用户名: 密码: 验证码:
金属纳米材料的合成制备及其在生物医药领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的几十年中,纳米材料在不同的领域中引起了持续而广泛的研究热潮,这是因为纳米材料在纳米尺度上展示出来的一些特殊物理性质和化学性质,以及他们在电子学、光学、催化和生物医药等领域表现出的巨大应用潜质。本论文阐述了不同结构的银纳米材料和金纳米材料的合成方法以及材料的形状、尺寸大小对材料本身的光谱学性质的影响;最后还总结了金、银纳米材料在催化、检测、生物医药等领域中的应用前景以及碳-60纳米晶体在癌症治疗方面潜在应用价值。
     本文第一部分主要介绍了合成银纳米立方体的三种不同方法。第一种方法是建立在硫氢化钠参与的多元醇合成方法的基础之上。为了在扩大银纳米立方体合成产量同时保证银纳米立方体的质量和实验的成功率,我们将氩气引入的反应体系当中;氩气可以带出反应过程中产生的二氧化氮,降低反应溶液中副产物硝酸的含量,从而降低了硝酸对溶液中生成的银纳米晶体的氧化蚀刻作用,进而提高了产物银纳米立方体的质量和反应的成功率。在之前银纳米立方体的合成方法中,硝酸银用作金属银的前躯体,而硝酸银在反应过程中会产生副产物硝酸,过量的硝酸在反应溶液中积累并氧化蚀刻生成的银纳米晶体。因此在第二种方法中,三氟醋酸银替代硝酸银用作金属银的前躯体,并成功的合成出30到70纳米大小银纳米立方体。在该反应过程中,银纳米立方体生长速率平稳适中,并且银纳米立方体的大小和它们的表面等离子共振光谱的峰位置呈线性关系,因此可以利用实时监测反应产物的悬浮液紫外可见光谱的方法来精确控制每批银纳米立方体大小。在第三种方法中,我们首次利用晶核生长法合成银纳米立方体。球形和立方体形的银纳米单晶晶体都可以用做晶核,并合成出高质量的银纳米立方体。实验的关键是用硝酸银作为金属银的前躯体,因为反应过程中所产生的副产物硝酸可以阻碍硝酸银的均相成核,从而消除了栾晶和多晶银纳米颗粒的生成。通过控制加入反应溶液中晶核数量和硝酸银溶液的体积以及反应的时间长短,我们可以获得30到200纳米大小的银纳米立方体。
     银纳米材料有着多种多样的形状。在第三章节中,我们讨论银纳米长方体的两种合成方法。研究表明银纳米长方体和银纳米立方体都是起源于单晶晶核。实验体系中加入适量浓度的溴化钠是促进银纳米长方体的各向异性生长的关键所在。在晶核生长法合成银纳米长方体的实验中,我们发现离子型的溴化物比共价键型的溴化物更能有效地促进银纳米长方体的生长。另外我们还发现在最终的产物中存在三种不同的银纳米晶体:银纳米立方体、截面是正方形的银纳米长方体和截面是矩形的银纳米长方体,这些可以归结于晶体在x, y, z三个方向生长速率不同。硝酸银作为金属银的前驱体,在实验过程中产生的副产物硝酸会阻碍银纳米长方体的进一步长长。因此,之前的研究和本章节中所阐述晶核生长法合成出来的银纳米长方体的长宽比最多不超过5。而在第二种方法中,三氟醋酸银替代硝酸银用作银的前驱体,最终合成出了长宽比超过50,长度超过2微米的银纳米长方体。
     第四章节讨论了纳米材料微细结构的加工。首先讨论的是用不同的银纳米材料作为模板并利用电化学反应将银纳米材料转换成空腔结构的金纳米材料;随后讨论了过氧化氢和氯化物、溴化物、碘化物在金、银纳米材料微细结构加工中的作用。
     最后,第五章讨论了碳60纳米晶体引起细胞自噬的机理以及碳60纳米晶体在促进癌细胞对抗癌药物敏感性的机理。碳60纳米晶引起的细胞自噬是自由基依赖和光照增强的。碳60纳米晶体诱导的癌细胞对抗癌药物敏感性是通过细胞自噬调节的并且是自噬相关基因Atg 5基因依赖的。
Nanomaterials have gained a continous and remarkable interest in the past several years, due to their unique physical and chemical properties substantially different from bulk materials, and their great potential in the application of electronics, photonics, catalysis, and biomedicine. In this thesis, we described the synthesis of silver nanostructures, and their spectral properties along with their aplicaiton in the areas of catalysis, sensing, and biomidince. We also reported the autophagy-mediated chemosensitization in cancer cells by fullerence C60 nanocrystals.
