用户名: 密码: 验证码:
不确定条件下桥梁结构损伤识别及状态评估的模糊计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代经济的高速发展,在役桥梁所承受的交通荷载日益增加,外部恶劣环境导致材料不断老化,桥梁结构容易出现累积损伤,进而导致承载能力不足。因此,对桥梁结构进行损伤识别及状态评估,及时掌握桥梁的健康状态,对保障结构的安全运营,提高桥梁服役寿命,减少垮塌事故的发生,具有重要的社会及经济价值。
     然而,在实际工程结构损伤识别及状态评估中,不可避免的会受到不确定性因素的影响,如外界环境、测量噪声、人为主观因素等。这些不确定性因素的存在阻碍了现有损伤识别及状态评估技术的实际应用进程,降低了识别及评估结果的可靠性。因此,如何在计算过程中,考虑并剔除不确定性因素的影响,对促进桥梁结构损伤识别及状态评估技术的工程实用化,具有重要的现实意义。
     本文结合国家高技术研究发展计划(863计划)“季节冰冻区大范围道路灾害参数监测与辨识预警系统研究”项目,针对参数误差及信息缺失、温度、基准模型信息缺失以及人为主观因素等不确定性状况,基于模糊贴近度、模糊神经网络、模糊推理、模糊聚类等模糊计算方法,提出了具备较强鲁棒性的损伤识别及状态评估技术。本文开展的具体研究工作如下:
     1.针对噪声及测试自由度不完整等引起的参数误差及信息不完备状况,提出了桥梁结构损伤识别的模糊贴近度方法。该方法以改进的振型比值为识别参数,分别选取K型抛物线及钟形函数作为输入、输出参数隶属度函数,通过建立结构损伤状态及损伤特征向量之间的对应关系,构建损伤识别知识库。通过计算测试样本与知识库中规则之间的模糊贴近度,基于择近原则,实现结构损伤定位及状态辨识。在原始数据中添加高斯分布随机数来模拟噪声,以节点振型数据的缺失模拟信息不完备状况,多片简支梁桥的数值模拟分析验证了该方法在参数误差及信息缺失状况下的损伤识别效果。以跨径1.5米槽梁作为室内试验模型,验证了模糊贴近度方法的实际应用效果。
     2.针对温度改变引起的模态参数非正常变化,提出了一种能够剔除温度效应的桥梁结构损伤识别模糊神经网络方法。该方法通过结构弹性模量的改变对温度效应进行模拟,以归一化温度及均匀荷载面曲率作为模糊神经网络的输入参数,通过自适应训练,自动生成if then规则库。对简支梁桥的数值模拟分析验证了该方法的有效性,结果表明,均匀荷载面参数具备良好的损伤辨识能力,模糊神经网络可以实现测试样本的自适应损伤辨识,能够完成桥梁结构损伤识别中温度效应的有效剔除。
     为了更好地说明模糊神经网络方法的有效性,通过构造向量相似度计算公式,对BP神经网络方法以及ANFIS方法的识别精度进行了对比分析。结果表明,ANFIS方法测试样本的期望输出与实际输出相似度更高,识别结果更准确。
     3.考虑到在役桥梁基准模型数据不可得或仿真误差较大容易导致损伤识别方法失效,基于模态曲率、切比雪夫多项式及模糊推理理论,提出了一种不依赖基准模型信息的桥梁结构损伤识别方法。
     该方法在损伤结构节点振型数据的基础上,通过二次中心差分得到相应的模态曲率值MSC d;在此基础上,选取特征节点的MSC d值,通过切比雪夫多项式拟合得到结构未损情况下的模态曲率值MSC u;通过MSC d与MSC u,计算得到结构损伤前后的模态曲率差值MCD,从而实现结构的损伤位置识别。以归一化的MCD作为模糊推理系统的输入参数,实现结构的损伤程度识别。对简支梁桥的数值模拟分析验证了该方法的有效性,结果表明,基于切比雪夫多项式拟合得到的模态曲率差,能够实现准确的损伤定位;以模态曲率差值为损伤识别参数构造的模糊推理系统,可以实现结构的损伤状态辨识。选取槽梁为室内试验模型,验证了本文所提出方法的实际应用效果。
     4.针对现有桥梁状态评估方法容易受到人为主观因素的影响,本文以桥梁现场实测数据为基础,提出了一种基于模糊聚类的无监督式桥梁上部结构状态评估方法。该方法首先通过现场实测参数构建桥梁耐久性及安全性评价指标体系,分别考虑和不考虑指标权重影响,选取一定数量的实桥健康监测数据为聚类样本,通过计算得到样本的模糊相似矩阵及模糊等价矩阵,选取不同的阈值形成动态聚类图,基于F统计量分析确定最佳分类。该聚类结果视为桥梁安全性及耐久性状态评估的样本库,将同一类桥梁相应指标的平均值视为该类别的近似中心,通过计算未知桥梁状态数据与该中心之间的模糊贴近度,依据择近原则,对待评估桥梁的状态进行分析评价。分别选取长春赛德大桥及吉林省南坪(茂山)国境桥作为桥梁安全性及耐久性评估的实体工程,验证本文提出模糊聚类方法的有效性。
With the rapid development of modern economy, the traffic load that bridge in servicehas to bear increases gradually. Meanwhile, external harsh environment leads to materials’continuously aging problem, accompany with the easy occurrence of cumulative damage forbridge structure, so as to result in the insufficient carrying capacity. Therefore, it is of greatsocial and economic value to guarantee the safety operation of the structure, promote thebridge service life and reduce the occurrence rate of collapse accidents when taking thedamage identification and condition assessment of bridge structure into account, and timelygrasping the bridge damage location and degree as well as evaluating the bridge safety anddurability conditions.
