用户名: 密码: 验证码:
模块化非隔离光伏并网逆变器及发电系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再生能源尤其是光伏发电系统初期投资大、发电成本高,故并网逆变器以及并网发系统效率的提高对于缩短成本回收周期,更快地创造经济效益具有重要意义。本文以模块化和高效率为核心,研究非隔离光伏并网逆变器及系统中的关键技术。
     针对基于直流总线的模块化光伏并网发电系统,提出了一种改进的以直流总线电压作为信息载体的功率变换管理和控制方法,旨在实现能量最优利用和系统运行模式的平滑切换。将系统分为四种运行模式,分别是孤岛运行蓄电池放电、并网运行网侧接口变换器整流、并网运行网侧接口变换器逆变、孤岛运行光伏接口变换器输出恒压。分析了系统运行模式与系统功率流的关系,设计令直流总线电压决定系统运行模式和模式切换,而无需中央控制器,降低了系统成本,提高了系统可靠性。分别给出了光伏、网侧和储能接口变换器的控制方法,使得系统在极端条件下,如孤岛运行蓄电池满电荷状态仍能达到功率平衡。
     研究非隔离并网逆变器共直流和交流母线并联运行,提出了功率电路拓扑并联工作及进网电流解耦的条件。深入分析了各种非隔离全桥拓扑形式和PWM(Pulse Width Modulation)调制方式的逆变器并联运行模态,指出双极性PWM逆变器并联运行时并联逆变器间的进网电流自然解耦;单极性倍频PWM逆变器并联运行时并联逆变器的进网电流存在高频耦合,但电流基波分量解耦;单极性PWM逆变器并联运行时并联逆变器间的电流存在高频耦合,导致电流基波分量耦合,不可并联运行。低漏电流的改进型全桥并网逆变器拓扑也可实现并联逆变器间的进网电流自然解耦。提出一种模块化光伏并网发电系统欧洲效率优化控制方法,分析了直流母线电压变化趋势与PV(Photovoltaic)发电功率的内在关系,在逆变器中采用两个不同限幅值的直流母线电压调节器,实现根据PV发电功率的变化,自然启用相应的电压调节器,确保各台逆变器优先运行在设定的最高效率点。当PV发电功率较大时逆变器再转向满载运行,从而优化模块化系统的欧洲效率,且无需增加硬件成本。
     非隔离型并网逆变器拥有变换效率高,体积小、重量轻、成本低等优势,但系统中的漏电流会大幅增加,带来安全隐患。研究了非中点钳位和中点钳位两类非隔离全桥并网逆变器拓扑,旨在发现兼顾低漏电流和高效率的新型电路拓扑。基于传统H5拓扑,在光伏电池输出端和桥臂任意中点之间引入一支开关管,构造一条新的功率传输通路,提出了一种六开关非隔离并网逆变器拓扑(H6拓扑)。新拓扑在功率传输模态时,进网电流半个工频周期流过三支开关管,而另半个工频周期流过两支开关管,故相对于H5拓扑,降低了通态损耗,提高了变换效率,有利于热应力均衡,并仍满足抑制漏电流的条件;比较分析了H5、Heri(cHighly Efficient ReliableInverter Concept)和H6的拓扑结构、损耗和成本,指出H6拓扑实际是H5和Heric拓扑的折衷。H6拓扑的变换效率高于H5拓扑、但略低于Heric拓扑;共模特性优于Heric拓扑、但略劣于H5拓扑。提出由P-NPCC(Positvie-Neutral Point Clamped Cell)和N-NPCC(Negative-NetrualPoint Clamped Cell)两种基本单元构造中点钳位逆变器拓扑族的统一方法,研究了中点钳位非隔离全桥逆变器拓扑的生成机理和推演方法,揭示了中点钳位逆变器拓扑族的内在联系,按照提出的基本单元可以得到现有的中点钳位非隔离全桥光伏并网逆变器拓扑,如oH5和FB-DCBP(Full Bridge-DC Bypass),以及一族新的中点钳位非隔离全桥并网逆变器拓扑。以所提出的PN-NPC拓扑为例详细分析了其工作原理,并与oH5、FB-DCBP拓扑作了损耗的比较分析,PN-NPC拓扑共模特性与FB-DCBP相同并优于oH5,且变换效率最优。
     高可靠性、高效率和高功率密度始终是电力电子装置追求的目标。总结归纳了五电平全桥逆变器拓扑生成的两种方式:①三电平全桥与输入分压电容和钳位支路组合;②三电平半桥与两电平桥臂组合。将上述拓扑生成方式推广至双降压式逆变器,提出了一族五电平双降压式全桥并网逆变器拓扑,具有高变换效率、高功率密度和低EMI(Electromagnetic Interference)的特点。研究了所提五电平双降压式全桥并网逆变器的工作原理,并对几种拓扑进行了损耗和成本的对比分析。开关管串联型五电平双降压式全桥逆变器拓扑的变换效率最高,而中点钳位型五电平双降压式全桥逆变器拓扑的电路开销最少。
     对以上研究分别搭建了相应的实验平台,进行了充分的实验研究,验证了上述分析的正确性和可行性。
The initial investment and generation cost of Photovoltaic(PV) generation system are muchhigher than that of other renewable energy systems, so the efficiency improvement of both the PVgrid-tied inverters and system is a significant effort to shorten the payback time and gain the economicbenefits faster. The key technologies for high efficiency modular PV grid-tied generation systemsbased on a DC interbus are researched in this thesis.