     In the first section, we introduced three new methods to synthesize silver nanocubes. In the first method, Argon was employed into a NaHS-mediated polyol synthesis, which allowed for the production of silver nanocubes on a scale of 0.1 g per batch. The use of argon protection was the key to the success of this scale-up synthesis, suggesting the importance of controlling oxidative etching during synthesis. The second approach described a new protocol to synthesize silver nanocubes of 30 to 70 nm in the edge length with the use of CF3COOAg as a precursor to the element of silver. The controllable growing pace of silver nanocubes over the course of synthesis and the linear relationship between the edge length of silver nanocubes and the postion of localized surface plasmon resonance peak (LSPR) provided a powerful method to accurately control the size of every bath of silver nanocubes by monitoring the UV/Vis spectra of the reaction at different times. The third method described a seed-mediated mothod to produce silver nanocubes with an edge length from 30 to 200 nm. Both the spherical and cubic silver single-crystal seeds could be used as the original seeds. The key to the success of this synthesis were the use of sinlge-crystal silver seeds to direct the growth and the use of AgNO3 as a precursor to elemental silver,as the presence of HNO3 could help block homogeneous nucleation from the added AgNO3, which might lead to the production of twinned seeds and polydispersed samples. The edge length of silver nanocubes could be controlled by varying the amnout of silver seeds used, the amount of AgNO3 added and stopping the reaction at different time.
     The synthesis of silver nanobars was discussed in the second part. Two new approaches were developed to synthesize silver nanobars with different aspect ratios. From the previous study, we knew that silver nanobars also envolved from the single-crsytal seeds as the silver nanocubes did, and sodium bromides was used to promote the anisotropic growth of silver nanobars. In the seed-mediated method, different bromides were tested, and the added ionic bromides could efficiently transform the seeds into silver nanbars than the added convalent bromides. Three kinds of Ag nanocrystals, Ag nanocubes, square Ag nanobars and oblate Ag nanobars, coexisted in the final products due to the different expanding rates of Ag nanocrystals in the three (100) orientations of x, y and z axis. However, previous work and the seed mediated approach only could produce the silver nanobars with a largest average aspect ratio less than 5,which because that the used silver precursor was AgNO3. The by-product of HNO3 inhibited the further growth of silver nanobars. The second method was developed on the basement of the synthesis of silver nanocubes with CF3COOAg as a precursor to the element of silver, and the as-synthesized silver nanobars were with an average aspect ratio over 50 and a length over 2μm. The spectal properties of silver nanostructures with different shapes, different sizes were also investigated.
     In the following paragraph, we discussed the synthesis of gold hollow nanostructures using the galvanic replacement reaction with different silver nanostructures as templates. H2O2 was investigated as an oxditave ething agent to produce silver nanocages with the super thin wall-thickness and the LSPR peak position in the infared region. Cholorides, bromides, and iodides were demonstrated that they could more or less etch silver nanostructures into different shapes.
     Finally, we described autophagy induced by fullerene C60 nanocrystals, and their great potential in cancer treatment. The authentic autophagy induced by fullerene C60 was reactive oxygen species (ROS)-dependent and photo-enhancedment. The chemosensitization effect of fullerene C60 was autphagy-mediated and required a functional Atg 5 gene.
引文
[1] Fahlman, B. D. Materials Chemistry, Vol. 1, Springer, Mount Pleasant, 2007, pp. 282.
    [2] Mark, T.; Vladimir, B. G.; Owain, P. H. V.; Pavel, A.; Angel, B.-M.; Mintcho S. T.; Brian F. G. J.; Richard M. L. Nature 2008, 454,981.
    [3] Alivisatos, P. Nat. Biotechnol. 2004, 22, 47.
    [4] West, J. L.; Halas, N. J. Curr. Opin. Biotechnol. 2000, 11, 215.
    [5] Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Technol. Cancer Res. Treat. 2004, 3, 33.
    [6] Parak, W. J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S. C.; Boudreau, R.; Le Gros, M. A.; Larabell, C.
    [7] Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K. L.; O’Neal, D. P.; Stoica, G.; Wang, L. V. Nano Lett. 2004, 4, 1689.
