用户名: 密码: 验证码:
流速、温度对封闭循环水养殖大菱鲆摄食效应和动态投喂模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在封闭循环水养殖条件下,从生态营养和水环境调控角度,探讨流速和温度对大菱鲆摄食、生长、水质指标、消化酶及免疫指标的效应特征及变化规律,寻找适于大菱鲆摄食、生长、水生态等的最适流速和温度。根据流速和温度对大菱鲆摄食影响特征,结合试验室相关研究,建立了基于体重、温度、密度以及流速等关键影响因子的多参数动态投喂模型,同时建立了体重、温度和密度对大菱鲆氨氮排泄率的效应模型。
     1在封闭循环水高密度养殖条件下(平均密度14.1±0.51kg/m~2),设置四个流速梯度(200L/h, 400L/h, 600L/h, 800L/h,分别以A~D组表示),选用相近体重(200.3±7.6g)大菱鲆进行42天养殖试验,每个梯度设置三个重复,每个重复55尾鱼,研究流速对封闭循环水养殖大菱鲆生长、摄食、水质以及免疫和血清酶的影响。试验结果表明:
     (1)大菱鲆摄食量、生长率、增重率随流速增大先快速上升后缓升趋稳,饲料系数则相反。B、C、D三组特定生长率、摄食量分别显著(P<0.05)高于A组30.77%~52.31%、17.30%~22.05%;饲料系数则显著低于A组13.83%~22.34%。
     (2)养殖水体中总氨氮、非离子氨及亚硝酸氮浓度随流速的增大先快速下降后缓降趋稳。B、C、D三组水质总氨氮氨浓度均极显著(P<0.01)低于A组53.70%~79.07%。
     (3)根据流速对特定生长率、水体总氨氮二者的影响,创新获得养殖的生长生态适宜流速为625L/h;再结合流速对水循环动力的影响,获得养殖的生长生态经济适宜流速为480L/h。
     (4)流速对大菱鲆血清SOD、LZM有显著影响:血清SOD、GPT、血钠、血钾、血氯表现出先升后降的趋势,GOT与此相反;LDH、LZM则表现持续上升的趋势。与A组相比,B、C、D三组SOD活力显著性(P<0.05)提高14.25%~21.25%; LZM活力极显著性(P<0.01)增加22.16%~57.53%; ALP活力显著性(P<0.05)增加17.88%~73.74%; GPT活力显著性(P<0.05)增加35.68%~71.65%;各组的GOT活力、血钠、血钾、血氯含量上则无显著性差异(P>0.05)。
     2在高密度封闭循环水养殖条件下(平均密度14.20±0.48kg/m~2),设置四个温度梯度(14℃, 16℃, 18℃, 21℃,分别以A~D组表示),挑选相近体重(371.68±43.15g)的大菱鲆进行56天养殖试验。每个梯度设置三个重复,每个重复30尾鱼。研究高密度封闭循环水养殖条件下温度对大菱鲆摄食、氨氮排泄、消化以及免疫指标的影响。试验结果表明:温度对大菱鲆摄食、生长、氨氮排泄及消化免疫指标具有显著影响。
     (1)在14~18℃范围内,大菱鲆摄食量随温度增加而增大,但当温度为21℃时,该组总摄食量、日均摄食量与其他三组相比均出现显著(P<0.05)下降。A、B、C三组的总摄食量、日均摄食量、日均摄食率与D组差异显著(P<0.05),三组的日均摄食量分别提高25.65%、32.26%及45.08%。
     (2)大菱鲆生长和存活率随温度增加表现出先升高后降低的趋势。A、B、C三组增重率分别比D组提高75.23%、91.05%及121.18%,特定生长率分别提高34.29%、80%、102.86%。
     (3)温度对养殖水中总氨氮、亚硝酸氮有显著(P<0.05)影响。总氨氮排泄随温度增加表现出先升高后降低的趋势,以16~18℃范围水体氨氮浓度较高,与其摄食、生长、消化等性能显著提高相符合。虽然两次亚硝酸氮测定最大值不同,但均出现在中等温度范围内,其与生物滤器菌群变化关系的机制,需在今后深入探讨。同时通过24小时连续监测,大菱鲆氨氮排泄呈昼夜周期性变化,在摄食后6~9小时出现氨氮排泄高峰。C组总氨氮显著性(P<0.05)高于A、D两组32.34%、25.57% (第一次水质测定)及82.14%、34.21%(第二次水质)。
     (4)在14~18℃范围内,大菱鲆胃蛋白酶、SOD、LZM活力及血清皮质醇含量随温度增加而增大;当温度为21℃时,上述指标均出现显著下降。C组皮质醇含量、SOD、LZM、胃蛋白酶活力分别较A、B、D高11.46%~13.54%、6.69%~15.38%、9.17%~70.22%及39.63%~202.64%。血清GOT、GPT活力随温度的增加表现出先降低后升高的趋势;肠道AMS活力随温度增加表现出持续增大的趋势,D组分别高于C组10.81%、显著性(P <0.05)高于B组59.74%、极显著性(P<0.01)高于A组115.79%;四组肠LPS、鳃丝Na~ +, K~+- ATPase并无显著性差异。
     (5)在本试验条件下,综合不同指标结果,确定封闭循环水高密度养殖大菱鲆成鱼(300~400g体重)的适宜温度范围为16~18℃;对应的日均摄食率为0.52%~0.55%,特定生长率为0.63%/d~0.71%/d,总氨氮排泄率为0.12~0.13mg N /kg W/h。
     (6)从摄食量与氨氮排泄量的关系特征获得,在本试验条件下:排泄总氨氮占风干饲料的均数为2.7%、占饲料氮的均数为33.7%;即摄入1kg风干饲料平均排出0.0270kg总氨氮,摄入1kg饲料氮平均排出0.337kg总氨氮。