     A power conversion and management control based on an improved DC bus signaling (DBS) isproposed to optimize both the energy utilization and system stability. The operations of system arecategorized into four modes: islanding with battery discharging, grid-tied with rectification, grid-tiedwith inversion and islanding with constant voltage generation. The relastionship between systemoperation modes and system power flow is analyzed in detail. The DC bus voltage level is employedas an information carrier to determine system operation mode and mode switching. Hence, there is nocentralized controller, the system reliability is enhanced with the cost reduced. Control methods forPV converter, grid-tied converter, and battery converter are proposed with power balance of thesystem under extreme conditions, such as the islanding operation with full-charged battery,considered.
     Current coupling among the non-isolated grid-tied inverters is researched and the currentdecoupling condition given, based upon analyzing the equivalent operation modes of the invertersmentioned under different topologies and modulations. Analysis reveals that the bipolar PWM (PulseWidth Modulation) inverters can be operated in parallel with current decoupling naturally. Unipolardouble frequency PWM inverters can be operated in parallel with harmonic current of switchingfrequency coupled and fundamental components decoupled. Unipolar PWM inverters can not beoperated in parallel with current coupling. Improved full bridge inverters with low leakage current canachieve current decoupling naturally in parallel operation. A control for modular grid-tied PVgeneration system to improve European efficiency is proposed. Two DC bus voltage regulators withdifferent output limits are employed in each inverter, based on the inherent relationship of dc busvoltage and PV generation power. The suitable one of the regulators is enabled naturally by the PVgeneration power to run the inverter at the highest efficiency point as the first choice, and at the fullload point only if the PV generation power high enough. As a result the European efficiency of themodular system is optimized with no additional hardware cost.
     Non-isolated grid-tied inverters feature many advantages such as higher efficiency, lower cost,smaller size and weight. However, the leakage current may induce serious safety problem. In order tofind new inverter topologies with both low leakage current and high efficiency, Two types of full bridge inverter topologies which named non-Neutral Point Clamped (NPC) and NPC are researchedrespectively. A H6non-isolated full bridge PV grid-tied inverter is proposed based on the H5topology.In the power processing period, the grid-tied current flows through three power switches during oneof half line cycles, while flows through only two power switches during another half line cycle. Theconduction losses reduced and heat-stress balance benefited with the proposed H6topology than thatwith the H5topology. The power losses and costs are fairly compared among the H5topology, Herictopology and the H6topology. As a result, the efficiency of the proposed H6topology is higher thanthat of the H5topology while slightly lower than that of the Heric topology. And the common-modeperformance of the H6topology is higher than that of Heric topology while slightly lower than that ofthe H5topology.
     Two types of basic switching cells, positive-NPC and negative-NPC, and a method to build NPCfull bridge PV grid-tied inverters with these two basic cells are proposed to meet the demand fornon-isolated inverter topology applied in PV generation system. A family of novel NPC non-isolatedfull bridge PV grid-tied inverters, besides existing topologies such as oH5and FB-DCBP, is derived.Operation modes of the PN-NPC topology are analyzed as an example in detail. Finally, both of theefficiency and common-mode performance of the proposed PN-NPC and Heric topologies werecompared. And the comparison results show that the proposed PN-NPC topology features betterefficiency and common-mode performance than that of the Heric topology.