    [8] Alivisatos, A. P. Nanotechnology 2003, 14, R15.
    [9] Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.;
    [10] Drummund, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol.2003, 21, 1192.
    [11] Niemeyer, C. M. Angew. Chem., Int. Ed. 2001, 40, 4128.
    [12] Shipway, A. N.; Katz, E.; Willner, I. ChemPhysChem 2000, 1, 18–52.
    [13] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267–297.
    [14] Murphy, C. J.; San, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857–13870.
    [15] Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev.Mater. Sci. 2000, 30, 545–610.
    [16] Aiken, J. D.; Finke, R. G. J. Mol. Catal. A: Chem.1999, 145, 1–44.
    [17] Kreibig, U.; Vollmer, M. Springer, New York, 1995.
    [18] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257–264.
    [19] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084–1094.
    [20] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257–264.
    [21] Kreibig, U.; Genzel, L. Surf. Sci. 1987, 156, 678–700.
    [22] Wiley, B.; Sun, Y.; Xia, Y. Acc. Chem. Res. 2007, 40, 1067–1076.
    [23] Noguez, C. J. Phys. Chem. C 2007, 111, 3806–3819.
    [24] Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. J. Phys. Chem. B 2006, 110 , 15666-15675.
    [25] Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z.-Y.; Ginger, D.; Xia, Y. Nano Lett. 2007, 7, 1032-1036.
    [26] Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. Nano Lett. 2010, 10, 30-35.
    [27] Yu, D.; Yam, V. W.-W. J. Am. Chem. Soc. 2004, 126, 13200-13201.
    [28] Chen, H.; Wang, Y.; Dong, S. Inorg. Chem. 2007, 46, 10587-10593.
    [29] Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q. J. Am. Chem. Soc. 2008, 130, 6949-6951.
    [30] Zhang, Q.; Huang, C. Z.; Ling, J.; Li, Y. F. J. Phys. Chem. B 2008, 112, 16990-16994.
    [31] Kundu, S.; Maheshwari, V.; Niu, S.; Saraf, R. F. Nanotechnology 2008, 19, 065604.
    [32] Tao, A.; Sinsermsuksakul, P.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 4597 -4601.
    [33] Zhu, J.; Kan, C.; Zhu, X.; Wan, J.-G.; Han, M.; Zhao, Y.; Wang, B.; Wang, G. J. Mater. Res. 2007, 22, 1479-1485.
    [34] Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. Nanotechnology 2010, 21, 025607.
    [35] Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Angew. Chem. Int. Ed. 2005, 44, 2154 -2157.
    [36] Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 3665-3675.
    [37] Wiley, B. J.; Xiong, Y.; Li, Z.-Y.; Yin, Y.; Xia, Y. Nano Lett. 2006, 6, 765-768.
    [38] Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617–618.
    [39] Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065–4067.
    [40] Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316–14317.
    [41] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv.Mater. 2003, 15, 353–389.
    [42] Wiley, B.; Sun, Y.; Xia, Y. Langmuir, 2005, 21, 8078-8080.
    [43] Sun, Y.; Gates, B.; Mayers, B.; Xia, Y.; Nano Lett. 2002, 2, 165-168.
    [44] Caswell, K. K.; Bender, C. M.; Murphy, C. J.; Nano Lett. 2003, 3, 667-669.
    [45] Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y.; Nano Lett. 2002, 2, 427-430.
    [46] Chen, S. H.; Carrol, D. L. Nano Lett. 2002, 2, 1003–1007.
    [47] Sun, Y.; Xia, Y. Adv. Mater.2003, 15, 695–699.
    [48] Shao, Y.; Jin, Y.; Dong, S. Chem. Commun. 2004, 1004–1105.
    [49] Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2003, 3, 675-679.
    [50] Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60-103.
    [51] Wulff, G. Z. Kristallogr. 1901, 34, 449;
    [52] Marks, L. D. Rep. Prog. Phys. 1994, 57, 603;
    [53] Pimpinelli, A.; Villain, J.; Cambridge University Press, Cambridge, 1998.
    [54] Venables, J. A. Cambridge University Press, Cambridge, 2000, 9– 11.
    [55] Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Chem. Phys. Lett. 2006, 432, 491-496.
    [56] Rosi, N. L.; Mirkin, C. A.; Chem. Rev. 2005, 105, 1547-1562.
