L,Wu L,et al.Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J].Global Change Biology,2003,10(1):79-90.
    [25]李晓文,方精云.近10年来长江下游地区耕地动态变化特征[J].自然资源学报,18(5):562-567.
    [26]樊杰,千庆兰.我国东部沿海重点地区经济发展与资源环境相互作用关系的比较研究[J].自然资源学报,2004,19(1):96-105.
    [27]郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报,2006,25(增刊):334-338.
    [28]芮雯奕,周博,张卫建.长江三角洲水田保护性耕作制度的碳收集效应估算[J].长江流域资源与环境,2006,15(2):207-212.
    [29]林国先.制度因素是农业增长方式转变的重要变量[J].经济问题,1998,(7):38-39.
    [30]卡特,钟甫宁等.经济改革进程中的中国农业[M].北京:中国财政经济出版社,1998.
    [31]谭淑豪,曲福田,黄贤金.市场经济环境下不同类型农户土地利用行为差异及土地保护政策分析[J].南京农业大学学报,2001,24(2):110-114.
    [32]谭淑豪,谭仲春,黄贤金.农户行为与土壤退化的制度经济学分析[J].土壤2004,36(2):141-144.
    [1]黄勤楼.南方农区发展生态农业问题和措施[J].福建水土保持.2003,15(4):1-4
    [2]罗尊长等.中国南方农区畜牧业面临的问题与发展对策[J].农业现代化研究.2005,26(6):401-406
    [3]卞新民等.加速南方农业发展迎接新世纪粮食挑战[J].南京农业大学学报.2000,23(1):89-92
    [4]蒋少龙.区域差异与“三农”问题破解[J].经济经纬.2004,2:110-113
    [5]陈惠雄.中国区域发展梯度约束与和谐社会战略构局[J].中国工业经济,2006,9:5-13
    [6]朱桂英等.影响我国粮食产量的主要因素分析[J].内蒙古科技与经济.2005,22:7-8
    [7]黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科技通报,2006,51(7):750-763
    [8]于永强,黄耀,张稳,等.华东地区农田土壤有机碳时空格局动态模拟研究[J].地理与地理信息科学,2007,23(1):97-100
    [9]刘守龙,童成立,张文菊,等.湖南省稻田表层土壤固碳潜力模拟研究[J].自然资源学报,2006,21(1):118-125
    [10]Genxing Pan,Lianqing Li,Laosheng Wu,and et.al.Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J].Global change biology,2003,10:79-92
    [1]Olesen J E,Bindi M.Consequences of climate change for European agricultural produetivity,land use.and policy[J].European Journal of Agronomy,2002,16(4):239-262.
    [2]丁一汇,耿全震,大气、海洋、人类活动与气候变暖[J].气象,1998,24(3):12-17.
    [3]Rosenzweig C,Hillel D.Soils and global climate change:challenges and opportunities[J].Soil Science,2000,165(1),47-56.
    [4]Martens D A,Emmerich W,Jean E T.McLain J E T,Johnsen T N.Atmospheric carbon mitigation potential of agricultural management in the southwestern USA[J].Soil and Tillage Research,2005,83(1):95-119.
    [5]Schroth G,D'Angelo S A,Teixeira W G,Haag D,Lieberei R.Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia:consequences for biomass litter and soil carbon stocks after 7 years[J].Forest Ecology and Management,2002,163(1-3):131-150.
    [6]Edwards J H,Wood C W,Thurlow D L,Ruf M E.Tillage and crop rotation effects on fertility status of a hapludalt soil[J].Soil Science Society of America Journal,1992,56:1577-1582.
    [7]Jawson M D,Shafer S R,Franzluebbers A J,Parkin T B,Follett R F.GRACEnet:Greenhouse gas reduction through agricultural carbon enhancement network[J].Soil and Tillage Research,2005,83(1):167-172.
    [8]Bayer C,Martin-Neto L,Mielniczuk J,Pavinato A,Dieckow J.Carbon sequestration in two Brazilian Cerrado soils under no-fill[J].Soil and Tillage Research,2006,86(2):237-245.
    [9]Donigian A S,Barnwell T O,Jackson R B,Patwardhan A S,Weinrich K B,Rowell A L,Chinnaswamy R V,Cole C V.Alternative Management Practices Affecting Soil Carbon in Agroecosystems of The Central US.Washington,DC:US Environmental Protection Agency[M],1994.
    [10]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [11]解宪丽,孙波,周慧珍,李忠佩,李安波冲国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    [12]Wu H B,Guo Z T,Peng C H.Lang use induced changes of organic carbon storage in soil of china [J].Global Change Biology,2003,9(3):305-315.
    [13]全国土壤普查办公室冲国土种志(1-6册)[M],北京:中国农业出版社,1993-1996.
    [14]Somebroek W G,Nachtergaele F O,Hebel A.Amounts.Dynamics and sequestration of carbon in tropic and subtropical soil[J].Ambio,1993,22:417-426.
    [15]金峰,杨浩,蔡祖聪,赵其国.土壤有机碳密度及储量的统计研究[J]3.土壤学报,2001,38(4):522-528.
    [16]Pouyat R,Groffrnan P,Yesilonis I,Hemandez L.Soil carbon pool and fluxes in urban ecosysterms [J].Environmental Pollution,2002,116(supplement 1):107-118.