     High reliability, high efficiency and high power density are always the goals of power electronicdevices. Two topology generation methods for the five-level full bridge inverters are summarized asfollows:①a three-level full bridge inverter combining two input split capacitors and a clampingcircuit,②a three-level half bridge inverter combining a two-level bridge leg. By using this topologygeneration methods, a family of five-level dual buck full bridge inverter (FLDBFBI) topologies isproposed with high efficiency, high power density and low EMI. The operation principle andmodulation strategy of these proposed inverters were analyzed in details. Both the power loss and costare also fairly compared among these proposed topologies. As a result, the switch-series FLDBFBItopology has the highest efficiency, while the NPC FLDBFBI has the lowest cost.
     Experimental platforms are built with the test results given in detail to verify the researchesmentioned, respectively.
引文
[1]2011亚洲可再生能源并网与储能大会.北京,2011.
    [2]王长贵,王斯成.太阳能光伏发电实用技术.北京:化学工业出版社,2009:3~5.
    [3]张耀明.中国太阳能光伏发电产业的现状与前景.新能源与新材料,2007,No.1:1~6.
    [4]李晓刚.中国光伏产业发展战略研究,[博士学位论文].长春:吉林大学,2007.
    [5]蔡宣三.太阳能光伏发电发展现状与趋势.电力电子,2007,第2期,3~6.
    [6]龚雄武.国内外光伏政策概况.亚太光伏,2011,第11期,33~37.
    [7]中华人民共和国可再生能源法.2006.
    [8]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年).2006.
    [9]中华人民共和国国务院.中华人民共和国国民经济和社会发展第十二个五年规划纲要.2011.
    [10] Kajer S B,Pedersen J K,Blaadjerg F.A review of single-phase grid-connected inverters forphotovoltaic modules.IEEE Trans on Industry Application,2005,41(5):1292-1306.
    [11]刘邦银.建筑集成光伏系统的能量变换与控制技术研究,[博士学位论文].武汉:华中科技大学,2008.
    [12] Blaabjerg F,Chen Z,Kjaer S B.Power electronics as efficient interface in dispersed powergeneration systems.IEEE Trans on Power Electronics,2004,19(5):1184–1194.
    [13] Kjaer S B,Pedersen J K,Blaabjerg F.Power inverter topologies for photovoltaic modules-areview.Proc.IEEE IAS,2002:782–788.
    [14] Calais M,Myrzik J,Spooner T,Agelidis V G.Inverters for single-phase grid connectedphotovoltaic systems—An overview.Proc.IEEE PESC,2002:1995-2000.
    [15] Pavan A M,Castellan S,Quaia S,Roitti S,Sulligoi G.Power electronic conditioning systemsfor industrial photovoltaic fields: centralized or string Inverters?.Proc.ICCEP,2007:208-214.
    [16]汪海宁,苏建徽,丁明,等.光伏并网功率调节系统.中国电机工程学报,2007,27(2):75-79.
    [17] Meinhardt M,Cramer G.Multi-string-converter: the next step in evolution of string-convertertechnology.Proc.EPE,2001:1-5.
    [18] Meinhardt M,Cramer G,Burger B,Zacharias P.Multi-string-converter with reduced specificcosts and enhanced functionality.Solar Energy.2000(69):217-227.
    [19] SMA Co. Sunny Boy5000TL Multi-string-operating instructions.[Online]. Available:http//www.sma.de,2005.
    [20] Shimizu T,Wada K,Nakamura N.Flyback-type single-phase utility interactive inverter withpower pulsation decoupling on the DC input for an AC photovoltaic module system.IEEE Transon Power Electronics,2006,21(5):1264-1272.
    [21] Kyritsis A C,Tatakis E C,Papanikolaou N P.Optimum design of the current-source flybackinverter for decentralized grid-connected photovoltaic systems. IEEE Trans on EnergyConversion,2008,23(1):281-193.
    [22] Kjaer S B,Blaabjerg F.Design optimization of a single phase inverter for photovoltaicapplications.Proc.IEEE PESC,2003:1183-1190.
    [23] Hu Haibing,Harb S,Kutkut N,Batarseh I,Shen Z J.Power decoupling techniques formicro-inverters in PV systems-a review.Proc.IEEE ECCE,2010:3235-3240.
    [24] Kjaer S B.Design and control of an inverter for photovoltaic application,[PhD thesis].Alborg:Alborg University,2005.
    [25] Román E,Alonso R,Ibanez P,Elorduizapatarietxe S, Goitia D.Intelligent PV module forgrid-connected PV systems.IEEE Trans on Industrial Electronics,2006,53(4):1066-1073.