     However, in the process of actual structural damage identification and conditionassessment, it is inevitably affected by some uncertainties, such as the external environment,the measure noise, subjective factors and so on. The existence of these uncertainties hindersthe practical application process of the existing damage identification and conditionassessment technologies so as to reduce the reliability of the identification and assessmentresults. Thus, how to consider and net out the effect of uncertainties in the calculationprocess has an important practical significance for promoting the engineering application ofthe damage identification and condition assessment technology.
     Aiming at the uncertainties, such as parameter error, information missing, temperature,information missing of the reference model, as well as subjective factors and so on, thispaper puts forward the damage identification and state assessment techniques with strongrobustness, based on fuzzy nearness, fuzzy neural network, fuzzy logic, fuzzy clustering andsome other fuzzy calculation methods. The specific research work is shown as follows:
     1. Aiming at the condition of parameter errors and information missing caused bynoise and incomplete test degree of freedom, this paper proposes fuzzy nearness-based method in damage identification of bridge structure by taking simply supported beam bridgeas the research object. This approach takes the improved vibrator ratio as damageidentification parameters with K-type parabolic and Bell-shaped function as membershipfunction of input and output parameters, respectively, so as to builds the damageidentification knowledge base by establishing a correspondence between structural damagestate and damage eigenvectors. The structural damage localization and damage stateidentification are realized by calculating the regular fuzzy approach degree between testsamples and knowledge base, according to approximate principle. By adding Gaussiandistribution random number into raw data to simulate noise and with missing node modedata simulating incomplete information condition, numerical simulation analysis ofmulti-girder simply supported beam bridge proves good effect in the damage identificationof single-location and multi-location under the condition of parameter errors andinformation missing. Slot beam with span1.5m is selected as the indoor test model toproves the practical application effect of FNBDI method.
     2. Aiming at the abnormal changes of modal parameters caused by temperature change,this paper proposes a fuzzy neural network approach that can eliminate the temperatureeffects in the damage identification of bridge structure. This method simulates thetemperature effect with the changes of structural elastic modulus and based on the modalfrequencies and vibration data of the structure, the corresponding structure uniform loadsurface and its curvature value are calculated. The uniform load curvature differences beforeand after the structural damage are taken as the damage identification parameters. Besides,the if thenrule base is automatically generated through adaptive training. This paperregards the normalized temperature and the uniform load surface curvature as the inputparameters of fuzzy neural network, and the numerical simulation analysis of simplysupported beam bridge verifies the effectiveness of the method.
     In order to better illustrate the effectiveness of the fuzzy neural network method, BPneural network is selected as the damage identification algorithm with frequency changesquare ratio and frequency change value regarded as the identification parameters of thedamage location and degree, respectively. By constructing vector similarity formula, this paper comparatively analyzes the identification accuracy between BP neural network andANFIS method. The result indicates that the similarity between the desired output and theactual output of testing samples with the ANFIS method is higher and the identificationresult is more accurate.
     3. Considering that the baseline model data of existing bridge is not available or thesimulation error is larger, it will lead to the failure of the damage identification method. Thischapter proposes a bridge structural damage identification method, based on modalcurvature, the Chebyshev polynomial and fuzzy reasoning theory without consideringbaseline model information.
     This method obtains the corresponding modal curvature valuesMSC dthroughsecond central differencing method on the basis of the node mode data of damage structure.According to this, we select theMSC dvalue of the feature node and get the modalcurvature valueMSC uwithout damage by Chebyshev polynomial fitting. By calculatingthe modal curvature difference MCD before and after the structural damage throughMSC dandMSC u, the structural damage location identification can be realized. Thedamage degree identification of bridge structure is realized by making the normalizedMCD as the input parameters of fuzzy reasoning system. The numerical simulationanalysis of simply supported beam bridge has verified the effectiveness of this method andthe results show that the calculated modal curvature difference of the single-location andmulti-location that is not dependent on the benchmark model data, is able to achieveaccurate damage positioning. Taking the normalized modal curvature difference of therelevant nodes as input parameters of fuzzy systems, we respectively construct fuzzyreasoning system of single-location and multi-location damage identification, so as toguarantee the damage identification results of the test samples are equipped with goodaccuracy. Selecting slot beam as indoor test model and taking the mid-span unit damageidentification for example, the effectiveness of the method proposed in this paper is verifiedby the measured first modal shape data.
     4. Since state assessment methods of the existing bridge are easily influenced by subjective factors, this paper proposes a unsupervised bridge superstructure state assessmentmethod based on fuzzy clustering according to bridge field measured data. Firstly, thismethod builds the durability and safety evaluation index system of bridges based on fieldmeasured parameters. And then, considering or not considering the index weight effectseparately, we select a certain number of bridge health monitoring data as clusteringsamples to obtain the fuzzy similarity matrix and fuzzy equivalent matrix of samples bycalculating. Finally, we select a different threshold to form a dynamic clustering map anddetermine the best classification based on statistic analysis. The clustering result is regardedas a sample base of bridge safety and durability state assessment. Taking the average of thecorresponding indicators of the same type bridges as the approximate center of this category,this method can analyze and evaluate the bridge state for assessment on the basis ofselecting the near principle by calculating the fuzzy nearness between the unknown bridgestate data and the center’s. This paper selects the Saide bridge and the border bridge inNanping (maoshan) in Jilin Province as the physical works of the bridge safety anddurability assessment to verify the effectiveness of fuzzy clustering method referred above.
引文
[1]施洲,赵人达.基于模态参数考虑边界条件变异的桥梁结构损伤识别[J],应用力学学报,2012,29(2):191-196.
    [2]谭林.基于动力指纹的结构损伤识别可靠度方法研究[D],广州:华南理工大学,博士学位论文,2010.