    [17]Post W M,Emanuel W R,Zinke P J,Stangenberger A.G.Soil carbon pools and life zones [J].Natuure,1982,298:156-159.
    [18]Wu H B,Guo Z T,Peng C H.Distribution and storage of soil organic carbon in China[J].Global Biogeochemical Cycles,2003,17(2):1048-1058
    [19]Li Z,Zhao Q G.Organic carbon content and distribution in soil under different land uses in tropical and subtropic china[J].Plant and Soil,2001,231(2):175-185.
    [20]孙维侠,史学正,于东升,王库,王洪杰.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报,2004,41(2):298-300.
    [21]邱建军,王立刚,唐华俊,李红,Changsheng L1.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    [22]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [23]Pan G X,Li L Q,Wu L S,Zhang X H.Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J].Global Change Biology,2003,10:79-92.
    [24]潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.(in Chinese)
    [1]Metting F B,Smith J L,Amthor J S,et al.Science Needs and New Technology for Increasing Soil Carbon Sequestration[J].Climatic Change,2001,51(1):11-34.
    [2]周凤起.发展环境友好能源,保护环境和公众健康[J].冶金管理,2004,12:41-44.
    [3]周广胜.全球碳循环[M].北京:气象出版社,2003.
    [4]Sarmiento L,Bottner P.Carbon and Nitrogen Dynamics in Two Soils with Different Fallow Times in the High Tropical Andes:Indications for Fertility Restoration[J].Applied Soil Ecology,2002,19(1):79-89.
    [5]Makpaa R,Karhalainen T,Pussinen A,et al.Effect of Nitrogen Fertilization on Carbon Accumulation in Boreal Forests:Model Computations Compared With the Results of Long-term Fertilization Experiment[J].Chemosphere,1998,36(4-5):1155-1160.
    [6]Henriksen T M,Breland T A.Nitrogen Availability Effects on Carbon Mineralization,Fungal and Bacterial Growth and Enzyme Activities During Decomposition of Wheat Straw in Soil[J].Soil Biology and Biochemistry,1999,31(8):1121-1134.
    [7]Liu J,Price D T,Chena J M.Nitrogen Controls on Ecosystem Carbon Sequestration:A Model Implementation and Application to Saskatchewan,Canada[J].Ecological Modeling,2005,186(2):178-195.
    [8]王淑平,周广胜,高素华等.中国东北样带土壤氮的分布特征及其对气候变化的响应[J].应用生态学报,2005,16(2):279-283.
    [9]姜勇,张玉革,梁文举等.潮棕壤不同利用方式有机碳剖面分布及碳储量[J].中国农业科学,2005,38(3):544-550.
    [10]全国土壤普查办公室.中国土种志(1-6册)[M],北京:中国农业出版社,1993-1996.
    [11]Somebroekw G,Nacntergaelefo,Amounts H A.Dynamics and Sequestration of Carbon in Tropic and Subtropical Soil[J].AMBIO,1993,22:417-426.
    [12]Post W M,Emanuel W R,Zinke P J,et al.Soil Carbon Pools and Life Zones[J].Nature,1982,298:156-159.
    [13]周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环境,2004,32(3-4):21-26.
    [14]Wu H B,Guo Z T,Peng C H.Lang Use Induced Changes of Organic Carbon Storage in Soil of China[J].Global Change Biology,2003,9(3):305-315.
    [15]王秀红.我国水平地带性土壤中有机质的空间变化特征[J].地理科学,2001,21(1):19-23.
    [16]邱建军,王立刚,唐华俊等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    [17]杨玉建,杨劲松。潮土区土壤有机质含量的趋势演变研究-以禹城市为例[J].土壤通报,2005,36(5):647-651.
    [18]Aber J D,Nadelhoffer K J,Steudler P,et al.Nitrogen Saturation in Northern Forest Ecosystems[J].Bioscience,1989,39(6):378-386.
    [1]许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境,2005,14(6):961-966.
    [2]潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005(2):12-18.
    [3]唐国勇,黄道友,童成立等.土壤氮素循环模型及其模拟研究进展[J].应用生态学报,2005,16(11):2208-2212.
    [4]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,13.
    [5]孟磊,丁维新,蔡祖聪等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687-692.
    [6]潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.
    [7]许泉,芮雯奕,刘家龙等我国农田土壤碳氮耦合特征的区域差异[J].生态与农村环境学报,2006,22(3):57-60.
    [8]冯金侠,张卫建冲国耕作学学科的历史成就和新世纪若干发展问题[J].耕作与栽培,2005(4):4-6.
    [9]郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报2006,25(增刊):334-338.
    [10]芮雯奕,周博,张卫建.长江三角洲水田保护性耕作制度的碳收集效应估算[J].长江流域资源与环境,2006,15(2):207-212。
    [11]全国土壤普查办公室.中国土种志(1-6册)[M].北京:中国农业出版社,1993-1996.
    [12]Somebroekw G,Nachtergaelef O,Amounts H A.Dynamics and Sequestration of Carbon in Tropic and Subtropical Soil[J].AMBIO,1993,22:417-426.
    [13]Post W M,Emanuel W R,Zinke P J,et al.Soil Carbon Pools and Life Zones[J].Nature,1982,298:156-159.
    [14]周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环境,2004,32(3-4):21-26.
    [1]潘根兴,赵其国。我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.
    [2]郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报,2006,25(增刊):334-338.