    [26] Walker G R,Pierce J C.Photovoltaic DC-DC module integrated converter for novel cascadedand bypass grid connection topologies-design and optimization.Proc.IEEE PESC,2006:1-7.
    [27] Walker G R,Sernia P C.Cascaded DC-DC converter connection of photovoltaic modules.IEEETrans on Power Electronics,2004,19(4):1130-1139.
    [28] Bratcu A I,Munteanu I,Bacha S,Picault D,Raison B.Cascaded DC-DC converter photovoltaicsystem: power optimization issues.IEEE Trans on Industrial Electronics,2011,58(2):403-411.
    [29] Femia N,Lisi G,Petrone G,Spagnuolo G,Vitelli M.Distributed maximum power point trackingphotovoltaic arrays: novel approach and analysis.IEEE Trans on Industrial Electronics,2008,55(7):2610-2621.
    [30]刘邦银,梁超辉,段善旭.直流模块式建筑集成光伏系统的拓扑研究.中国电机工程学报,2008,28(20):99-104.
    [31] Li Q,Wolfs P.A current fed two-inductor Boost converter with an integrated magnetic structureand passive lossless snubbers for photovoltaic module integrated converter applications. IEEETrans. on Power Electronics,2007,22(1):309-321.
    [32]吴红飞,古俊银,张君君,等.高效率高增益Boost-flyback直流变换器.中国电机工程学报,2011,31(24):40-45.
    [33] KrampiIz I,Kreumnann A.From masterpiece to team work, inverter market survey: SMA’s newcircuit concept promises higher yields,PHOTON,2002:56-67.
    [34] Myrzik J M A,Calais M.String and module integrated inverters for single-phase grid connectedphotovoltaic systems:a review.Proc.IEEE Bologna Power Tech Conference,2003:23-26.
    [35]鲁宗相,王彩霞,闵勇.微电网研究综述.电力系统自动化,2007,31(19):100-107.
    [36] Lassetter R H.Microgrids.Proc.IEEE PESTDC,2002:305-308.
    [37] Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgridsoperation.IEEE Trans on Energy Conversion,2008,23(1):241-248.
    [38] Lopes J A P,Moreira C L, Madureira AG.Defining control strategies for microgrids islandedoperation.IEEE Trans on Power Systems,2006,21(2):916-924.
    [39] Hernandez-Aramburo C A,Green T C,Mugniot N.Fuel consumption minimization of amicrogrid.IEEE Trans on Industry Applications,2005,41(3):973-681.
    [40] Bae I-S,Kim J-O.Reliability evaluation of customers in a microgrid.IEEE Trans on PowerSystems,2008,23(3):1416-1422.
    [41]郑漳华,艾芊.微电网的研究现状及在我国的应用前景.电网技术,2008,32(16):27-58.
    [42]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述.电网技术,2009,33(9):14-18.
    [43] Kakigano H,Miura Y,Ise T.DC voltage control of the DC micro-grid for super high qualitydistribution.Proc.PCC,2007:518-525.
    [44] Kakigano H,Miura Y,Ise T,Uchida R.DC micro-grid for super high quality distribution systemconfiguration and control of distributed generations and energy storage devices.Proc.IEEEPESC,2006:3148-3154.
    [45] Kakigano H,Miura Y,Ise T.DC micro-grid for super high quality distribution–systemconfiguration and control of distributed generations and energy storage devices.Proc.IEEEPESC,2005:1-7.
    [46] Lee F C,Boroyevich D,Mattevelli P,et al.Proposal for a mini-consortium on sustainablebuildings and nanogrids(SBN)[EB].[2010-8]http://www.cpes.vt.edu/download.php?file=public/CPES_SBN_Proposal_Aug2010.pdf.
    [47] Boroyevich D,Cvetkovic I,Dong Dong,Burgos R,Wang F,Lee F C.Future electronic powerdistribution systems a contemplative view.Proc.IEEE OPTIM,2010:1369-1380.
    [48] Cvetkovic I,Thacker T,Dong Dong,Francis G,Podosinov V,Boroyevich D,Wang F,BurgosR,Skutt G,Lesko J.Future home uninterruptible renewable energy system with vehicle-to-gridtechnology.Proc.IEEE ECCE,2009:2675-2681.
    [49] Ito Y, Yang Z Q, Akagi H. DC microgrid based distribution power generationsystem.Proc.IEEE IPEMC,2004:1740-1745.
