用户名: 密码: 验证码:
四氧化三铁和链状钴纳米材料的磁场诱导生长及其磁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在高密度磁存储、传感器、药物靶向输运、磁流体等领域中有着巨大应用前景,磁性纳米材料的合成研究受到了越来越广泛的关注。本文采用在外加诱导磁场条件下合成了Fe3O4纳米粒子和一维链状Co纳米链。主要研究了在不同磁场条件下所合成的样品的磁性能及其变化,旨在探索磁性纳米材料的结构与磁性能同诱导磁场之间的关系。主要内容如下:
     1,在磁场诱导条件下,分别用水热法和共沉淀法合成了Fe3O4纳米粒子。在水热法合成时,合成的Fe3O4纳米粒子具有面心立方晶格,有较好的结晶性。无诱导磁场时所生成的Fe3O4纳米粒子是八面体结构,而随着磁场的增加,合成的Fe3O4粒子有排列组装成链的趋势。由于材料的性能与其结构有重要关系,因此,在磁场诱导条件下合成的样品的性能,尤其是其磁性能有较大的改变;在80℃共沉淀法中,通过调节诱导磁场的大小,合成了不同粒径分布的球状Fe3O4纳米粒子,本文认为,这主要是由于磁场对晶粒的生长起到促进作用,使其生长趋于完整,XRD结果证明了这一点。
     2,研究了所合成的Fe3O4样品的磁性能及其穆斯堡尔谱。通过磁测量研究发现,与不加诱导磁场所合成的样品相比,外加诱导磁场下合成的样品具有较高的饱和磁化强度、矫顽力等磁性能。本文认为这主要是由于诱导磁场与Fe3O4纳米粒子的晶格相互作用,改变了其磁晶各向异性。测量并拟合了样品的室温穆斯堡尔谱,并对拟合所得的超精细参数,主要是两个间隙位对应谱线的同质异能移位和超精细磁场的不同及其变化趋势作了相应的解释。
     3,在诱导磁场条件下合成了一维链状Co纳米链,表征了其形貌和磁性能,讨论了磁场诱导组装机理。
There are more and more concentrations on magnetic nano-materials as their potential application in many fields such as high density store, sensors, drug delivery with target directon, magnetic fluid liquid and so on. In this thesis, two important magnetic nano-materials, the Fe3O4 nano-particles and chain-like Co structure connected by nano-spheres, are synthesized under different induced magnetic field, and we try to explore relationship between the nagnetic properties and the induced magnetic field by investigating the magnetic properties of the samples and the change of that. The main contents are as follows:
     1, Fe3O4 nano-particles are sythnesized under the different induced magnetic fields via hydrothermal and co-precipitation methods, respectively. The Fe3O4 nano-particles synthesized by hydrothermal method have face-centered cubic crystal lattice, octahedral Fe3O4 nanopaticles were obtained without induced magnetic field, with the increase of induced magnetic field, the synthesized nano-particles were tend to assemble to a chain-like structure. By co-precipitation method at 80℃, small Fe3O4 nano-particles were synthesized, by increasing the magnitude of induced field, samples with small distribution of diameters were obtained, it’s due to the induced magnetic field which can improve the growth of the crystals and this is confirmed by the XRD result.
     2, The magnetic properties and M?ssbauer spectra at room temperature of Fe3O4 samples are investigated. The samples synthesized under the induced magnetic field obtain higher saturation magnetization、coercivity than that of the samples synthesized without induced magnetic field. It’s believed in this thesis that the interaction between induced magnetic field and crystal lattice of Fe3O4 nanoparticles which change the anisotropy of magnetic crystal. M?ssbauer spectra at room temperature of the samples are measured and fitted, the parameters of the spectras, especially the isomer shift and hyperfine magnetic field, are discussed mainly.
     3, One-dimensional chain-like Co stuctures connected with nano-spheres were synthesized under induced magnetic field. The morphology and magnetic properties are characterized and the mechanism of the assembly is discussed too.
引文
[1]凯索尔(Kelsall, R. W.)等编著.纳米科学与技术(英文,影印版),科学出版社,北京, 2007.1.
    [2]细野秀夫等编著.纳米材料:从研究到应用(英文),科学出版社, 2007.
    [3] C Robert,O’Handley. Modern Magnetic Materials Principle and Applications,John Wiley&Sons, 2000.
    [4]许并社等编著.纳米材料及应用技术,化学工业出版社,北京, 2003.12.
    [5]都有为,徐明祥,吴坚等.镍微超细颗粒的磁性,物理学报, 1992, 41(1):149-153.
    [6]黄德欢,纳米技术与应用,中国纺织大学出版社,2001.
    [7] Sun S H and Murray C B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J.Appl.Physics,1999.85(8):4325-4330.
    [8] Cheng F Y, Su C H, Yeh C S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications, Biomaterials, 2005.26(730):729-738.
    [9] Nunez N O, Pozas R, Morales M P, et al. Acicular metallic particles obtained from Al-doped goethite precursors, Chem.Mater., 2003.15(4):951-957.