    [3]徐明岗,于荣,孙小凤等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    [4]尹云锋,蔡祖聪,钦绳武.长期施肥条件下潮土不同组分有机质的动态研究[J].应用生态学报,2005,16(5):875-878.
    [5]林德喜,胡锋,范晓晖等.长期施肥对太湖地区水稻土磷素转化的影响[J].应用与环境生物学报,2006,12(4):453-456.
    [6]王改兰,段建南,贾宁凤等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报,2006,20(4):82-89.
    [7]高瑞,吕家珑,张素霞.长期施肥对土肥力及作物产量的影响[J].干早地区农业研究,2006,24(5):64-67.
    [8]陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响[J].麦类作物学报,2006,26(5):101-105.
    [9]赵丽娟,韩晓增,王守宇等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化Ⅳ.有机碳组分的变化[J].应用生态学,2006,17(5):817-821.
    [10]富东英,田秀平,薛菁芳等.期施肥与耕作对白浆土有机态氮组分的影响[J].农业环境科学学报,2005,4(6)27-1131.
    [11]杨生茂,李凤民,索东让等.长期施肥对绿洲农田土壤生产力及土壤硝态氮积累的影响[J].国农业科学,005,38(10):2043-2052.
    [12]林英华,杨学云,张大道等.长期施肥对黄土区农田土壤动物群落的影响[J].中国农业科学,2005,38(6):1213-1218.
    [13]张晋京,窦森,张大军.长期施肥对土壤有机质δ~(13)C值影响的初步研究[J].农业环境科学学报,2006,25(2):382-387.
    [14]黄斌,王敬国,金红岩等.长期施肥对我国北方潮土碳储量的影响[J].农业环境科学学报,2006,25(1):161-164.
    [15]邵月红,潘剑君,孙波.长期施肥对红壤不同形态碳的影响[J].中国生态农业学报,2006,14(1):125-127.
    [16]秦晓波,李玉娥,刘克樱等.长期施肥对湖南稻田甲烷排放的影响[J].中国农业气象,2006,27(1):19-22.
    [17]富东英,田秀平,薛菁芳等.长期施肥与耕作对白浆土有机态氮组分的影响[J].农业环境科学学报,2005,24(6):1127-1131.
    [18]孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J].中国农业科学,2005,38(9):1841-1848.
    [1]Luo Y,Wan S,Hui D,et al.Acclimatization of soil respiration to warming in tallgrass prairie[J].Nature,2001413,622-625.
    [2]Schlesinger W H,Lichter J.Limited carbon storage in soil and litter of experimental forest plots under increasedatmosphericCO2[J].Nature,2001,411:466-469.
    [3]USEA.Carbon sequestration leadership forum.http://www.usea.org/onlineCSLFagenda.pdf,2003.
    [4]Watson RT,Climate Change:The Political Situation[J].Science,2003,302:1925-1926.
    [5]Hasselmann K,LatifM,Hooss G,et al.The Challenge of long-term climate change[J].Science,2003,302:1923-1924.
    [6]张金城,刘松.江苏省秸秆还田以及秸秆综合利用的发展现状与思考[J].农业装备技术,2006,32(3):13-14.
    [7]中国农业年鉴编辑部.中国农业年鉴[M].北京:中国农业出版社,1981-2003.
    [8]Pan G,Li L,Wu L,et al.Storage and sequestration potential of topsoil organic carbon in china's paddy soils[J].Global Change Biology,2003,10:79-92.
    [9]王维敏,张镜清,王文山等.黄淮海地区农田土壤有机质平衡的研究[J].中国农业科学,1988,21(1):19-26.
    [10]郑建初,赵国良,刘华周等.苏南稻田新种植制度的轮作效应[J].江苏农业科学,1997,2:6-10.
    [11]庄恒扬,刘世平,沈新平等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.
    [12]王振忠,吴敬民,陈留根等.稻麦两熟地区秸秆全量直接还田施肥技术的增产培肥效果[J].江苏农业学报,2003,19(3):151-156.
    [13]李长生.土壤碳储量减少:中国农业之隐患-中美农业生态系统碳循环比较[J].第四纪研究,2000,20(4):345-350.
    [14]苏州农业网.苏州市农业面源污染防治工作情况和今后的设想.http://www.nlj.suzhou.gov.cn/stkj1.htm,2003.
    [1] Abalu G. R Hassan. Agricultural productivity and natural resource use in southern Africa [J]. Food Policy, 1998,13(6): 477-490.
    [2] Shiferaw B S. Holden T. Peasant agriculture and land degradation in Ethiopia: reflections on constraints and incentives for soil conservation and food security. Forum for Development Studies 1997 (2): 277-305.
    [3] Ali M. D yerlee. Productivity growth and resource degradation in Pakistan's Punjab: a decomposition analysis [J]. Economic Development and Cultural Change, 2002, 50(4): 839-863.
    [4] Kim K B. L Barham L Coxhead. Measuring soil quality dynamics: a role for economists, and implications for economic analysis [J]. Agricultural Economics, 2001,25: 13-26.
    [5] Heerink N A. Kuyvenhoven M.S. Van Wijk. Economic policy reforms and sustainable land use in LDCs: issues and approaches. In: Heerink, N., H. V. Keulen and M. Kuiper (2001) (eds.) Economic Policy and Sustainable Land Use: Recent Advances in Quantitative Analysis for Developing Countries [M]. Heidelberg: Physica-Verlag, 2001.