    [57] Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. Science 2001, 294, 1901.
    [58] Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.
    [59] Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648.
    [60] Alivisatos, P. Nat. Biotechnol. 2004, 22, 47.
    [61] Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Nat. Protoc. 2007, 2, 2182-2190.
    [62] Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Chem. Phys. Lett. 1998, 288, 243.
    [63] West, J. L.; Halas, N. J. Annu. ReV. Biomed. Eng. 2003, 5, 285.
    [64] Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.;West, J.; Drezek, R. Technol. Cancer Res. Treat. 2004, 3, 33.
    [65] Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K. L.; O’Neal, D. P.; Stoica, G.; Wang, L. V. Nano Lett. 2004, 4, 1689.
    [66] Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R. Cancer Res. 2003, 63, 1999.
    [67] Copland, J. A.; Eghtedari, M.; Popov, V. L.; Kotov, N.; Mamedova, N.; Motamedi, M.; Oraevsky, A. A. Mol. Imaging Biol. 2004, 6, 341.
    [68] Cang, H; Sun, T.; Li, Z.-Y.; Chen, J.; Wiley, B. J.; Xia, Y. Opt. Lett. 2005, 30.
    [69] Chen, J.; Saeki,F.; Wiley, B. J.; Cang, H.; Cobb, M.J.; Li, Z.-Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Nano Lett. 2005, 5, 473-477.
    [70] Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Rebekah A. Drezek, R. A.; West, J. L.; Nano Lett. 2007, 7, 1929-1934.
    [71] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078.
    [72] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.
    [73] Reynolds, R. A.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 2000, 122, 3705.
    [74] Jin, R. C.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am.Chem. Soc. 2003, 125, 1643.
    [75] Ekins, R. P. Clin. Chem. 1998, 44, 2015.
    [76] Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315.
    [77] Brannon-Peppas, L.; Blanchette, J.O. Adv. Drug Deliver. Rev. 2004, 56, 1649–1659.
    [78] Brigger, I.; Dubernet, C.; Couvreur, P. Adv. Drug Deliv. Rev. 2002, 54, 631–651.
    [79] Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L. Biomacromolecules 2004, 5, 524–529.
    [80] Xu, P.S.; Van Kirk, E.A.; Zhan, Y.H.; Murdoch, W.J.; Radosz, M.; Shen, Y.Q. Angew. Chem., Int. Ed. 2007, 46, 4999–5002.
    [81] Kisak, E.T.; Coldren, B.; Evans, C.A.; Boyer, C.; Zasadzinski, J.A. Curr. Med. Chem. 2004, 11, 199–219.
    [82] Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J.P.; Gennaro, R.; Prato, M.; Bianco, A. Angew. Chem., Int. Ed. 2005, 44, 6358–6362.
    [83] Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E. Tamarkin, L. Drug Deliv. 2004, 11, 169–183.
    [84] Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang L. V.; Xia, Y. Nature Mater. 8,935-938.
    [85] G.F. Paciotti, D.G.I. Kingston, L. Tamarkin, Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors, Drug Dev. Res. 67 (2006) 47–54.
    [86] R. Hong, G. Han, J.M. Fernandez, B.J. Kim, N.S. Forbes, V.M. Rotello, Glutathionemediateddelivery and release using monolayer protected nanoparticle carriers,J. Am. Chem. Soc. 128 (2006) 1078–1079.
    [87] Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.-Y.; Zhang, H.;Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7, 1318–1322.
    [88] Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389-458.
    [89] Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978-1981.
    [90] Talapin, D. V.; Murray, C. B. Science 2005, 310, 86-89.
    [91] Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
    [92] Alivisatos, A. P. Nat. Biotechnol. 2004, 22, 47-52.
    [93] He, J.; Ichinose, I.; Kunitake, T.; Nakao, A.; Shiraishi, Y.; Toshima, N. J. Am. Chem. Soc. 2003, 125, 11034-11040.
    [94] Wu, Y.; Li, Y.; Ong, B. S. J. Am. Chem. Soc. 2007, 129, 1862-1863.
    [95] Schrand, A. M.; Braydich-Stolle, L. K.; Schlager, J. J.; Dai, L.; Hussain, S. M. Nanotechnology 2008, 19, 235104.
    [96] Peng, H.-I.; Strohsahl, C. M.; Leach, K. E.; Krauss, T. D.; Miller, B. L. ACS Nano 2009, 3, 2265-2273.