    [3]贺瑞.大跨桥结构监测系统的模态识别和误差分析及损伤识别[D],北京:清华大学,博士学位论文,2009.
    [4]杨秋伟,刘济科.工程结构损伤识别的柔度方法研究进展[J],振动与冲击,2011,30(12):147-153.
    [5]杨雅勋.基于动力测试的桥梁结构损伤识别与综合评估理论研究[D],西安:长安大学,博士学位论文,2008.
    [6] André D. Orcesi, Dan M. Frangopol. Optimization of bridge maintenance strategiesbased on structural health monitoring information [J], Structural Safety,2011,33(1):26-41.
    [7] Nonthachart Kulprapha, Pennung Warnitchai. Structural health monitoring of continuousprestressed concrete bridges using ambient thermal responses [J], EngineeringStructures,2012,40:20-38.
    [8] K. Dems, Z. Mróz. Damage identification using modal, static and thermographicanalysis with additional control parameters [J], Computers&Structures,2010,88(21-22):1254-1264
    [9]李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究[J],土木工程学报,2006,39(3):46-52.
    [10] J.M. Ko, Y.Q. Ni. Technology developments in structural health monitoring oflarge-scale bridges [J], Engineering Structures,2005,27(12):1715-1725.
    [11]邹大力.基于计算智能的结构损伤识别研究[D],大连:大连理工大学,博士学位论文,2005.
    [12] A. Rytter. Vibration based inspection of civil engineering structures [D], Ph.D.Dissertation, Department of Building Technology and Structural Engineering, AalborgUniversity, Denmark.
    [13]范剑锋.桥梁健康状态的智能评估方法研究[D],武汉:武汉理工大学,博士学位论文,2006.
    [14]许肇峰.既有钢筋混凝土桥梁损伤状况综合评估方法研究[D],成都:西南交通大学,硕士学位论文,2003.
    [15]宋雨.文晖大桥健康监测与评估管理系统主要问题研究[D],杭州:浙大大学,博士学位论文,2003.
    [16]杨雅勋,李子春,李子青,郝宪武.桥梁状态的区间可拓评估模型[D],交通运输工程学报,2009,9(6):36-41.
    [17]刘纲.基于长期静态监测数据的大型桥梁安全状态评估方法研究[D],重庆:重庆大学,博士学位论文,2010.
    [18]任宝双,钱稼茹,聂建国,范良.在用钢筋混凝土简支梁桥结构综合评估方法[J],2002,35(2):97-102.
    [19]公路桥涵养护规范(JTG H11-2004),中华人民共和国交通部,2004年.
    [20]城市桥梁养护技术规范(CJJ99-2003),中华人民共和国建设部,2004.
    [21]公路桥梁承载能力检测评定规程(JTG/T J21-2011),中华人民共和国交通部,2011.
    [22] L.A. Overbey, M.D. Todd. Effects of noise on transfer entropy estimation for damagedetection[J], Mechanical Systems and Signal Processing,2009,23(7):2178-2191.
    [23] J.V. Araújo dos Santos, C.M. Mota Soares, C.A. Mota Soares, N.M.M. Maia. Structuraldamage identification: influence of model incompleteness and errors [J], CompositeStructures,2003,62(3-4):303-313
    [24] Jong Jae Lee, Jong Won Lee, Jin Hak Yi, Chung Bang Yun, Hie Young Jung. Neuralnetworks-based damage detection for bridges considering errors in baseline finiteelement models[J], Journal of Sound and Vibration,2005,280(3-5):555–578.
    [25] J.D Hios, S.D Fassois. Stochastic identification of temperature effects on the dynamicsof a smart composite beam: assessment of multi-model and global model approaches [J],SMART MATERIALS AND STRUCTURES,2009,18,035011.
    [26]曾胜男,孙立军.基于构件的桥梁缺损状况分层加权评价方法[J],同济大学学报(自然科学版),2006,34(11):1475-1478.
    [27]范剑锋,袁海庆,刘文龙,曾东山.基于不确定型层次分析法的桥梁模糊综合评估[J],2005,27(4):54-57.
    [28]张海霞.基于不确定型层次分析法的混凝土斜拉桥状态评估[D],成都:西南交通大学,硕士学位论文,2008.
    [29]杨则英,黄承逵,曲建波.基于自适应神经-模糊推理系统和遗传算法的桥梁耐久性评估[J],土木工程学报,2006,39(2):16-20.
    [30] Doebling S W. Damage detection and health monitoring of structural and mechanicalsystems from changes in their vibration characteristics: a literature review [R]. LosAlamous National Laboratory Report.1996.
    [31] Cawley P,Adams R D. The location of defects in structures from measurements ofnatural frequencies [J]. Journal of strain analysis.1979,4(2):49-57.
    [32] Doebling S W, Farrar C R, Prime M B, et al. A review of damage identificationmethods that examine changes in dynamic properties [J]. Shock and Vibration Dig,1998,30(2):91-105.
    [33] I. Sheinman. Damage detection and updating of stiffness and mass matrices usingmode data [J], Computers&Structures,1996,59(1):149-156
    [34] J Maeck, M Abdel Wahab, B Peeters et al. Damage identification in reinforced concretestructures by dynamic stiffness determination [J], Engineering Structures,2000,22(10):1339-1349.
    [35] Jeong-Tae Kim, Jae-Hyung Park, Byung-Jun Lee. Vibration-based damage monitoringin model plate-girder bridges under uncertain temperature conditions [J], EngineeringStructures,2007,29(7):1354-1365.
    [36] Kun Zhang, Hui Li, Zhongdong Duan, S.S. Law. A probabilistic damage identificationapproach for structures with uncertainties under unknown input [J], Mechanical Systemsand Signal Processing,2011,25(4):1126-1145.