     3通过对试验数据分析处理,初步建立了封闭循环水养殖大菱鲆的饱食投喂模型、氨氮排泄率模型和特定生长率模型。
     (1)饱食投喂模型: F_I=W~( 0.769 )D~ (-0.087) e~(-3 .211-0.032 T +0.125F)式中F_I代表日饱食摄食量(g/d/fish),W代表体重阶段(g),D代表养殖密度(kg/m~2),T代表温度(℃),Fr代表流速(tank volumes/h)。
     (2)氨氮排泄率模型: A =W ~(-3 .409 )D ~(2.298 )e~(0.037T-12.370)特定生长率模型: G =W~(-0 .423 )D~( -0.024 )e~(1 .496 + 0.257 F+ 0.087(18 -T))式中A代表氨氮排泄率(mg N/ kgW/ h),W代表体重阶段(g),D代表养殖密度(kg/m~2),T代表温度(℃),G代表特定生长率(%/d),Fr代表流速(tankvolumes/h)。
     (3)模型的用途和意义:①可以使实际生产饲料投喂量基本达到定量化、清洁化和动态化。②将饱食投喂模型、特定生长率模型与氨氮排泄模型相结合,计算得出基于较快生长、较低水污染的生态适宜投喂量,对精准投喂和水质净化具有重要实际生产应用价值。③应用关联的模型,可以根据任意3个变量,估测第4个变量,在生产中非常方便和实用。如:可以根据温度、鱼体重及养殖密度预测鱼类氨氮排泄速率,预测水体氨氮浓度及变化,有效指导实际养殖生产。④本模型的建立和完善,可初步实现最佳生长、最少饲料浪费、并向生物滤器提供稳定代谢物的清洁投喂目的,使封闭循环水养殖大菱鲆的饲料投喂和水环境调控步入动态、数字化水平。
Based on the view of Eco-nutrition and Water environmental control, the studyaims to explore the effects of flow rate and temperature on the feed intake, growth,water quality, digestive enzyme activity and immunity of turbot (Scophthatmusmaximus L) in a closed recirculation aquaculture system, looking for the optimumflow rate and temperature for feeding, growth, water ecology of turbot. According tothe features of flow rate and temperature on the feeding of turbot, combining withlaboratory research, we established multi-parameter dynamic model on the base ofkey factors such as body weight, temperature, density and flow rate. We also build theeffect model of ammonia excretion rate of turbot on the base of body weight,temperature and density .
     1 Effects of flow rate on feed intake, growth and water quality of turbot wereinvestigated in closed recirculation aquaculture system. Fish with a mean initialweight of 200.3±7.6g were reared at four different flow rates (200L/h, 400 L/h,600L/h, 800L/h), equaling 0.5, 1.0, 1.5, 2.0 tank volumes/h in 400L tanks during 42days. Six hundred and sixty fish were randomly allotted in four treatments with threereplicates for each treatment in a stocking density of 14.1±0.51kg/m~2.The resultsindicated:
     (1) Feed intake, specific growth rate and weight gain rate were increasing rapidlyfirst and then slowly with increased flow rate, while food conversion rate showed areverse pattern. The specific growth rate of group B,C,D are significantly higher thangroup A by 30.77%~52.31%, while feed conversion rate is lower than group A by13.83%~22.34%.