    [6] Oudendag DA. H. H. Luesink. The manure model: manure, minerals (N, P and K), ammonia emission, heavy metals and the use of fertilizer [J]. Environmental Pollution, 1998, 102: 241-246.
    [7] Prosterman, R.. Land tenure, food security and rural development in China [J]. Development, 2001 44(4): 79-84.
    [8] Edmonds, R. L. Patterns of China's Lost Harmony: A Survey of the Country's Environmental Degradation and Protection [M]. London: Routledge, 1994.
    [9] Rozelle S G Veeck. Huang J. The impact of environmental degradation on grain production in China, 1975-1990[J]. Economic Geography, 1997: 44-66.
    [10] Wen D. Y Tang. X. Zheng. Y. He. Sustainable and productive agricultural development in China[J]. Agricultural Ecosystem and Environment, 1992, 39(1-2): 55-70.
    [11] Hu, W. Household land tenure reform in China: its impact on farming land use and agro-environment [J]. Land Use Policy, 1997, 14 (3): 175-186.
    [12] Deininger K.S. Jin. The impact of property rights on households' investment, risk coping, and policy preferences: evidence from China [J]. Economic Development and Cultural Change, 2003, 51(4): 851-882.
    [13] Tan S F. Qu, X. Huang and N. Heerink. Institutions, policies and soil degradation: theoretical examinations and case studies in Southeast China. Chinese [J], Journal of Population, Resource and Environment, 2004, 2 (1): 14-21.
    [14] Lindert, P. The bad earth? China's soil and agricultural soils and development since the 1930s [J]. Economic Development and Cultural Change, 1999, 47(4): 701-736.
    [15] Yu H. Land Rights, Reform and the Evolution of China's Soil Resource. PhD thesis [M]. Development Economics, Institute of Agricultural Economics, Chinese Academy of Agricultural Sciences.
    
    [16] Sanchez PA. Soil fertility and hunger [J]. Science, 2002, 295: 2019-2012.
    [17] Struif Bontkes, T. and H. van Keulen (2003). Modeling the dynamics of agricultural development at farm and regional level. Agricultural Systems 76: 379-396.
    [18] Magleby R. Agricultural Resources and Environmental Indicators: Soil Management and Conservation. http://www.ers.usda.gov/publications/arei.
    [19] Grepperud S. The impact of policy on farm conservation incentives in developing countries: what can be learned from theory? [J].Quarterly Journal of International Agriculture, 1997, 36: 59-80.
    [20] Katz, E. G. Social capital and natural capital: a comparative analysis of land tenure and natural resource management in Guatemala. Land Economics, 2000, 76(1): 114-132.
    [21] Lafrance, J. T.Do increased commodity prices lead to more or less soil degradation? Australian Journal of Agricultural Economics, 1992, 36(1): 57-82.
    [22] Thampapillai D J. J R Anderson. A review of the socio-economic analysis of soil degradation problems for developed and developing countries [J]. Review of Marketing and Agricultural Economics, 1994, 62(3): 291-315.
    [23] Kuyvenhoven A. R. Ruben G. Kruseman. Options for sustainable agricultural systems and policy instruments to reach them. In: Bouma, J., A. Kuyvenhoven, B. A. M. Bouman, J. C. Luyten and H. G. Zandstra (eds.) Eco-Regional Approaches for Sustainable Land Use and Food Production: System Approaches for Sustainable Agricultural Development[M]. Dordrecht: Kluwer Academic Publishers, 1995.
    [24] Li, G., S. Rozelle L Brandt. Tenure, land rights, and farmer investment incentives in China [J]. Agricultural Economics, 1998, 19: 63-71.
    [25] Yan, J. Land contract system and sustainable farmland use: an empirical analysis [J]. China Rural Survey (in Chinese), 1998, 6: 11-15.
    [26] Blarel B P. Hazell F. Place. J. Quiggin. The economics of farm fragmentation: evidence from Ghana and Rwanda[J].The World Bank Economic Review,1992,6:233-254.
    [27]Nguyen T.E Cheng.C Findlay.Land fragmentation and farm productivity in China in the 1990s[J].China Economic Review,1996,7(2):169-180.
    [28]Su X.X.Wang.Farmland fragmentation and grain production- a study of Laixi city of Shandong province[J].China Rural Economy(in Chinese),2002,4:22-28.
    1. Abalu, G. and R. Hassan . Agricultural productivity and natural resource use in southern Africa [J]. Food Policy. 1998,13(6): 477-490.
    2. Aber J D, Nadelhoffer K J, Steudler P,et al. Nitrogen Saturation in Northern Forest. Ecosystems [J]. Bioscience, 1989,39(6): 378-386.
    3. Ali, M. and D. Byerlee. Productivity growth and resource degradation in Pakistan's Punjab: a decomposition analysis [J]. Economic Development and Cultural Change.2002,50(4): 839-863.
    4. Atjes N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration n the soil. Proceedings 16th World Congress of Soil Science (CD-ROM). ISSS, Montpellier, 998.
    5. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J. Carbon sequestration in two Brazilian Cerrado soils under no-till [J]. Soil and Tillage Research, 2006, 86(2):237-245.
    6. Blarel, B., P. Hazell, F. Place and J. Quiggin. The economics of farm fragmentation: evidence from Ghana and Rwanda [J]. The World Bank Economic Review 6,1992:233-254.