    [10]窦永华.单分散Fe3O4纳米粒子的制备及其相转移.上海交通大学硕士学位论文,上海, 2007.1.
    [11] Rockenberger J, Scher E C and Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides, J.Am.Chem.Soc., 1999,49:121-127.
    [12] Liu C, Wu X W, Klemmer T. et al. Polyol process synthesis of monodispersed FePt nanoparticles, J.Phys.Chem.B. 2004.108(20):6121-6123.
    [13] Sun L X, Chen Q. W, Tang Y and Xiong Y. Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields, Chem. Commun. 2007: 2844-2846.
    [14] Chen Q W, Zeng C and Hou B Y. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires, Adv. Mater. 2004, 16: 137-140.
    [15] Niu H L, Chen Q W, Ning M, Jia Y S and Wang X J. Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields, J. Phys.Chem.B, 2004, 108: 3996-3999.
    [16] Jing Ye, Qian-Wang Chen, Hai-Ping Qi and Nan Tao. Formation of Nickel Dendritic Crystals with Peculiar Orientations by Magnetic-Induced Aggregation and Limited Diffusion, Crystal Growth & Design, 2008. Vol. 8, No. 7: 2464-2468.
    [17] Liu C, Zhou BC, Adam J.R, et al. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites, J.J.Phys.Chem.B. 2000,104:1141-1145.
    [18] Caruso F, Spasova M, Susha A, Giersig M and Caruso R A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, J. Chem. Mater. 2001, 13:109-116.
    [19] Hyeon T. Chemical synthesis of magnetic nanoparticles, J.Chem.Commun. 2003,8:927-934.
    [20]宫建国,张清杰.多元醇法制备纳米Fe3O4及其静磁性能的研究,功能材料,2006, 12:2001-2002.
    [21] Sun S and Zeng H. Size-Controlled Synthesis of Magnetite Nanoparticles, J.Am. Chem.Soc. 2002, 124:8204-8205.
    [22] Deng H, Li X X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres, Angew.Chem.Int.Ed.2005, 44: 2782-2785.
    [23] Lian S, Kang Z, Wang E, et al. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods, J.Solid State Commun.2003, 127: 605-608.
    [24] Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J and Zhou C. Single Crystalline Magnetite Nanotubes, J.J.Am.Chem.Soc.2005,127:6-7.
    [25] Liu F, Cao P, Zhang H, Tian J, Xiao C, Shen C, Li J and Gao H. Novel Nanopyramid Arrays of Magnetite, J.Adv.Mater.2005,17:1893-1897.
    [26] Yu W, Zhang T, Zhang J, Qiao X, Yang L and Liu Y. The synthesis of octahedral nanoparticles of magnetite, J.Mater.Lett.2006, 60:2998-3001.
    [27] Y W Ma, K Watanabe, S Awaji and M Motokawa. Surface morphology and growth mechanism of YBa2Cu3O7 films by chemical vapor deposition in a magnetic field, Journal of Crystal Growth, 2001, 233:483-489.
    [28] S Awaji, Y Ma, WP Chen, H Maeda, K Watanabe and M Motokawa. Magnetic field effects on synthesis process of high-Tc superconductors, Current Applied Physics. 2003, 3: 391-395.
    [29] Y W Ma, K Watanabe, S Awaji and M Motokawa. Growth and superconducting properties of YBa2Cu3O7 films on silver substrates by MOCVD in magnetic fields, Physica C, 2001, 357: 337-340.
    [30]李同锴,王振彪,梅世刚,崔建坡,乔治,张彦立.钴铁氧体微粉的化学共沉淀法合成和磁性能,武汉理工大学学报,第30卷,第3期2008年3月.
    [31] Zhang L, He R and Gu H C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles, Mater. Res. Bull. 2006, 41:260-267.
    [32] Buske N et al. Magnetic fluids - their preparation, stabilization and applications in colloid science, Colloids and Surfaces, 1984, 12:195-202.
    [33]王英玲.四氧化三钴纳米晶的控制合成与自组装,山东大学硕士学位论文.山东, 2006,6.
    [34] R.L.Mossbuaer, Z.Physik , 1958,151:124-134.
    [35]马如璋,徐英庭主编,穆斯堡尔谱学,科学出版社,1998, p.3-p.5, p.169,p.783.
    [36] G K. Whrteim. J.APPI.Phys. 1961, 32:1105-1110.
    [37]李士,铁钥匙.穆斯堡尔谱学,湖南教育出版社,1994,p.178,p.35,p.37,p.112.
    [38] RV Pound and GA Rebka. Apparent Weight of Photons, Phys.Rev.Lett. 1960, 4:337-441.
    [39] H J Hay,J P Sehieffr,T E Crmashaw and P A Egelstaff. Phys. Rev. Lett.1960, 4:165-171.
    [40]夏元复,刘荣川.穆斯堡尔效应谱学常用数据手册,南京:江苏科学技术出版社.
    [41]张培新,闫加强.赤泥黑色玻璃结构的研究,分析测试学报,2001,19(4):1-4.