    [37] Hua-Peng Chen. Application of regularization methods to damage detection in largescale plane frame structures using incomplete noisy modal data [J], EngineeringStructures,2008,30(11):3219-3227.
    [38] A. Rahai. Bakhtiari-Nejad, A. Esfandiari. Damage assessment of structure usingincomplete measured mode shapes [J], Structural Control and Health Monitoring,2007,14:808–829.
    [39] S.W. Doebling, F.M. Hemez. Overview of uncertainty assessment for structural healthmonitoring [J]. Proceedings of the3rdinternational workshop on structural healthmonitoring, Stanford University,2001.
    [40] Israel Lopez, Nesrin Sarigul-Klijn. A review of uncertainty in flight vehicle structuraldamage monitoring, diagnosis and control: Challenges and opportunities[J], Progress inAerospace Sciences,2010,46(7):247-273.
    [41] M. Chandrashekhar, RanjanGanguli. Damage assessment of structures with uncertaintyby using mode-shape curvatures and fuzzy logic[J], Journal of Sound and Vibration,2009,326(3-5):939–957.
    [42]张坤.不完备测点结构损伤与荷载的同步识别算法研究[D],哈尔滨:哈尔滨工业大学,博士学位论文,2010.
    [43]袁颖,林皋,周爱红,周海辉.基于不完备模态测试信息的结构损伤识别方法研究[J],大连理工大学学报,2007,47(5):693-698.
    [44]袁旭东.基于不完备信息土木工程结构损伤识别方法研究[D],大连:大连理工大学,博士学位论文,2005.
    [45]赵建华,张陵,相秉志,万一.一种不完备测试数据下的结构损伤识别方法[J],应用力学学报,2010,27(4):670-673.
    [46] Hua-Peng Chen, Nenad Bicanic. Assessment of damage in continuum structures basedon incomplete modal information[J], Computers and Structures,2000,74(5):559-570.
    [47]王岗岭,樊建文.传感器应用中噪声的产生及其抑制方法[J],仪表技术与传感器,2007,7:62-63.
    [48] H. Sohn. Effect of environmental and operational variability on structural healthmonitoring [J]. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Science,2007,365(1851):539-560.
    [49] Y.Q. Ni, X.G. Hua, K.Q. Fan, J.M. Ko. Correlating modal properties with temperatureusing long-term monitoring data and support vector machine technique [J], EngineeringStructures,2005,27:1762-1773.
    [50] V. Meruane, W. Heylen. Damage Assessment of a Bridge under Varying EnvironmentalConditions [J], International conference on noise and vibration engineering2010.
    [51] Abdel Wahab, M. and De Roeck. Effect of temperature on dynamic system parametersof a highway bridge. Structural Engineering International,1997,7(4),266-270.
    [52] C. Farrar, S. Doebling, P. Cornell, E. Starser. Variability of modal parameters measuredon the Alamosa Canyon bridge [J], In Proceeding of SPIE, the International Society forOptical Engineering,1997,3089:257-263.
    [53]李爱群,丁幼亮,费庆国,缪长青.润扬大桥斜拉桥模态频率识别的环境变异性,东南大学学报(自然科学版)2007,37(2):245-250.
    [54] X. He, J. P. Conte, M. Fraser, A. Elgamal. Long-term monitoring of a highway bridge.In Proceedings of the3rd International Operational Modal Analysis Conference.Portonovo, Italy,2009.
    [55] H.F. Zhou, Y.Q. Ni, J.M. Ko. Constructing input to neural networks for modelingtemperature-caused modal variability: Mean temperatures, effective temperatures, andprincipal components of temperatures [J], Engineering Structures,2010,32:1747-1759.
    [56] Peter Moser, Babak Moaveni. Environmental effects on the identified naturalfrequencies of the Dowling Hall Footbridge [J], Mechanical Systems and SignalProcessing,2011,25:2336-2357.
    [57]樊可清,倪一清,高赞明.大跨度桥梁模态频率识别中的温度影响研究[J],中国公路学报2006,19(2):67-73.
    [58]邓扬,丁幼亮,李爱群.环境条件影响下悬索桥模态频率变异性的定量评价[J],振动与冲击2011,30(8):230-236.
    [59]闵志华,孙利民,淡丹辉.影响斜拉桥模态参数变化的环境因素分析[J],振动与冲击2009,28(10):99-105.
    [60] A.K. Pandey, M. Biswas, M.M. Samman. Damage detection from changes incurvature mode shapes[J], Journal of sound and vibration,1991,145(2):321-332.
    [61] Chengyin Liu, John T. DeWolf, Jeong-Ho Kim. Development of a baseline forstructural health monitoring for a curved post-tensioned concrete box–girder bridge[J],Engineering Structures,2009,31(12):3107-3115.
    [62] J.R. Wu, Q.S. Li. Finite element model updating for a high-rise structure based onambient vibration measurements[J], Engineering Structures,2004,26(7):979-990.
    [63] Q. Zhang, T. Chang, C. Chang. Finite-Element Model Updating for the Kap Shui MunCable-Stayed Bridge[J]. Journal of bridge engineering,2001,6(4):285–293.
    [64] Hua Xugang. Structural health monitoring and condition assessment of bridgestructures[D], Hong Kong Polytechnic University, Ph.D. Thesis,2006.
    [65] Yong Xia, Hong Hao. Statistical damage identification of structures with frequencychanges[J], Journal of Sound and Vibration,2003,263(4):853–870.
    [66] Yong Xia, Hong Hao, James M. W. Brownjohn, Pin-Qi Xia. Damage identification ofstructures with uncertain frequency and mode shape data[J], Earthquake Engineering&Structural Dynamics,2002,31(5):1053–1066.