    7. Deininger, K. and S. Jin. The impact of property rights on households' investment, risk coping, and policy preferences: evidence from China [J]. Economic Development and Cultural Change.2003, 51(4): 851-882.
    8. Donigian A S, Barnwell T O, Jackson R B, Patwardhan A S, Weinrich K B,Rowell A L, Chinnaswamy R V, Cole C V. Alternative Management Practices Affecting SoiJ Carbon in Agroecosystems of the Central US. Washington, DC: US Environmental Protection Agency, 1994.
    9. Edmonds, R. L. (1994). Patterns of China have Lost Harmony: A Survey of the Country's Environmental Degradation and Protection. London: Routledge.
    10. Edwards J H, Wood C W, Thurlow D L, Ruf M E. Tillage and crop rotation effects on fertility status of a hapludalt soil [J]. Soil Science Society of America Journal, 1992,56:1577-1582.
    11. Genxing Pan, Lianqing Li, Laosheng Wu, et al. Storage and sequestration potential of topsoil organic carbon in china's paddy soils[J]. Global Change Biology. 2003, 10: 79-92.
    12. Grepperud, S. The impact of policy on farm conservation incentives in developing countries: what can be learned from theory? [J].Quarterly Journal of International Agriculture, 1997, 9-30.
    13. Zhang W, Feng J, Parker K. Differences in soil microbial biomass and activity for six groecosystems with a management disturbance gradient [J]. Pedosphere, 2004,( 4): 441-417.
    14. Hasselmann K, Latif M, Hooss G, et al. The Challenge of long-term climate change [J]. Science, 2003,302: 1923-1924.
    15. Hasselmann K, Latif M, Hooss G, et al. The Challenge of long-term climate change [J]. Science, 2003,302: 1923-1924.
    16. Heerink, N., A. Kuyvenhoven and M.S. Van Wijk (2001). Economic policy reforms and sustainable land use in LDCs: issues and approaches. In: Heerink, N., H. V. Keulen and M. Kuiper (2001) (eds.) Economic Policy and Sustainable Land Use: Recent Advances in Quantitative Analysis for Developing Countries. Heidelberg: Physica-Verlag.
    17. Henriksen T M, Breland T A. Nitrogen Availability Effects on Carbon Mineralization, Fungal and Bacterial Growth and Enzyme Activities During Decomposition of Wheat Straw in Soil [J]. Soil Biology and Biochemistry, 1999, 31(8): 1121-1134.
    18. Herrod LA, Peterson GA, Westfall DG et al. Cropping intensity enhances soil organic carbon nd nitrogen in a no-till agroecosystem [J]. Soil Science Society of American Journal, 2003, 67 5): 1533-1543.
    19. Hu, W. Household land tenure reform in China: its impact on farming land use and agro-environment. Land Use Policy.1997,14 (3): 175-186.
    20. IPCC. Climate change 1995- Impacts, adaptations and mitigation of climate change: cientific technical analyses [M]. Cambridge: Cambridge University Press, 1996.
    21. Jawson M D, Shafer S R, Franzluebbers A J, Parkin T B, Follett R F. GRACEnet: Greenhouse gas reduction through agricultural carbon enhancement network [J]. Soil and Tillage Research, 2005, 83(1): 167-172.
    22. Katz, E. G Social capital and natural capital: a comparative analysis of land tenure and natural resource management in Guatemala [J]. Land Economics, 2000, 76(1): 114-132.
    23. Kim, K., B. L. Barham and I. Coxhead. Measuring soil quality dynamics: a role for economists, and implications for economic analysis [J]. Agricultural Economics, 2001,25: 13-26.
    24. Kuyvenhoven, A., R. Ruben and G. Kruseman (1995). Options for sustainable agricultural systems and policy instruments to reach them. In: Bouma, J., A. Kuyvenhoven, B. A. M. Bouman, J. C. Luyten and H. G Zandstra (eds.) Eco-Regional Approaches for Sustainable Land Use and Food Production: System Approaches for Sustainable Agricultural Development[M]. Dordrecht: Kluwer Academic Publishers.
    25. Lafrance, J. T. Do increased commodity prices lead to more or less soil degradation? [J]. Australian Journal of Agricultural Economics, 1992, 36(1): 57-82.
    26. Li Z, Zhao Q G Organic carbon content and distribution in soil under different land uses in tropical and subtropic china [J]. Plant and Soil, 2001,231(2):175-185.
    27. Li, G, S. Rozelle and L. Brandt. Tenure, land rights, and farmer investment incentives in China [J]. Agricultural Economics, 1998, 19: 63-71.
    28.Lindert,P..The bad earth? China's soil and agricultural soils and development since the 1930s[J].Economic Development and Cultural Change,1999,47(4):701-736.
    29.LIU J,PRICE D T,CHENA J M.Nitrogen Controls on Ecosystem Carbon Sequestration:A Model Implementation and Application to Saskatchewan,Canada[J].Ecological Modeling,2005,186(2):178-195.
    30.Luo Y,Wan S,Hui D,et al.Acclimatization of soil respiration to warming in a tall grass rairie[J].Nature,2001,413:622-625.
    31.Luo Y,Wan S,Hui D,et al.Acclimatization of soil respiration to warming in tallgrass prairie[J].Nature,2001,413,622-625.