     (2) Concentrationsoftotalammonianitrogen(TAN),unionizedammonianitrogen(UIA-N) and nitrite (NO_2~--N) in water decreased rapidly first and then slowly withincreased flow rate. The ammonia nitrogen of group B,C,D are significantly higherthan group A by 53.70%~79.07%.
     (3) The optimal growth and ecological flow rate was calculated as 625L/h (1.56tank volumes/h), combining the specific growth rate with total ammonia nitrogen inwater. Another optimal growth and ecological economical flow rate was calculated as480L/h (1.20 tank volumes/h), combining specific growth rate with powerconsumption and TAN in water.
     (4) TheflowrateshavesignificantinfluenceonthebloodNa~+,K~+,CI~-,GPT,SOD,LZM, GOT of turbot: the GPT and SOD first increased and then decreased withincreased flow rate, while GOT showed a reverse tendency and LZM showedtendency of growing. Compared with group A, the SOD activity significantly (P<0.05) increased by 14.25% ~ 21.25%; LZM activity by 22.16% ~ 57.53%; ALPactivity by17.88% ~ 73.74%; GPT activity by 35.68% ~ 71.65% in groups B,C, D.There were no significant difference (P> 0.05) in serum sodium, potassium, chloridecontent of blood among these four groups.
     2 Effects of water temperature on feed intake, growth, water quality, digestiveenzyme activity and immunity of turbot were investigated in closed recirculationaquaculture system. Fish with a mean initial weight of 371.68±43.15g were reared atfour different temperature (14℃, 16℃, 18℃, 21℃, represented by A~D) in 400Ltanks during 56 days. Three hundred and sixty fish were randomly allotted in fourtreatments with three replicates for each treatment in a stocking density of14.20±0.48kg/m~2. The results indicated:
     (1) At the range of 14 ~ 18℃, the feed intake of turbot increased withtemperature, but when the temperature was 21℃, the group's total feed intake,average daily feed intake decreased significantly compared with the other threegroups. The total feed intake, average daily feed intake, daily feeding rate of groups A,B, C are significantly different with D group (P <0.05), average daily feed intake ofthe three groups increased by 25.65%, 32.26% and 45.08%. Under the propertemperature(16~18℃), the daily feeding rate of high-density culture turbot was0.52%~0.55%.
     (2) The growth and survival rate of turbot increased first and then decreased withincreasing temperature. The weight gain ratio of groups A, B, C increased 75.23%91.05% and 121.18% than the D group, while the specific growth rate increased by34.29%, 80%, 102.86%. Under the proper temperature(16~18℃), the specificgrowth rate of high-density culture turbot was 0.63%/d~0.71%/d.
     (3) Water temperature has significant effects on the total ammonia nitrogen,nitrite concentrations. The ammonia peaks appeared in the range of 16~18℃and thiswas consistent with tendency of feeding, growth and digestion. The nitrite peaksappeared in the middle temperature range even though that the maximum value of twowere different. The mechanism relationed between bacteria and biological filter needsto be discussied in future research. Through 24 hours of continuous monitoring,ammonia excretion of turbot cyclical changed during day and night and the peaksappeared 6 to 9 hours after feeding. The TAN of group C was significantly (P <0.05)higher than that of A, D group by 32.34%, 25.57% (the first water qualitymeasurement) and 82.14%, 34.21% (the first water quality measurement).
     (4) At 14 ~ 18℃, the pepsin activity, SOD activity, LZM activity and serumcortisol concentration of turbot increased with temperature, but when the temperaturewas 21℃, the four indicators decreased significantly. Serum GOT, GPT showed atrend of first increased and then decreased. The cortisol levels, SOD, LZM, pepsinactivities were higher than the other three groups by 11.46% ~ 13.54% , 6.69% ~15.38%, 9.17% ~ 70.22% and 39.63% ~ 202.64%. Serum GOT, GPT increased firstwith temperature and then decreased. The Intestinal amylase activity increased withincreasing temperature and the group D was higher than the C group by 10.81%,significantly (P<0.05) higher than group B by 59.74% and significantly (P<0.01)higher than the group A by 115.79%. Four groups of intestinal lipase activity and gillNa ~+, K~+- ATPase activity showed no significantly different.