    [97] Jin, R. Y.; Cao, C. A.; Mirkin, K. L.; Kelly, G. C.; Schatz, J.; Zheng, G. Science 2001, 294, 1901.
    [98] Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775.
    [99] Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. J. Phys. Chem. B 2006, 110, 15666.
    [100] Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Pf?nder, N.; Su, D. J. Am. Chem. Soc. 2006, 128, 15756.
    [101] Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229.
    [102] Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Small 2003, 5, 341.
    [103] Fang, H.; Wu, Y.; Zhao, J.; Zhu, J. Nanotechnology 2006, 17, 3768.
    [104] McFarland, A. D.; Duyne, R. P. V. Nano Lett. 2003, 3, 1057.
    [105] Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 485.
    [106] Sherry, L. J.; Chang, S.; Schatz, G. C.; Duyne, P. V. Nano Lett. 2005, 5, 2034.
    [107] Krenn, J. R. Nat. Mater. 2003, 2, 210.
    [108] Cao, Y. W. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536-1540.
    [109] Moore, B. D.; Stevenson, L.; Watt, A.; Flitsch, S.; Turner, N. J.; Cassidy, C.; Graham, D. Nat. Biotechnol. 2004, 22, 1133-1138.
    [110] Wiley, B.; Sun, Y.; Xia, Y. Acc. Chem. Res. 2007, 40, 1067-1076.
    [111] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442-453.
    [112] Li, W.; Camargo, P. H. C.; Lu, X.; Xia, Y. Nano Lett. 2009, 9, 485.
    [113] Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M. J. Phys. Chem. C 2007,111, 9095.
    [114] Tran, M. L.; Centeno, S. P.; Hutchison, J. A.; Engelkamp, H.; Liang, D.; Tendeloo, G. V.; Sels, B. F.; Hofkens, J.; Uji-I, H. J. Am. Chem. Soc. 2008, 130, 17240.
    [115] Lu, Y.; Liu, G. L.; Lee, L. P. Nano Lett. 2005, 5, 5.
    [116] Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A. J. Phys. Chem. C 2009, 113, 5493.
    [117] Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. Nano Lett. 2010, 10, 30.
    [118] Yang, X.; Skrabalak, S. E.; Li, Z.-Y.; Xia, Y.; Wang, L. V. Nano Lett. 2007, 7, 3798.
    [119] Tong, L.; Cobley, C. M.; Chen, J.; Xia, Y.; Cheng, J.-X. Angew Chem. Int. Ed. 2010, in press.
    [120] Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Small 2010, in press.
    [121] Yavuz, M.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y. Nat. Mater. 2009, 8, 935.
    [122] Sun, Y.; Xia, Y. Science 2002, 298, 2176-2179.
    [123] Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y.; Angew. Chem. Int. Ed. 2005, 44, 2154.
    [124] Yu, D.; Yam, V. W. J. Am. Chem. Soc. 2004, 126, 13200.
    [125] Fan, F.; Liu, D.; Wu, Y.; Duan, S.; Xie, Z.; Jiang, Z.; Tian, Z. J. Am. Chem. Soc. 2008, 130, 6949.
    [126] Zhang, Q.; Cobley, C. M.; Au, L.; Mckiernan, M.; Schwartz, A.; Wen, L. P.; Chen, J.; Xia, Y. Appl. Mater. Interfaces. 2009, 1, 2044.
    [127] Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153-1175.
    [128] Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y.; Xia, Y. J. Am. Chem. Soc. DOI: ja-2010-03655f.
    [129] Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955-960.
    [130] Zhang, Q.; Li, W.; Wen, L.-P.; Chen, J.; Xia, Y. Chem. Eur. J. 2010, 16, 10234-10239.
    [131] Zhou, F.; Li, Z.-Y.; Liu, Y.; Xia, Y. J. Phys. Chem. C 2008, 112, 20233-20240.
    [132] Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A. J. Phys. Chem C 2009, 113, 5493-5501.
    [133] Joo, S. W.; Han, S. W.; Kim, K.; J. Colloid Interface Sci. 2001, 240, 391-399.
    [134] Cho, S. H.; Han, H. S.; Jang, D. J.; Kim, K.; Kim, M. S. J. Phys. Chem. 1995, 99, 10594-10599.
    [135] Chen, J; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y. J. Am. Chem. Soc. 2006, 128, 14776-14777.
    [136] Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Nano Lett. 2005, 5, 2058-2062.