    [67] Wei-Xin Ren, Xue-Lin Peng. Baseline finite element modeling of a large spancable-stayed bridge through field ambient vibration tests[J], Computers&Structures,2005,83(8-9):536-550.
    [68]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(Ⅰ)-基于响应面法的有限元模型修正[J],土木工程学报,2011,44(2):90-98.
    [69] D. Ribeiro, R. Cal ada, R. Delgado, M. Brehm, V. Zabel. Finite element modelupdating of a bowstring-arch railway bridge based on experimental modal parameters[J],Engineering Structures,2012,40:413-435.
    [70]孙正华,李兆霞,陈鸿天.结构行为一致多尺度有限元模型修正及验证[J],东南大学学报(自然科学版),2009,39(1):85-90.
    [71] Chen J C, Garba J A. Analytical model improvement using modal test results[J]. AIAAJournal,1980,18(6):684-690.
    [72]邓苗毅,任伟新.基于静力荷载试验的连续箱梁桥结构有限元模型修正[J],福州大学学报(自然科学版),2009,37(2):261-266.
    [73]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J],土木工程学报,2008,41(12):73-78.
    [74] Bijaya Jaishi, Hyo-Jin Kim et al. Finite element model updating of concrete-filled steeltubular arch bridge under operational condition using modal flexibility[J], MechanicalSystems and Signal Processing,2007,21(6):2406-2426.
    [75] Ricardo Perera, Sheng-En Fang, C. Huerta. Structural crack detection without updatedbaseline model by single and multiobjective optimization[J], Mechanical Systems andSignal Processing,2009,23(3):752-768.
    [76]李顺龙.基于健康监测技术的桥梁结构状态评估和预警方法研究[D],哈尔滨:哈尔滨工业大圩,博士学位论文,2009.
    [77]胡志坚.基于AI的RC梁桥技术状态评估专家系统研究[D],上海:同济大学,博士学位论文,2006.
    [78]周畅.在役桥梁状态评估和养护管理方法的研究[D],杭州:浙江大学,博士学位论文,2008.
    [79]张喆.桥梁安全性评价体系研究[D],西安:长安大学,硕士学位论文,2006.
    [80]汤怀胜.桥梁技术状况评估、预测及管理系统开发研究[D],长沙:湖南大学,硕士学位论文,2008.
    [81] Xianfei He. Vibration-Based Damage Identification and Health Monitoring of CivilStructures, PhD Dissertation, Department of Structural Engineering, University ofCalifornia,2008.
    [82]邹大力.基于计算智能的结构损伤识别研究[D].大连:大连理工大学,博士学位论文,2005.
    [83]黄盛楠.钢筋混凝土梁桥损伤识别方法的研究[D],北京:清华大学,博士学位论文,2008.
    [84]冉志红.桥梁结构损伤识别的动力指纹方法研究[D].成都:西南交通大学,博士学位论文,2007.
    [85] Z.R. Lu, J.K. Liu, M. Huang, W.H. Xu. Identification of local damages in coupledbeam systems from measured dynamic responses, Journal of sound and vibration2009,326:177-189.
    [86] S.W. Deobling, et al. A review of damage identification methods that examine changesin dynamic properties, Shock vibration digest1998,30:91-105.
    [87]朱宏平,余璟,张俊兵.结构损伤动力检测与健康监测研究现状与展望,工程力学2011,28(2):1-17.
    [88] Y.Y. Li. Hypersensitivity of strain-based indicators for structural damage identification:A review, Mechanical systems and signal processing2010,24:653-664.
    [89] Tuan Pham. The Influence of Thermal Effects on Structural Health Monitoring ofAttridge Drive Overpass [J], Department of Civil Engineering, University ofSaskatchewan, Thesis for the Degree of Master of Science,2009.
    [90] R. Gauguli. A fuzzy logic system for ground based structural health monitoring of ahelicopter rotor using modal data [J]. Journal of intelligent material systems andstructures,2001,12(6):397-407.
    [91] Z. Y. SHI, S. S. LAW. Structural damage localization from modal strain energychange[J], Journal of Sound and Vibration,1998,218(5):825-844.
    [92] A.K. Pandey, M. Biswas, M.M. Samman. Damage detection from changes incurvature mode shapes[J], Journal of sound and vibration,1991,145(2):321-332.
    [93] A.K. Pandey, M. Biswas. Damage detection in structures using changes in flexibility[J], Journal of Sound and Vibration,1994,169:3–17.
    [94]马辉.基于计算智能方法的简支梁桥损伤识别研究[D],长春:吉林大学,博士学位论文,2010.
    [95] R.D. Adams, P. Cawley, C.J. Pye, B.J. Stone. A vibration technique fornondestructively assessing the integrity of structures[J], Journal of MechanicalEngineering Science,1978,20:93-100.
    [96] O.S. Salawu. Detection of structural damage through changes in frequency: a review[J], Engineering Structures,1997,19(9):718-723.
    [97] T. Contursi, A. Messina, E.J. Williams. A Multiple-Damage Location AssuranceCriterion Based on Natural Frequency Changes[J], Journal of Vibration and Control,1998,4(5):619-633.
    [98] D.P. Patil, S.K. Maiti. Detection of multiple cracks using frequency measurements [J],Engineering Fracture Mechanics,2003,70(12):1553-1572.
    [99] L.J. Jiang, J. Tang, K.W. Wang. An enhanced frequency-shift-based damageidentification method using tunable piezoelectric transducer circuitry [J], SMARTMATERIALS AND STRUCTURES,2006,15:799-808.
    [100]程远胜,王真.基于提高频率灵敏度的结构损伤统计识别方法[J],计算力学学报,2008,25(6):844-849.