     (5) In this experiment, combining different indicators, the study identified thespecific growth rate of turbot (300-400g body weight) was 0.63% / d ~ 0.71% / d,while the average daily feeding rate was 0.52 % ~ 0.55% and the ammonia excretionrate was 0.12~0.13 mg N·kg~(-1)·W·h~(-1) in high-density closed recirculation aquaculturesystem when the suitable temperature range was 16 ~ 18℃.
     (6) Combining the feed intake and ammonia excretion, the research identified theproportion of ammonia excretion in feed and feed nitrogen was 2.7% and 33.7%. Itmeanes fish can excrete 0.027kg and 0.337kg TAN when intake 1kg feed and feednitrogen.
     3 Ontheanalysisof experimentaldata,weestablishedtheinitialmodeloffeeding,ammonia excretion and specific growth rate of turbot in a closed recirculationaquaculture system.
     (1) Feedingmodel:
     F_I=W ~(0.769) D ~(-0.087 )e~(-3.211-0.032T+0.125F_r)
     F_I represents daily feed intake(g/fish/d),W represents body weight(g),D representsstocking density(kg/m~2), T represents temperature(℃),Fr represents flow rate(tankvolumes/h).
     (2) Ammoniaexcretionmodel:
     A =W ~(-3 .409 )D ~(2.298) e~(0.037 T-12.370)
     Specific growth rate model:
     G =W ~(-0 .423 )D ~(-0.024 )e~(1.496+0.257 F_r+0.087(18 -T))
     A represents ammonia excretion rate(mg N /kgW/ h), W represents bodyweight(g),D represents stocking density(kg/m~2), T represents temperature(℃), Frrepresents flow rate(tank volumes/h), G represents specific growth rate(%/d).
     (3) Purpose and significance of the model:①the model can make the actualfeeding ration achieve the quantitative, clean and dynamic.②Combing the satiationfeeding model, the specific growth rate model and the ammonia excretion model, wecan get ecological feeding of faster growth, lower water pollution, which is beneficialfor the accurate feeding and water environmental regulation.③The associated modelin the production is very convenient and practical, basing on any three variables toestimate the fourth variables. For example: we can predict water ammoniaconcentration according to forecast of ammonia excretion rate by temperature, fishweight and fish stocking density. This offers a lot for the actual farming.④Theestablishment and improvement of the model can initially achieve the aim of optimalgrowth, least feed waste, provide of a stable metabolite of feeding for the bio-filter,and it can also make the feeding and water environmental control achieve the level ofdynamics in closed recirculating aquaculture system.
引文
常青.不同添加物对虾诱食活性的影响[J ] .饲料工业, 1999, 20 (6):19 - 20.
    陈家长.水体中NH3-N对建鲤非特异性免疫的影响[J].湛江海洋大学学报,2000,20(3):13-16.
    陈锦云,陈玉翠.温度对瓦氏黄颡鱼幼鱼氨氮排泄的影响[J].水产科学, 2006, 25(5):232-235.
    陈军,徐皓,倪琦,刘晃.我国工厂化循环水养殖发展研究报告[J].渔业现代化,2009, 36(4):1-7.
    陈晓芸.饥饿对南方鲶鱼血液的影响[J].西南农业大学学报, 2000.22(2):167-169.
    陈玉春,顾雪飞,刘敏.5种中草药对鲤血清谷草转氨酶、谷丙转氨酶及红细胞过氧化氢酶活性的影响[J].淡水渔业, 2007, 37(5):11-13.
    成嘉,符贵红,刘芳,等.重金属铅对鲫鱼乳酸脱氢酶和过氧化氢酶活性的影响[J].生命科学研究, 2006, 10(4):372-376.
    崔奕波.鱼类生物能量学的理论与方法[J].水生生物学报, 1989, 13(4): 369-383.
    丁贤,李卓佳,陈永春.温度和pH对异育银鲫消化酶稳定性及其活力的影响[J].海洋水产研究,2008, 29(4):46-51.
    FAO.在满足日益增加的全球水产养殖食用鱼类需求方面应对各种挑战的机遇.FAO渔业委员会水产养殖分委员会第四次会议.2008年10月6~10日,智利:维拉斯港.1~3.