    [137] Sun, Y.; Xia, Y. Nano Lett. 2003, 3, 1569-1572.
    [138] Lu, X.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia,Y. Nano Lett. 2007, 7, 1764-1769.
    [139] Som, T.; Karmakar, B. Nano Res. 2009, 2, 607-616.
    [140] Tratnyek, P. G.; Macalady, D. L. Handbook of Property Estimation Methods forChemicals: Environmental and Health Sciences 2000.
    [141] Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Acc. Chem. Res. 2008, 41, 1587-1595.
    [142] Chen, J.; Wiley, B.; Li, Z.-Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Adv. Mater. 2005, 17, 2255-2261.
    [143] Hu, M.; Petrova, H.; Sekkinen, A. R.; Chen, J.; McLellan, J. M.; Li, Z.-Y.; Marquez, M.; Li, X.; Xia, Y. and Hartland, G. V. J. J. Phys. Chem. B 2006, 110, 19923-19928.
    [144] Fang, J.; Sawa, T.; Akaike, T.; Maeda, H. Cancer Res. 2002, 62, 3138-3143.
    [145] Delaunay, A.; Pflieger, D.; Barrault, M.; Vinh, J.; Toledano, M. B. Cell 2002, 111, 471-481.
    [146] Finkel, T.; Holbrook, N. J. Nature 2000, 408, 239-247.
    [147] Deng, X.; Gao, F.; May Jr., W. S. Blood 2003, 102, 3179-3185.
    [148] Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell Rev. 2007, 26, 1-14.
    [149] Welk, A.; Meller, C.; Schubert, R.; Schwahn, C.; Kramer, A.; Below, H. BMC Microbiol. 2009, 9, 1-8.
    [150] Lee, M.; Heikes, B. G.; O'Sullivan, D. W. Atmos. Environ. 2000, 34, 3475-3494.
    [151] Hurdis, E.; Romeyn, H. Jr. Anal. Chem. 1954, 26, 320-325.
    [152] Gou, S.; Wang, E.; Anal. Chim. Acta 2007, 598, 181-192.
    [153] Hanaoka, S.; Lin, J.; Yamada, M. Anal. Chim. Acta 2001, 426, 57-64.
    [154] Klionsky, D. J.; Na.t Rev. Mol. Cell Biol. 2007, 8, 931-937.
    [155] Mizushima, N.; Genes Dev. 2007, 21, 2861-2873.
    [156] Cuervo, A. M.; Bergamini, E.; Brunk, U.T.; Droge, W.; Ffrench, M.; Terman, A. Autophagy 2005, 1, 131-140.
    [157] Rubinsztein, D. C.; DiFiglia, M.; Heintz, N.; Nixon, R. A.; Qin, Z. H.; Ravikumar, B.; Stefanis, L.; Tolkovsky, A. Autophagy 2005, 1, 11-22.
    [158] Shintani, T.; Klionsky, D. J. Science 2004, 306, 990-995.
    [159] Mizushima, N.; Levine, B.; Cuervo, A. M.; Klionsky, D. J. Nature 2008, 451, 1069-1075.
    [160] Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. Nat. Rev. Cancer, 2005, 5, 726.
    [161] Levine B. autophagy and cancer. Nature 2007, 446:745-747.
    [162] Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. Nat. Rev. Cancer 2005, 5, 726-734.
    [163] Jin, S. K.; White, E. Autophagy 2008, 4, 563-566.
    [164] Ricci, M.S.; Zong, W. X. Oncologist 2006, 11, 342-357.
    [165] Fesik, S. W. Nat. Rev. Cancer 2005, 5, 876-885.
    [166] Levine, B.; Yuan, J. J Clin Invest 2005, 115, 2679-2688.
    [167] Ding, W. X.; Ni, H. M.; Gao, W.; Hou, Y. F.; Melan, M. A.; Chen, X.; Stolz, D. B.; Shao, Z. M.; Yin, X. M. J. Biol. Chem. 2007, 282, 4702-4710.
    [168] Wang, Y.; Singh, R.; Massey, A. C.; Kane, S. S.; Kaushik, S.; Grant, T.; Xiang ,Y.; Cuervo, A. M.; Czaja, M. J. J. Biol. Chem. 2008, 283, 4766-4777.
    [169] Hoyer-Hansen, M.; Jaattela, M. Autophagy 2008, 4, 574-580.
    [170] Levine, B. Autophagy 2006, 2, 65-66.