    32.Lyudmila Shevtsova,Vladimir Romanenkov,Oleg Sirtenko,et al.Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils-modeling and observation.Geoderma,2003,116:165-189
    33.Magleby,R.(2002).Agricultural Resources and Environmental Indicators:Soil Management and Conservation.http://www.ers.usda.gov/publications/arei.
    34.Makipaa R,Karjalainen T,Pussinnen A,et al.Effect of Nitrogen Fertilization on Carbon Accumulation in Boreal Forests:Model Computations Compared With the Results of Long-term Fertilization Experiment[J].Chemosphere,1998,36(4-5):1155-1160.
    35.Martens D A,Emmerich W,Jean E T.McLain J E T,Johnsen TN.Atmospheric carbon mitigation potential of agricultural management in the southwestern USA[J].Soil-and Tillage Re.search,2005,83(1):95-119.
    36.Martens DA,Reedy TR,Lewi DT.Soil organic carbon content and composition of 130-year rop,pasture and forest land-use managements[J].Global Change Biology,2004,10(1):65-78.
    37.Metting F B,Smith J L,Amthor J S,et al.Science Needs and New Technology for Increasing Soil Carbon Sequestration[J].Climatic Change,2001,51(1):11-34.
    38.Smith WN,Desjardins RL,Pattey E.The net flux of carbon from agricultural soils in Canada 970-2010[J].Global Change Biology,2000,6(5):557-568.
    39.Nguyen,T.,E.Cheng and C.Findlay.Land fragmentation and farm productivity in China in the 1990s[J].China Economic Review,1996,7(2):169-180.
    40.Oleman D C,Crossley D A.Fundamentals of soil ecology[M].Academic Press,San Diego,CA,SA,1996.
    41.Olesen J E,Bindi M.Consequences of climate change for European agricultural productivity,land use and policy[J].European Journal of Agronomy,2002,16(4):239-262.
    42.Oudendag,D.A.and H.H.Luesink.The manure model:manure,minerals(N,P and K),ammonia emission, heavy metals and the use of fertilizer [J]. Environmental Pollution, 1998,102: 241-246.
    43. Pan G X, Li L Q, Wu L S, Zhang X H.Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,2003,10:79-92
    44. Post W M, Emanuel W R, Zinke P J, Stangenberger A G Soil carbon pools and life zones [J].Natuure, 1982,298: 156-159.
    45. Pouyat R, Groffman P, Yesilonis I, Hernandez L. Soil carbon pool and fluxes in urban ecosysterms[J]. Environmental Pollution, 2002,116(supplement1): 107-118.
    46. Prosterman, R. Land tenure, food security and rural development in China [J].Development, 2001, 44(4): 79-84.
    47. Rosenzweig C, Hillel D. Soils and global climate change: challenges and opportunities [J]. Soil Science, 2000, 165(1), 47-56.
    48. Rozelle, S., G. Veeck and J. Huang. The impact of environmental degradation on grain production in China, 1975-1990[J]. Economic Geography 1997:44-66.
    49. Sanchez, P. A. Soil fertility and hunger [J]. Science, 2002,295:2019-2012.
    50. Sarmiento L, Bottner P. Carbon and Nitrogen Dynamics in Two Soils with Different Fallow Times in the High Tropical Andes: Indications for Fertility Restoration [J]. Applied Soil Ecology, 2002, 19(1): 79-89.
    51. Schar C, Vidale PL, Luthi D, et al. The role of increasing temperature variability in European ummer heatwaves [J]. Nature, 2004,427: 332 - 336.
    52. Schlesinger WH, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2[J]. Nature, 2001, 411: 466-469.
    53. Schroth G, D'Angelo S A, Teixeira W G, Haag D, Lieberei R. Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass litter and soil carbon stocks after 7 years [J]. Forest Ecology and Management, 2002, 163(1-3):131-150.
    54. Shiferaw, B. and S. T. Holden. Peasant agriculture and land degradation in Ethiopia: reflections on constraints and incentives for soil conservation and food security [J]. Forum for Development Studies 1997 (2): 277-305.
    55. Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: mplications for C-saturation of soils [J]. Plant and Soil, 2002, 241 (2): 155-176.
    56. Somebroek W G., Nachtergaele F O, Hebel A. Amounts. Dynamics and sequestration of carbon in tropic and subtropical soil [J] .Ambio, 1993,22: 417-426.
    57. Sperow M, Eve M, Paustian K. Potential soil C sequestration on U.S. Agricultureal soils [J]. Limatic Change, 2003, 57 (3):319-339.
    58.Struif Bontkes,T.and H.van Keulen.Modeling the dynamics of agricultural development at farm and regional level[J].Agricultural Systems,2003,76:379-396.
    59.Su,X.and X.Wang.Farmland fragmentation and grain production- a study of Laixi city of Shandong province[J].China Rural Economy(in Chinese),2002,4:22-28.
    60.Tan,S.,F.Qu,X.Huang and N.Heerink.Institutions,policies and soil degradation:theoretical examinations and case studies in Southeast China[J].Chinese Journal of Population,Resource and Environment 2004,(1):14-21.
    61.Thampapillai,D.J.and J.R.Anderson.A review of the socio-economic analysis of soil degradation problems for developed and developing countries[J].Review of Marketing and Agricultural Economics,1994,62(3):291-315.