    [101]杜思义,殷学纲,陈淮.基于频率摄动理论对结构健康检测BENCHMARK问题的识别[J],应用力学学报,2010,27(4):674-679.
    [102]韩东颖,时培明.基于频率和当量损伤系数的井架钢结构损伤识别[J],工程力学,2011,28(9):109-114.
    [103] H.J. Salane, J.W. Baldwin. Identification of Modal Property of bridges[J], Journal ofStructural Engineering,1990,116(7):2008-2021.
    [104] C.R. Farrar, D.A. Jauregui. Comparative Study of Damage Identification AlgorithmApplied to a Bridge: I. Experiment [J], Smart Material and Structures,1998,7(5):704-719.
    [105] O.S. Salawu, C. Williams. Bridge Assessment using Forced-Vibration Testing [J],Journal of Structural Engineering,1995,121(2):161-172.
    [106] J.R. Casas, A.C. Aparicio. Structural Damage Identification from Dynamic-testdata[J], Journal of Structural Engineering,1994,120(8):2437-2450.
    [107] R. Abdul Razak, F.C. Choi. The Effect of Corrosion on the Natural Frequency andModal Damping of Reinforced Concrete Beams [J], Engineering Structures,2001,23(9):1126-1133.
    [108]刘寒冰,吴春利,程永春.不同适应度函数的遗传算法应用于桥梁结构传感器布设[J],吉林大学学报(工学版),2012,42(1):51-56.
    [109] F.C. Choi. Assessment of the structural integrity of bridges using dynamic approaches,Ph.D. thesis, University of Technology Sydney, NSW, Australia,
    [110] H. Abdul Razak, S.L. Teng, Z. Ismail, A.G. Abdul Rahman. Crack detection in asimply supported RC beam using simplified Laplacian, Proceedings of the14thinternational modal analysis conference, vol.2, Kissimmee, FL, US, pp.1344-1350.
    [111] J. Ching, J.L. Beck. Bayesian analysis of the Phase II IASC-ASCE structural healthmonitoring experimental benchmark data[J], Journal of Engineering Mechanics,2004,130(10):1233-1244.
    [112] S. Choi, S. Park, N. Stubbs. Nondestructive damage detection in structures usingchanges in compliance[J], International Journal of Solids and Structures,2005,42(15):4494-4513.
    [113] Z. Ismail, H. Abdul Razak, A.G. Abdul Rahman. Determination of damage location inRC beams using mode shape derivatives[J], Engineering Structures,2006,28:1566-1573.
    [114] B.H. Kim, T. Park, G.Z. Voyiadjis. Damage estimation on beam-like structures usingthe multi-resolution analysis[J], International Journal of Solids and Structures,2006,43(14-15):4238-4257.
    [115] C. Hu, M.T. Afzal. A statistical algorithm for comparing mode shapes of vibrationtesting before and after damage in timbers, Journal of Wood Science,2006,52:348-352.
    [116] W.M.A. Wahab, G.D. Roeck. Damage detection in bridges using modal curvatures:application to a real scenario, Journal of sound and vibration,1999,226(2):217-235.
    [117] M.M. ABDEL WAHAB. EFFECT OF MODALCURVATURES ON DAMAGEDETECTION USING MODEL UPDATING [J], Mechanical Systems and SignalProcessing,2001,15(2):439–445.
    [118] C.S. Hamey, W. Lestari, P. Qiao, G. Song. Experimental damage identification ofcarbon/epoxy composite beams using curvature mode shapes[J], Structural HealthMonitoring,2004,3(4):333-353.
    [119]彭华,游春华,孟勇.模态曲率差法对梁结构的损伤诊断[J],工程力学,2006,23(7):49-54.
    [120]李忠献,齐怀展,朱劲松.基于模态曲率法的大跨度斜拉桥损伤识别[J],地震工程与工程振动,2007,27(4):122-126.
    [121] D. Bernal. Load vectors for damage localisation[J], Journal of Engineering Mechanics,2002,128(1):7-14.
    [122] Y. Gao, B.F. Spencer Jr. Online damage diagnosis for civil infrastructure employing aflexibility-based approach [J], SMART MATERIALS AND STRUCTURES,2006,15:9-19.
    [123] A. Patjawit, W. Kanok-Nukulchai. Health monitoring of highway bridges based on aglobal flexibility index[J], Engineering Structures,2005,27(9):1385-1391.
    [124] F.C. Choi, J. Li, B. Samali, K. Crews. Application of the modified damage indexmethod to timber beams, Engineering Structures,2008,30(4):1124-1145.
    [125]姚京川,杨宜谦,王澜.基于模态柔度曲率改变率的桥梁结构损伤识别方法[J],中国铁道科学,2008,29(5):51-57.
    [126]杨开荣,周晶,冯新.基于柔度矩阵法的钢栈桥损伤识别[J],防灾减灾工程学报,2011,31(6):642-647.
    [127] Z. Zhang, A. E. Aktan. Application of Modal Flexibility and Its Derivatives inStructural Identification[J], Res Nondestr Eval,1998,10:43-61.
    [128] D.Wu, S.S.Law. Damage localization in plate structures from uniform load surfacecurvature[J], Journal of Sound and Vibration,2004,276:227–244.
    [129] N. STUBBS, J.-T. KIM and C. R. FARRAR. Field verification of a nondestructivedamage localization and sensitivity estimator algorithm[C].1995Proceedings of the13th International Modal Analysis Conference,210-218.
    [130] H. Li, H. Yang, S.L.J. Hu. Modal strain energy decomposition method for damagelocalization in3D frame structures[J],Journal of Engineering Mechanics,2006,132(9):941-851.
    [131]王锋,李毅谦,李传习.基于模态应变能法识别板类结构损伤的数值研究[J],长沙理工大学学报(自然科学版),2006,3(1):27-31.