    [50] Dong Dong,Thacker T,Burgos R,Boroyevich D,Wang F,Giewont B.Control design andexperimental verification of a multi-function single-phase bidirectional PWM converter forrenewable energy systems.Proc.EPE,2009:1-10.
    [51] Dong Dong,Boroyevich D,Wang R,Cvetkovic I.A two-stage high power density single-phaseac-dc bi-directional PWM converter for renewable energy systems.Proc.IEEE ECCE,2010:3862-3869.
    [52] Gamboa G,Hamilton C,Kerley R,Elmes S,Arias A,Shen J,Batarseh I.Control strategyof a multi-port, grid connected, direct-dc PV charging station for plug-in electricvehicles.Proc.IEEE ECCE,2010:1173-1177.
    [53] Schonberger J,Duke R,Round S.Decentralized generator scheduling in a nanogrid using DCbus signaling.IEEE Trans on Industrial Electronics,2006,53(5):1453-1460.
    [54] Bryan J,Duke R,Round S.Decentralized generator scheduling in a nanogrid using DC bussignaling.Proc.IEEE PES,2004:977-982.
    [55] Karlsson P,Sevensson J.DC bus voltage control for a distributed power system.IEEE Trans onPower Electronics,2003,18(6):1405-1412.
    [56]钱照明,张军明,谢小高等.电力电子系统集成研究进展与现状.电工技术学报,2006,21(3):1-14.
    [57] Van Wyk J D,Lee F C.Power electronics technology-Status and future.Proc.CPES,1999:61-70.
    [58] Blaabjerg F,Consoli A,Ferreira J A,et al.The future of electronic power processing andconversion.IEEE Trans on Power Electronics,2005,20(3):715-720.
    [59]陈武.多变换模块串并联组合系统研究.[博士学位论文].南京:南京航空航天大学,2009.
    [60] Chen W,Ruan X,Yan H,Tse C K.DC/DC conversion systems consisting of multiple convertermodules: stability, control, and experimental verifications.IEEE Trans on Power Electronics,2009,24(6):1463-1474.
    [61] Tabisz W A, Jovanovic M M, Lee F C. Present and future of distributed powersystems.Proc.IEEE APEC,1992:11-18.
    [62] Palma L,Enjeti P N.A modular fuel cell,modular DC-DC converter concept for highperformance and enhanced reliability.IEEE Trans on Power Electronics,2009,24(6):1437-14.
    [63] Kamnarn U,Chunkag V.Analysis and design of a modular three-phase AC-to-DC converterusing CUK rectifier module with nearly unity power factor and fast dynamic response.IEEETrans on Power Electronics,2009,24(8):2000-2012.
    [64] Ruan X, Chen W, Cheng L, et al. Control strategy for input-series-output-parallelconverters.IEEE Trans on Industrial Electronics,2009,56(4):1174-1185.
    [65] Chen Y M,Chang C H.Modularized bi-directional grid-tied inverter with asynchronoussigma-delta modulation.Proc.IEEE ECCE,2010:31-36.
    [66] Sabahi M,Goharrizi A Y,Hosseini S H.Flexible power electronic transformer.IEEE Trans onPower Electronics,2010,25(8):2159-2169.
    [67]汪海宁.光伏并网功率调节系统及其控制的研究.[博士学位论文].合肥:合肥工业大学,2005.
    [68]李超,阮守军,曹际洲.一种N+1模块化光伏并网发电设计.电力电子技术.44(4):9-11.
    [69] Wang C,Xu M,Lee F C,Zheng L.Light load efficiency improvement for multi-channelPFC.Proc.IEEE APEC,2008:4080-4085.
    [70] Costabeber A,Mattavelli P,Saggini S.Digital time-optimal phase shedding in multiphase buckconverters.IEEE Trans on Power Electronics2010,25(9):2242-2247.
    [71] Sun J,Xu M,Ying Y,Lee F C.High power density, high efficiency system two-stage powerarchitecture for laptop computers.Proc.IEEE PESC,2006:1-7.
    [72] Li Q,Wolfs P.A review of the single phase photovoltaic module integrated converter topologieswith three different DC link configurations. IEEE Trans. on Power Electronics,2008,23(3):1320-1333.
    [73] Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Power-electronic systems for the gridintegration of renewable energy sources: A survey.IEEE Trans. on Industrial Electronics,2006,53(4):1002-1016.
    [74] Li Quan.High frequency transformer linked converters for photovoltaic application,[PhDthesis].Queensland:Central Queensland University,2006.