    62.Tilman D,Cassman KG,Matson PA et al.Agricultural sustainability and intensive roduction practices[J].Nature,2000,418:671-677.
    63.USEA.Carbon sequestration leadership forum,http://www.usea.org/onlineCSLFagenda.pdf,2003.
    64.Kuzyakov Y,Domanski G.Carbon input by plants into the soil.Review[J].Plant Nutrient and oil Science,2000,163:421-431.
    65.Wan,G.and E.Cheng.Effects of land fragmentation and returns to scale in the Chinese farming sector[J].Applied Economics,2002,33:183-194.
    66.Watson RT,Climate Change:The PoliticalSituation[J].Science,2003,302:1925-1926.
    67.Wen,D.,Y.Tang,X.Zheng and Y.He.Sustainable and productive agricultural development in China[J].Agricultural Ecosystem and Environment,1992,39(1-2):55-70.
    68.Wu H B,Guo Z T,Peng C H.Distribution and storage of soil organic carbon in China[J].Global Biogeochemical Cycles,2003,17(2):1048-1058
    69.Wu H B,Guo Z T,Peng C H.Lang use induced changes of organic carbon storage in soil of china[J].Global Change.Biology,2003,9(3):305-315.
    70.Yan,J.Land contract system and sustainable farmland use:an empirical analysis[J].China Rural Survey(in Chinese),1998,6:11-15.
    71.Yu,H.Land Rights,Reform and the Evolution of China's Soil Resource.PhD thesis.Development Economics[M],Institute of Agricultural Economics,Chinese Academy of Agricultural Sciences.
    72.Zhang Weijian,K.M.Parker,Yiqi Luo et al..Soil microbial responses to experimental wanning and clipping in a tallgrass prairie[J].Global Change Biology,2005,11(2):23-32.
    73.卞新民,冯金侠,张卫建.加速南方农业发展迎接新世纪粮食挑战[J].南京农业大学学报.2000,23(1):89-92.
    74.陈惠雄.中国区域发展梯度约束与和谐社会战略构局[J].中国工业经济,2006,9:5-13.
    75.陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响。麦类作物学报,2006,26(5):101-105.
    76.陈印军.我国粮食生产形势问题与对策[J].中国农业信息.2004,2:8-12.
    77.丁一汇,耿全震.大气、海洋、人类活动与气候变暖.气象,1998,24(3):12-17.
    78.樊杰,千庆兰.我国东部沿海重点地区经济发展与资源环境相互作用关系的比较研究[J].自然资源学报,2004,19(1):96-105。
    79.冯金侠,张卫建冲国耕作学学科的历史成就和新世纪若干发展问题[J].耕作与栽培,2005(4):4-6.
    80.富东英,田秀平,薛菁芳等.长期施肥与耕作对白浆土有机态氮组分的影响[J].农业环境科学学报,2005,24(6):1127-1131.
    81.富东英,田秀平,薛菁芳等.长期施肥与耕作对白浆土有机态氮组分的影响[J].农业环境科学学报,2005,24(6):1127-1131.
    82.高瑞,吕家珑,张素霞.长期施肥对土肥力及作物产量的影响[J].干旱地区农业研究,2006,24(5):64-67.
    83.谷洁等.提高化肥利用率技术创新展望[J].农业工程学报.2000,16(2):17-20.
    84.贺金生;王政权;方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,13.
    85.黄斌,王敬国,金红岩等长期施肥对我国北方潮土碳储量的影响[J].农业环境科学学报,2006,25(1):161-164.
    86.黄勤楼.南方农区发展生态农业问题和措施[J].福建水土保持.2003,15(4):1-4.
    87.姜勇,张玉革,梁文举等.潮棕壤不同利用方式有机碳剖面分布及碳储量[J].中国农业科学,2005,38(3):544-550.
    88.蒋少龙.区域差异与“三农”问题破解[J].经济经纬.2004,2:110-113.
    89.解宪丽,孙波,周慧珍,李忠佩,李安波.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    90.金峰,杨浩,蔡祖聪,赵其国.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528.
    91.卡特,钟甫宁等著.经济改革进程中的中国农业[M].北京:中国财政经济出版社,1998.
    92.李长生.土壤碳储量减少:中国农业之隐患.中美农业生态系统碳循环比较[J].第四纪研究,2000,20(4):345-350.
    93.李晓文,方精云.近10年来长江下游地区耕地动态变化特征[J].自然资源学报,18(5):562-567.
    94.林德喜,胡锋,范晓晖等.长期施肥对太湖地区水稻土磷素转化的影响[J].应用与环境生物学报,2006,12(4):453-456.
    95.林国先.制度因素是农业增长方式转变的重要变量[J].经济问题,1998,(7):38-39.
    96.林英华,杨学云,张夫道等.长期施肥对黄土区农田土壤动物群落的影响[J].中国农业科学,2005,38(6):1213-1218.
    97.罗尊长等.中国南方农区畜牧业面临的问题与发展对策[J].农业现代化研究.2005,26(6):401-406.
    98.马文奇等.关乎我国资源、环境、粮食安全和可持续发展的化肥产业[J].资源科学.2005,27(3):33-40.
    99.孟磊,丁维新,蔡祖聪等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687-692.
    100.潘根兴,李恋卿,张旭辉等冲国土壤碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    101.潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005(2):12-18.
    102.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.