    [42]赵令湖,李志刚.西藏罗布莎铬铁矿穆斯堡尔谱特征及其地质意义,地质科技情报,1999,18(4):51-54.
    [43] Palaniappan Arumugam, Debabrata Patra, Bappaditya Samanta, Sarit S Agasti. Chandramouleeswaran Subramani and Vincent M. Rotello. Self-Assembly and Cross-linking of FePt Nanoparticles at Planar and Colloidal Liquid?Liquid Interfaces, J. Am. Chem. Soc. 2008, 130 (31):10046–10047.
    [44] Martina K. Baumann, Marcus Textor and Erik Reimhult.Understanding Self-Assembled Amphiphilic Peptide Supramolecular Structures from Primary Structure Helix Propensity, Langmuir, 2008, 24 (15):7645–7647.
    [45] Qixiang Wang and Fei Wei. Nanoscale Process Engineering, China Particuology, 2003,5(1): 212-218.
    [46] Brian A Korgel and Donald Fitzmauric. Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays, Adv.Mater.1998, 10:661-665.
    [47] Gu Li. Fabrication of 2D and 3D dendritic nanoarchitectures of CdS, Trans. Nonferrous Met. Soc. China. 2008, 18:904-907.
    [48] Jaemin Kim, Chuanbing Rong, Youngmin Lee, J. Ping Liu and Shouheng Sun. From core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles, Chem. Mater., 2008, 20 (23): 7242–7245.
    [49] Chao Wang, Hideo Daimon, Youngmin Lee, Jaemin Kim and Shouheng Sun. Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction, J. Am. Chem. Soc., 2007, 129 (22):6974–6975.
    [50] Syed S. Amin, Shu-you Li, John R. Roth, and Terry T. Xu. Single Crystalline Alkaline-Earth Metal Hexaboride One-Dimensional (1D) Nanostructures: Synthesis and Characterization, J. Chemistry of Materials, 2009, 21 (4):763-770.
    [51] Weichang Zhou, Ruibin Liu, Qiang Wan, Qinglin Zhang, A. L. Pan, Lin Guo, and Bingsuo Zou. J. Journal of Physical Chemistry C, 2009, 113 (5): 1719-1726.
    [52] Matthias Treier, Manh-Thuong Nguyen, Neville V. Richardson, Carlo Pignedoli, Daniele Passerone, and Roman Fasel. J. Nano Letters, 2009, 9 (1): 126-131.
    [53] (a)铁晨阳,包建春,徐正.制备条件对金属纳米线阵列磁性的影响,材料研究学报, 2002,16(5):463-468. (b)姚素薇,迟广俊,崔兰等.模板组装Fe纳米线阵列及其微结构,物理化学学报, 2002,18(10):930-933. (c)于冬亮,杨绍广,朱浩等.钴纳米线阵列的制备和磁性研究,南京化工大学学报, 2000,22(6):69-71.
    [54] Mingzai Wu, Ying Xiong, Yaoshun Jia, Helin Niu, Haipin Qi, Jing Ye and Qianwang Chen. J. Chemical Physics Letters, 2005, 401: 374-379.
    [55] A Yu, M Mizuno, Y Sasaki and H Kondo. J. Applied Physics Letters 2002, 80: 3768-3771.
    [56] M. Platt, G. Muthukrishnan, W.O. Hancock and M.E. Williams. Millimeter scale alignment of magnetic nanoparticle functionalized microtubules in magnetic fields, J. Journal of the American Chemical Society, 2005, 127: 15686 -15687.
    [57] Y D Li, L Q Li, H W Liao and H R Wang. Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction, J. Journal of Materials Chemistry, 1999, 9: 2675-2677.
    [58] C M Liu, L Guo, R M Wang, Y Deng, H B Xu and S H Yang. Magnetic nanochains of metal formed by assembly of small nanoparticles, J. Chemical Communications, 2004, 23: 2726-2727.
    [59] Q. Xie, Y. T. Qian, S. Y. Zhang, S. Q. Fu and W. C. Yu. J. European Journal of Inorganic Chemistry, 2006, 12: 2454-2459.
    [60] Qianwang Chen, Shan Che. Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field, J. Journal of Magnetism and Magnetic Materials, 2004, 280: 281-286.
    [61] P. Fulmer, M.M. Raja, A. Manthiram. J. Chemistry of Materials, 2001, 13: 2160-2168.
    [62] H.T. Zhang, G. Wu, X.H. Chen, X.G. Qiu. Synthesis and magnetic properties of nickel nanocrystals, J. Materials Research Bulletin, 2006, 41: 495-501.
    [63] Luping Zhu, Hongmei Xiao and Shaoyun Fu. J. European Journal of Inorganic Chemistry, 2007: 3947-3951.
    [64] L L P Diandra, D R Reuben. Magnetic Properties of Nanostructured Materials, J.Chemistry of Materials, 1996, 8: 1770-1783.
    [65] Toby B H. EXPGUI, a graphical user interface for GSAS, J. Journal of Applied Crystallography, 2001, 34:210-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700