    [75] Andersen M,Alvsten B.200W low cost module integrated utility interface for modularphotovoltaic energy systems.Proc.IEEE IECON,1995:572-577.
    [76] Martins D C,Demonti R.Photovoltaic energy processing for utility connected system.Proc.IEEE IECON,2001:1292-1296.
    [77] Martins D C,Demonti R.Grid connected PV system using two energy processing stages.Proc.IEEE PSC,2002:1649-1652.
    [78] Herrmann U,Langer H G,Van Der Broeck H.Low cost DC to AC converter for photovoltaicpower conversion in residential applications.Proc.IEEE PESC,1993:588-594.
    [79] Martins D C,Demonti R.Interconnection of a photovoltaic panels array to a single-phase utilityline from a static conversion system.Proc.IEEE PESC,2000:1207-1211.
    [80] Mekhilef S,Rahim N A,Omar A M.A new solar energy conversion scheme implemented usinggrid-tied single phase inverter.Proc.IEEE TENCON,2000:524-527.
    [81] Kasa N,Iida T,Chen L.Flyback inverter controlled by sensorless current MPPT for photovoltaicpower system.IEEE Trans on Industrial Electronics,2005,52(4):1145-1152.
    [82] Kasa N,Iida T,Bhat A K S.Zero-voltage transition flyback inverter for small scale photovoltaicpower system.Proc.IEEE PESC,2005:2098-2103.
    [83] Yatsuki S,Wade K,Shimizu T.A novel AC photovoltaic module system based on the impedanceadmittance conversion theory.Proc.IEEE PESC,2001:2191-2196.
    [84] VDE0126-1-1-2006:Automatic disconnection device between a generator and the publiclow-voltage grid[S].DIN_VDE Nomo,2008.
    [85]肖华锋,杨晨,谢少军.NPC三电平并网逆变器共模电流消除抑制技术研究.中国电机工程学报,2010,30(33):23-29.
    [86]马琳,孙凯,Teodorescu R,等.高效率中点钳位光伏逆变器拓扑比较.电工技术学报,2011,26(2):108-114.
    [87] Cavalcanti M C,Oliveira K C,Farias A M,et al.Modulation techniques to eliminate leakagecurrents in transformerless three phase photovoltaic systems. IEEE Trans on IndustrialElectronics,2010,57(4):1360-1368.
    [88] Kerekes T,Teodorescu R,Liserre M,et al.Evaluation of three-phase transformerlessphotovoltaic inverter topologies.IEEE Trans on Power Electronics,2009,24(9):2202-2211.
    [89] Zhang Haoran,Jouanne A,Dai Shaoan,Wallace A K,Wang Fei.Multilevel inverter modulationschemes to eliminate common-mode voltages.IEEE Trans on Industry Applications,2000,36(6):1645-1653.
    [90]罗北,和军平,彭志辉,等.三电平光伏并网逆变器共模电压SVPWM抑制策略研究.研究与设计,2010,21-25.
    [91] Xiao Huafeng,Xie Shaojun.Leakage current analytical model and application in single-phasetransformerless photovoltaic grid-connected inverter. IEEE Trans. on ElectromagneticCompatibility,2010,52(4):902-913.
    [92] Gonzalez R,Gubia E,Lopez J,et al.Transformerless single-phase multilevel-based photovoltaicinverter.IEEE Trans. on Industrial Electronics,2008,55(7):2694-2702.
    [93] Victor M,Greizer F,Bremicker S,et al.Method of converting a direct current voltage form asource of direct current voltage, more specifically from a photovoltaic source of direct currentvoltage, into a alternating current voltage:United States,US7411802B2.2008-8-12.
    [94] Schmidt H,Siedle C,Ketterer J.Inverter for transforming a DC voltage into an AC current or anAC voltage:Germany,EP1369985(A2).2003-12-10.
    [95] Gonzalez R,Lopez J,Sanchis P,et al.Transformerless inverter for single-phase photovoltaicsystems.IEEE Trans on Power Electronics,2007,22(2):693-697.
    [96] Yu Wensong,Lai Jih-sheng,Qian Hao,Hutchens C.High-efficiency mosfet inverter withH6-type configuration for photovoltaic nonisolated ac-module applications.IEEE Trans onPower Electronics,2011,26(4):1253-1260.
    [97] Araujo S V,Zacharias P,Mallwitz R.Highly efficient single-phase transformerless inverters forgrid-connected photovoltaic systems.IEEE Trans on Industrial Electronics,2010,57(9):3118-3128.