    103.潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    104.秦晓波,李玉娥,刘克樱等.长期施肥对湖南稻田甲烷排放的影响[J].中国农业气象,2006,27(1):19-22.
    105.邱建军,王立刚,唐华俊等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    106.全国土壤普查办公室.中国土种志(1-6册)[M].j匕京:中国农业出版社,1993-1996.
    107.全国土壤普查办公室.中国土种志(1-6册)[M].北京:中国农业出版社,1993-1996.
    108.全国土壤普查办公室.中国土种志(1-6册)[M].j匕京:中国农业出版社,1993-1996.
    109.芮雯奕,周博,张卫建.长江三角洲水田保护性耕作制度的碳收集效应估算[J].长江流域资源与环境,2006,15(2):207-212.
    110.邵月红,潘剑君,孙波.长期施肥对红壤不同形态碳的影响[J].中国生态农业学报,2006,14(1):125-127.
    111.佘之祥.长江三角洲水土资源与区域发展[M].北京:中国科技出版社,1997.
    112.苏州农业网.苏州市农业面源污染防治工作情况和今后的设想.http://www.nlj.suzhou.gov.cn/stkj1J.htm,2003.
    113.孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J].中国农业科学,2005,38(9):1841-1848.
    114.孙维侠,史学正,于东升,王库,王洪杰.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报,2004,41(2):298-300.
    115.谭淑豪,曲福田,黄贤金.市场经济环境下不同类型农产土地利用行为差异及土地保护政策分析[J].南京农业大学学报,2001,24(2):110-114.
    116.谭淑豪,谭仲春,黄贤金.农户行为与土壤退化的制度经济学分析[J].土壤,2004,36(2):141-144.
    117.唐国勇,黄道友,童成立等.土壤氮素循环模型及其模拟研究进展[J].应用生态学报,2005,16(11):2208-2212.
    118.王改兰,段建南,贾宁凤等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报,2006,20(4):82-89.
    119.王绍强,周成虎,李克让,朱松丽,黄方红冲国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    120.王淑平,周广胜,高素华等.中国东北样带土壤氮的分布特征及其对气候变化的响应[J].应用生态学报,2005,16(2):279-283.
    121.王维敏,张镜清,王文山等.黄淮海地区农田土壤有机质平衡的研究[J].中国农业科学,1988,21(1):19-26.
    122.王秀红.我国水平地带性土壤中有机质的空间变化特征[J].地理科学,2001,21(1):19-23.
    123.王振忠,吴敬民,陈留根等.稻麦两熟地区秸秆全量直接还田施肥技术的增产培肥效果[J].江苏农业学报,2003,19(3):151-156.
    124.肖玉,谢高地,鲁春霞等.稻田生态系统气体调节功能及其价值[J].自然资源学报,2004,9(5):617-623.
    125.徐明岗,于荣,孙小凤等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    126.许泉,芮雯奕,刘家龙等.我国农田土壤碳氮耦合特征的区域差异[J].生态与农村环境学报,2006,22(3):57-60.
    127.许信旺,潘根兴冲国水稻土碳循环研究进展[J].生态环境 2005,14(6):961-966.
    128.杨景成,韩兴国,黄建辉,潘庆民.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):788-796.
    129.杨生茂,李凤民,索东让等.长期施肥对绿洲农田土壤生产力及土壤硝态氮积累的影响[J].中国农业科学,2005,38(10):2043-2052.
    130.杨玉建,杨劲松.潮土区土壤有机质含量的趋势演变研究-以禹城市为例[J].土壤通报,2005,36(5):647-651.
    131.杨志刚等.调整农业产业结构 加快农区种草养畜步伐[J].江西畜牧兽医杂志.2002,4:22-24.
    132.尹云锋,蔡祖聪,钦绳武.长期施肥条件下潮土不同组分有机质的动态研究[J].应用生态学报,2005,16(5):875-878.
    133.张晋京,窦森,张大军.长期施肥对土壤有机质δ~(13)C值影响的初步研究[J].农业环境科学学报,2006,25(2):382-387.
    134.张卫建,李昌新,柯建国等.农区农牧系统生产布局的区际空间转移分析方法及实例[J].应用生态学报,2001a,12(5):706-710.
    135.张卫建,谭淑豪,江海东等.南方农区草业在中国农业持续发展中的战略地位[J].草业学报,2001b,10(2):1-6.
    136.赵丽娟,韩晓增,王守宇等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化Ⅳ.有机碳组分的变化[J].应用生态学,2006,17(5):817-821.
    137.郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报2006,25(增刊):334-338.
    138.郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报2006,25(增刊):334-338.
    139.郑建初,赵国良,刘华周等.南稻田新种植制度的轮作效应[J].江苏农业科学,1997,2:6-10.
    140.中国农业年鉴编辑部.中国农业年鉴[M].北京:中国农业出版社,1981-2003.
    141.中国市场学会、中国商业联合会课题组.我国化肥消费现状与主要问题[J].经济研究参考.2006,5:25-29.
    142.周凤起.发展环境友好能源,保护环境和公众健康[J].冶金管理,2004,12:41-44.
    143.周广胜.全球碳循环[M].北京:气象出版社,2003.
    144.周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环境,2004,32(3-4):21-26.
    145.朱桂英等.影响我国粮食产量的主要因素分析[J].内蒙古科技与经济.2005,22:7-8
    146.庄恒扬,刘世平,沈新平等.期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700