    [132] F.C. Choi, J. Li, B. Samali, K. Crews. An experimental study on damage detection ofstructures using a timber beam[J], Journal of Mechanical Science andTechnology-MOVIC Special Edition,2007,21:903-907.
    [133]葛继平,李胡生,陈明.基于模态应变能变异指标的斜拉桥模型损伤识别研究[J],武汉理工大学学报(交通科学与工程版),2011,35(2):261-265.
    [134] Lin Ye, Zhongqing Su, et al. Hierarchical development of training database forartificial neural network-based damage identification [J], Composite Structures,2006,76:224–233.
    [135]张刚刚,王春生,徐岳.基于径向基函数神经网络的斜拉桥损伤识别[J],长安大学学报(自然科学版),2006,26(1):49-53.
    [136] M. Mehrjoo, N. Khaji, H. Moharrami, A. Bahreininejad. Damage detection of trussbridge joints using Artificial Neural Networks [J], Expert Systems with Applications,2008,35:1122–1131.
    [137]刘寒冰,焦峪波,程永春,宫亚峰.基于模态曲率理论及神经网络的简支梁桥损伤识别[J],吉林大学学报(工学版),2011,41(4):963-967.
    [138]杨佑发,熊丽,陈远.基于神经网络的框架结构损伤多重分步识别[J],建筑科学与工程学报,2011,28(1):106-111.
    [139] Jiyoung Min, Seunghee Park, et al. Impedance-based structural health monitoringincorporating neural network technique for identification of damage type and severity[J], Engineering Structures,2012,39:210–220.
    [140]朱劲松,肖汝诚.基于定期检测与遗传算法的大跨度斜拉桥损伤识别[J],土木工程学报,2006,39(5):85-89.
    [141]袁颖,林皋,闫东明,周爱红.基于残余力向量法和改进遗传算法的结构损伤识别研究[J],计算力学学报,2007,24(2):224-230.
    [142] Ricardo Perera, Antonio Ruiz, Carlos Manzano. Performance assessment ofmulticriteria damage identification genetic algorithms[J], Computers and Structures,2009,87:120–127.
    [143] H.Y. Guo, Z.L. Li. Structural damage identification based on Bayesian theory andimproved immune genetic algorithm [J], Expert Systems with Applications,2012,39:6426–6434.
    [144] Hua-Peng Chen, Nenad Bicanic. Assessment of damage in continuum structuresbased on incomplete modal information [J], Computers&Structures,2000,74(5):559–570.
    [145] Norhisham Bakhary, Hong Hao, Andrew J. Deeks. Damage detection using artificialneural network with consideration of uncertainties [J], Engineering Structures,2007,29(11):2806–2815.
    [146] P. Cornwell, C. Farrar, S. Doebling, H. Sohn. Environmental variability of modalproperties. Experimental Techniques,1999,23(6):45-48.
    [147] B. Peeters, G. De Roeck. One-year monitoring of the Z24-Bridge: environmentaleffects versus damage events. Earthquake Engineering&Structural Dynamics,2001,30:149-171.
    [148] Y.Q. Ni, X.G. Hua, K.Q. Fan, J.M. Ko. Correlating modal properties with temperatureusing long-term monitoring data and support vector machine technique, EngineeringStructures,2005,27:1762-1773.
    [149] H.F. Zhou, Y.Q. Ni, J.M. Ko. Constructing input to neural networks for modelingtemperature-caused modal variability: Mean temperatures, effective temperatures, andprincipal components of temperatures, Engineering Structures,2010,32:1747-1759.
    [150] A. Yan, G. Kerschen, P. De Boe, J. Golinval. Structural damage diagnosis undervarying environmental conditions–Part I: A linear analysis. Mechanical Systems andSignal Processing,2005,19(4):847-864.
    [151] W.H. Hu, C. Mountinho, F. Magalhaes, E. Caetano, A. Cunha. Analysis and extractionof temperature effect on natural frequencies of a footbridge based on continuousdynamic monitoring. In Proceedings of the3rd International Operational ModalAnalysis Conference. Portonovo, Italy,2009.
    [152] A. Deraemaeker, A. Preumont. Vibration based damage detection using large arraysensors and spatial filters. Mechanical Systems and Signal Processing,2006,20(7):1615-1630.
    [153]李苗,黄天立,任伟新.温度影响下基于主成分分析和模态柔度的结构异常检测,振动与冲击2011,30(5):83-87.
    [154] Jeong-Tae Kim, Jae-Hyung Park, Byung-Jun Lee. Vibration-based damagemonitoring in model plate-girder bridges under uncertain temperature conditions,Engineering Structures2007,29:1354-1365.
    [155] V. Meruane, W. Heylen. Structural damage assessment under varying temperatureconditions [J], Structural Health Monitoring,2011,11(3):345–357.
    [156] C.P. RATCLIFFE. Damage Detection Using A Modified Laplacian Operator on ModeShape Data [J], Journal of Sound and Vibration,1997,204(3):505-517.
    [157] M.K. Yoon, D. Heider, et al. Local damage detection using the two-dimensionalgapped smoothing method [J], Journal of Sound and Vibration,2005,279:119–139.
    [158] Chengyin Liu, John T. DeWolf, Jeong-Ho Kim. Development of a baseline forstructural health monitoring for a curved post-tensioned concrete box–girder bridge [J],Engineering Structures,2009,31:3107–3115.
    [159] M.K. Yoon, D. Heider. Local Damage Detection with the Global Fitting MethodUsing Mode Shape Data in Notched Beams[J], Journal of Nondestructive Evaluation,2009,28:63–74
    [160] M. SALEHI, S. ZIAEI RAD, et al. A Non Model-Based Damage Detection TechniqueUsing Dynamically Measured Flexibility Matrix [J], IJST, Transactions of MechanicalEngineering,2011,35(M1):1-13.