    [98]张兴,孙龙林,许颇,等.单相非隔离型光伏并网系统中共模电流抑制的研究.太阳能学报,2009,30(9):1202-1208.
    [99] Xiao Huafeng, Xie Shaojun, Yang Chen. An optimized transformer-less photovoltaicgrid-connected inverter.IEEE Trans on Industrial Electronics,2011,58(5):1887-1895.
    [100] Kerekes T,Teodorescu R,Rodriguez P,et al.A new high-efficiency single-phasetransformerless PV inverter topology.IEEE Trans on Industrial Electronics,2011,58(1):184-191.
    [101] Lopez O,Freijedo F D,Yepes A G,et al.Eliminating ground current in a transformerlessphotovoltaic application.IEEE Trans on Energy Conversion,2010,25(1):140-147.
    [102] Calais M, Agelidis V G. Multilevel Converters for Single-Phase Grid ConnectedPhotovoltaic Systems-An Overview.Proc.IEEE ISIE,1998:224-229.
    [103] Patel H, Agarwal V. A single-stage single-phase transformerless doubly groundedgrid-connected PV interface.IEEE Trans on Energy Conversion,2009,24(1):93-101.
    [104]马琳,金新民.无变压器结构光伏并网系统共模漏电流分析.太阳能学报,2009,30(7):883-888.
    [105] Cui W,Yang B,Zhao Y,Li W,He X.A novel single-phase transformerless grid-connectedinverter.Proc.IEEE IECON,2011:1067-1071.
    [106]杨波.基于并网逆变器电能质量与变换效率的若干关键技术研究,[博士学位论文].杭州:浙江大学,2010.
    [107]孙龙林.单相非隔离型光伏并网逆变器的研究,[硕士学位论文].合肥:合肥工业大学,2009.
    [108]马琳.无变压器结构光伏并网逆变器拓扑及控制研究,[博士学位论文].北京:北京交通大学,2011.
    [109]肖华锋.光伏发电高效利用的关键技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [110] Chen J,Huang C,Gilmore J,Roesch J,Wei Zhu.LCOE Reduction for megawatts PVsystem using efficient500kW transformerless inverter.IEEE Energy Conversion Congress andExposition,Atlanta,United states:IEEE,2010:392-397.
    [111] Frisch M,Temesi E,韩军,等.最新高效率光伏逆变器拓扑结构及功率器件介绍.变频器世界,2009,3:31-36.
    [112] Zargari N R,Ziogas P D,Joos G.A two-switch high-performance current regulated DC/ACconverter module.IEEE Trans on Industry Applications,1995,31(3):583-589.
    [113] Qian H,Zhang J,Lai J S,et al.A high-efficiency grid-tie battery energy storagesystem.IEEE Trans. on Power Electronics,2010,26(3):886-896.
    [114]洪峰,单任仲,王慧贞,等.三电平双降压式全桥逆变器.中国电机工程学报,2008,28(12):55-59.
    [115]王慧贞,蔡兆奇,刘军,等.三电平双降压半桥逆变器.电工技术学报,2009,24(2):73-77.
    [116] Yao Zhilei,Xiao Lan,Yan Yangguang.Dual buck full bridge inverter with hysteresis currentcontrol.IEEE Trans. on Industrial Electronics,2009,56(8):3153-3160.
    [117] Rodriguez J,Lai J S,Peng Fangzheng.Multilevel inverters:A survey of topologies, control,and applications.IEEE Trans on Industrial Electronics,2002,49(4):724-738.
    [118]韩云龙,赵菁,程隽,等.一种开关电容和二极管钳位组合的多电平拓扑.中国电机工程学报,2010,30(3):49-54.
    [119]丁凯,邹云屏,蔡政英,等.一种新型单相不对称五电平逆变器.中国电机工程学报,2004,24(11):116-120.
    [120] Hu H,Yao W,Lu Z.Design and implementation of three-level space vector PWM IP corefor FPGAs.IEEE Trans on Power Electronics,22(6):2234-2244.
    [121] Mohamed A,Gopinath A,Baiju M.A simple space vector PWM generation scheme for anygeneral n-level inverter.IEEE Trans on Industrial Electronics,56(5):1649-1656.
    [122]陈阿莲,何湘宁.一种具有中点电位平衡功能的混合箝位型多电平逆变器.中国电机工程学报,2005,25(1):18-22.