    [171] Carew, J. S.; Nawrocki, S. T.; Cleveland, J. L. Autophagy 2007, 3, 464-467.
    [172] Shingu, T.; Fujiwara, K.; Bogler, O.; Akiyama, Y.; Moritake, K.; Shinojima, N. Autophagy 2009; 5, 537-539.
    [173] Carew, J. S.; Nawrocki, S. T.; Kahue, C. N.; Zhang, H.; Yang, C.; Chung, L.; Houghton, J. A.; Huang, P.; Giles, F. J.; Cleveland, J. L. Blood 2007, 110, 313-322.
    [174] Amaravadi, R. K.; Thompson, C. B. Clin. Cancer Res. 2007, 13, 7271-7279.
    [175] Lefranc, F.; Facchini, V.; Kiss, R. Oncologist 2007, 12, 1395-1403.
    [176] Takeuchi, H.; Kondo, Y.; Fujiwara, K.; Kanzawa ,T.; Aoki, H.; Mills, G. B.; Kondo, S. Cancer Res. 2005, 65, 3336-3346.
    [177] Lambert, L. A.; Qiao, N.; Hunt, K. K.; Lambert, D. H.; Mills, G. B.; Meijer, L.; Keyomarsi, K. Cancer Res. 2008, 68, 7966-7974.
    [178] Ertmer, A.; Huber, V.; Gilch, S.; Yoshimori, T.; Erfle, V.; Duyster, J. Leukemia 2007, 21, 936-942.
    [179] Zabirnyk, O.; Yezhelyev, M.; Seleverstov, O. Autophagy 2007, 3, 278-281.
    [180] Chen, Y.; Yang, L.; Feng, C.; Wen, L. P. Biochem. Biophys. Res. Commun. 2005, 337, 52-60.
    [181] Stern, S. T.; Zolnik, B. S.; McLeland, C. B.; Clogston, J.; Zheng, J.; McNeil, S. E. Toxicol. Sci. 2008, 106, 140-152.
    [182] Seleverstov, O.; Zabirnyk, O.; Zscharnack, M.; Bulavina, L.; Nowicki, M.; Heinrich, J. M.;Yezhelyev, M.; Emmrich, F.; O'Regan, R.; Bader, A. Nano Lett. 2006, 6, 2826-2832.
    [183] Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4, 1881-1887.
    [184] Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.; Nikolic, Z.; Trajkovic, V. Toxicol. Sci. 2006, 91, 173-183.
    [185] Yamawaki, H.; Iwai, N. Am. J. Physiol. Cell Physiol. 2006, 290, C1495-C1502.
    [186] Harhaji, L.; Isakovic, A.; Raicevic, N.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Markovic, I.; Trajkovic, V. Eur J Pharmacol. 2007, 568, 89-98.
    [187] Yoshimori, T.; Yamagata, F.; Yamamoto, A.; Mizushima, N.; Kabeya, Y.; Nara, A. Mol Biol. Cell 2000, 11, 747-763.
    [188] Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.; Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D.; Colvin, V. L.; Hughes, J. B. Environ. Sci. Technol. 2005, 39, 4307-4316.
    [189] Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. Embo. J. 2000, 19, 5720-5728.
    [190] Ciechomska, I. A.; Tolkovsky, A. M. Autophagy 2007, 3, 586-590.
    [191] Eskelinen, E. L.; Autophagy 2005, 1, 1-10.
    [192] Sera, N.; Tokiwa, H.; Miyata, N. Carcinogenesis 1996, 17, 2163-2169.
    [193] Arbogast, J.W.; Darmanyan, A. P.; Foote, C. S.; Diederich, F. N.; Whetten, R. L.; Rubin, Y.; Alvarez, M. M.; Anz, S. J. J. Phys. Chem. 1991, 95, 11-12.
    [194] Markovic, Z.; Todorovic-Markovic, B.; Kleut, D.; Nikolic, N.; Vranjes-Djuric, S.; Misirkic, M.; Vucicevic, L.; Janjetovic, K.; Isakovic, A.; Harhaji, L.; Babic-Stojic, B.; Dramicanin, M.; Trajkovic, V. Biomaterials 2007, 28, 5437-5448.
    [195] Tsukamoto, S.; Kuma, A.; Murakami, M.; Kishi, C.; Yamamoto, A.; Mizushima, N. Science 2008, 321, 117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700