    [161] Ranjan ganguli. A Fuzzy Logic System for Ground Based Structural HealthMonitoring of a Helicopter Rotor using Modal Data[J],JOURNAL OF INTELLIGENTMATERIAL SYSTEMS AND STRUCTURES,2001,12:397-407.
    [162] Hanbing Liu, Yubo Jiao, Yongchun Cheng, Yafeng Gong. Reduction of uncertaintiesfor damage identification of bridge based on fuzzy nearness and modal data, Journal ofapplied mathematics,2012, doi:10.1155/2012/812932.
    [163] Prashant M. Pawar, Ranjan Ganguli. Genetic fuzzy system for damage detection inbeams and helicopter rotor blades[J], Comput. Methods Appl. Mech. Engrg.2003,192:2031–2057.
    [164] M. Chandrashekhar, RanjanGanguli. Damage assessment of structures withuncertainty by using mode-shape curvatures and fuzzy logic[J], Journal of Sound andVibration,2009,326:939–957.
    [165] P. Beena, Ranjan Ganguli. Structural damage detection using fuzzy cognitive mapsand Hebbian learning [J], Applied Soft Computing,2011,11(1):1014–1020.
    [166] Hanbing Liu, Yubo Jiao, et al. A fuzzy logic-based damage identification method forsimply supported bridge using modal shape ratios [J], International Journal ofComputational Intelligence Systems,2012,5(4):627-638.
    [167] S.D. Silvaa, M.D.J. junior, V.L. Junior, M.J. Brennan. Structural damage detection byfuzzy clustering [J], Mechanical Systems and Signal Processing,2008,22:1636–1649.
    [168]姜绍飞,张帅.基于模糊神经网络的数据融合结构损伤识别方法[J],工程力学,2008,25(2):95-101.
    [169]公路养护技术规范(JTG H10-2009),中华人民共和国交通部,2009.
    [170]杨则英,曲建波,黄承逵.基于模糊综合评判和层次分析法的桥梁安全性评估[J],天津大学学报,2005,38(12):1063-1067.
    [171]马亚丽,王东炜,张爱林.在役桥梁结构健康等级的多级模糊综合评判[J],北京工业大学学报,2005,31(1):36-40.
    [172] K. Kawamura, A. Miyamoto, D.M. Frangopol, R. Kimura. Performance evaluation ofconcrete slabs of existing bridges using neural networks [J], Engineering Structures,2003,25:1455–1477.
    [173] Y.M. Wang, T.M.S. Elhagb. A fuzzy group decision making approach for bridge riskassessment [J], Computers&Industrial Engineering,2007,53(1):137–148.
    [174] A. Tarighata, A. Miyamoto. Fuzzy concrete bridge deck condition rating method forpractical bridge management system [J], Expert Systems with Applications,2009,36(10):12077–12085.
    [175] N.F. Pan, T.C. Lin, N.H. Pan. Estimating bridge performance based on amatrix-driven fuzzy linear regression model [J], Automation in Construction,2009,18:578–586.
    [176]张衍,李灵芝,牛三库.基于模糊贴近度的农业机械评判模型[J],现代农业科技,2012,6:256,261.
    [177]何书,王家鼎,朱忠,吴开兴.基于模糊贴近度的岩溶塌陷易发性研究[J],自然灾害学报,2009,18(1):8-15.
    [178]吴成茂,田小平,谭铁牛.基于模糊贴近度理论的图像置乱效果评价研究[J],计算机工程与设计,2009,30(8):1829-1833.
    [179] L. Zadeh. Fuzzy logic=computing with words [J], IEEE Transactions on FuzzySystem,1996,4(2):103-111.
    [180]曹谢东.模糊信息处理及应用[M].北京:科学出版社,2003.
    [181]肖辞源.工程模糊系统[M].北京:科学出版社,2004.
    [182] M. Chandrashekhar, R. Ganguli. Uncertainty handling in structural damage detectionusing fuzzy Logic and probabilistic simulation [J], Mechanical Systems and SignalProcessing,2009,23(2):384–404.
    [183] R. W. Clough, J. Penzien. Dynamics of Structures [M],3nd edn.(Computers&Structures, Inc., Berkeley,1995)
    [184] A. Dutta, S. Talukdar. Damage detection in bridges using accurate modalparameters[J], Finite Elements in Analysis and Design,2004,40(3):287-304.
    [185] W.T. Yeung, J.W.Smith. Damage detection in bridges using neural networks forpattern recognition of vibration signatures[J], Engineering Structure,2005,27(5):685-698.
    [186] Yong Xia, Hong Hao, Giovanna Zanardo, Andrew Deeks. Long term vibrationmonitoring of an RC slab: Temperature and humidity effect[J], Engineering Structures,2006,28:441–452.
    [187] Brian Downie. Effect of moisture and temperature on the mechanical properties ofconcrete, Master Thesis in Mechanical Engineering, West Virginia University,2005.
    [188] S.N. Shoukrya, G.W. Williamb, B. Downiea, M.Y. Riadb. Effect of moisture andtemperature on the mechanical properties of concrete [J], Construction and BuildingMaterials,2011,25(2):688–696.
    [189]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    [190]彭华,游春华,孟勇.模态曲率差法对梁结构的损伤诊断[J].工程力学,2006,23(7):49-53.
    [191]焦峪波.基于模态曲率理论及神经网络的多片简支梁桥损伤识别研究[D],长春:吉林大学,硕士学位论文.2009
    [192]张智星,孙春在,水谷英二.神经-模糊和软计算[M].西安:西安交通大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700