    [123] Villanueva E,Correa P,Rodriguez J,et al.Control of a single-phase cascaded H-bridgemultilevel inverter for grid-connected photovoltaic systems. IEEE Trans. on IndustrialElectronics,2009,56(11):4399-4406.
    [124] Rahim N A,Selvaraj J.Multistring five-level inverter with novel PWM control scheme forPV application.IEEE Trans on Industrial Electronics,2010,57(6):2111-2123.
    [125] Selvaraj J,Rahim N.Multilevel inverter for grid-connected PV system employing digital PIcontroller.IEEE Trans. on Industrial Electronics,2009,56(1):149-158.
    [126] Sergio B,Joan R,Pedro R,et al.Multilevel diode-clamped converter for photovoltaicgenerators with independent voltage control of each solar array.IEEE Trans on IndustrialElectronics,2008,55(7):2713-2723.
    [127] Gabriele G,Claudio R,Darko O,et al.A new multi-level conversion structure forgrid-connected PV applcations.IEEE Trans on Industrial Electronics,2009,56(11):4416-4426.
    [128] Engin O,Sule O,Leone M T.Fundamental frequency modulated six-level diode-clampedmultilevel inverter for three-phase stand-alone photovoltaic system.IEEE Trans on IndustrialElectronics,2009,56(11):4407-4415.
    [129] Rodriguez J,Bernet S,Steimer P K,et al.A survey on neutral point clamped inverters.IEEETrans. on Industrial Electronics,2010,57(7):2219-2230.
    [130] Malinowski M,Gopakumar K,Rodriguez J,et al.A survey on cascaded multilevelinverters.IEEE Trans. on Industrial Electronics,2010,57(7):2197-2206.
    [131] Ceglia G,Guzman V,Sanchez C,Ibanez F,Walter J,Gimenez M I.A new simplifiedmultilevel inverter topology for dc-ac conversion.IEEE Trans. on Power Electronics,2006,21(5):1311-1319.
    [132] Park S J,Kang F S,Lee M H,Kim C U.A new single-phase five-level PWM inverteremploying a deadbeat control scheme.IEEE Trans. on Power Electronics,2003,18(3):831-843.
    [133]洪峰,单任仲,王慧贞,等.五电平双降压式全桥逆变器.电工技术学报,2008,23(8):67-73.
    [134]王儒,方宇,邢岩.三相高功率因数PWM变换器可逆运行研究.电工技术学报,2007,22(8):46-51.
    [135]张纯江,郭忠南,王芹,等.基于新型相位幅值控制的三相PWM整流双向工作状态分析.中国电机工程学报,2006,26(11):167-171.
    [136] Rajapakse A D,Gole A M,Wilson P L.Electromagnetic transients simulation models foraccurate representation of switching losses and thermal performance in power electronicsystems.IEEE Trans on Power Electronics,2005,20(1):319-327.
    [137] Shimizu T,Iyasu S.A practical iron loss calculation for AC filter inductors used in pwminverter. IEEE Trans on Industrial Electronics,2009,56(7):2600–2609.
    [138] Xiong Y L,Sun S,Jia H W,et al.New physical insights on power MOSFET switchinglosses.IEEE Trans on Power Electronics,2009,24(2):525-531.
    [139]洪峰,单任仲,王慧贞,等.一种逆变器损耗分析与计算的新方法.中国电机工程学报,2008,28(15):72-78.
    [140] Wu T F,Chen Y K.Modeling PWMDC/DC converters out of basic converter units. IEEETrans on Power Electronics,1998,13(5):870-881.
    [141] Peng F Z.A generalized multilevel inverter topology with self voltage balancing.IEEETrans on Power Electronics,2001,37(2):611-618.
    [142] Liu Y C, Chen Y M. A systematic approach to synthesizing multiinput DC-DCconverters.IEEE Trans on Power Electronics,2009,24(1):116-127.
    [143] Chen G,Liu Q,Wang F,et al.A flexible loss-minimizing and stress-sharing switch cell forpower converters.IEEE Trans on Power Electronics,2008,23(1):60-74.
    [144] Peng F Z,Tolbert L M,Khan F.Power electronics’ circuit topology—The basic switchingcells IEEE Power Electron Education Workshop,2005:52-57.
    [145] Wu H,Xing Y.A family of forward converters with inherent demagnetizing features basedon basic forward cells.IEEE Trans on Power Electronics,2010,24(11):2828-2834.
    [146]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报,2007,27(16):60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700