    付新华,孙谧,孙世春.大菱鲆消化酶的活力[J].中国水产科学. 2005, 12(1):27-32.
    傅雪军,马绍赛,曲克明,等.循环水养殖系统生物挂膜的消氨效果及影响因素分析[J].渔业科学进展,2010,31(1):95-99.
    防允中,李爱杰.自由基与酶[M].北京:科学出版社,1994, pp:67-69.
    方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学技术出版社,2002:122-161.
    高淳仁,王印庚,马爱军,等.温度对大菱鲆幼鱼生长、成活率和体内蛋白酶活性的影响[J].海洋水产研究,2006, 27(6):33-36.
    桂远明,吴垠.温度对草鱼、鲤、鲢、鳙主要消化酶活性的影响[J].大连水产学院学报,1993, 8(4):1-8.
    韩京成,刘国勇,梅朋森,等.温度对鲫血液生化指标和消化酶的影响[J].水生态学杂志,2010,1(3):87-92.
    黄灿华,石正丽,张建红,等.原位杂交研究对虾白斑杆状病毒在虾体内感染过程[J].病毒学报, 2000, 16, 3: 242-246.
    黄峰,严安生,牟松.水产动物饵料诱食剂及其应用[J ] .中国饲料, 1998,14:13 - 14.
    黄宁宇,程起群,高露娇,等.流速、温度对西伯利亚鲟幼鱼生长的影响[J].水产学报,2007,31(1):31-37.
    蒋克勇,李勇,李军,等.大菱鲆幼鱼蛋白质的生态营养需要量探寻[J].海洋科学, 2005,29(9): 65-70.
    江敏,黄宗群,彭自然,等.异育银鲫氨氮排泄与耗氧的研究[J].上海水产大学学报, 2007, 16(1):28-32.
    简继常,吴灶和.中草药对建鲤非特异性免疫功能的影响[J].大连水产学院学报,2002,17(2):114-119.
    姜令绪,杨宁,李建,等.温度和pH对刺参消化酶活力的影响[J].海洋与湖沼,2007,38(5):476-480.
    况莉,谢小军.温度对饥饿状态下南方鲇幼鱼氨氮排泄率的影响[J].西南师范大学学报:自然科学版,2001, 26(1):45-50.
    孔祥会,刘占才,郭彦玲,等.汞暴露对草鱼器官组织中碱性磷酸酶活性的影响[J].中国水产科学, 2007, 14(2):270-274.
    雷衍之.养殖水环境化学[M].北京:中国农业出版社. 2004, pp:116-118.
    雷衍之.养殖水环境化学实验[M].北京:中国农业出版社.2006, pp:49-56.
    李飞,张其中,赵海涛.氨氮对南方鲶两种抗氧化酶和抗菌活力的影响[J].淡水渔业,2005, 35(6):11-15.
    李勇,蔡辉益,杨志刚,等.利用多元线性回归模型预测肉仔鸡日采食量[J ].营养饲料, 2010, 46(19): 47-50.
    李勇,王雷,蒋克勇,等.水产动物营养的生态适宜与环保饲料[J].海洋科学,2004, 3: 76-78.
    廖志洪,林小涛,王春,等.黄颡鱼仔、稚、幼鱼耗氧率及氨氮排泄率的初步研究[J].生态科学,2004,23(3):223-226.
    梁萌青,于宏,常青,等.不同诱食剂对3种鱼类诱食活性的研究[J ] .中国水产科学, 2000, 7 (1) :60 - 63.
    刘青海,冯静.微生物多肽对黑鲷免疫和生长的影响[J].海洋科学,2000,24(5):11-13.
    刘鹏,宋协法,葛长字.温度、体重和昼夜节律对大菱鲆幼鱼代谢的影响[J].河北渔业,2009, 5:24-27.
    刘旭阳.生物数学与生态数学模型[J ].湖北大学学报, 1996, 18(1):1-6.
    刘鹰.欧洲循环水养殖技术综述[J].渔业现代化,2006, (6):47-49.
    刘鹰.海水封闭循环水养殖工程的开拓与创新[C]//封闭循环水养殖—新理念·新技术·新方法.北京:现代教育出版社,2009.
    刘伟,李佐锋.温度对鲍蝙鱼生理生化指标的影响[J].东北大学报自然科学版,1996, 17(2):108-112.
    刘伟成,单乐州,谢起浪,等.温度对条石鲷摄食率、产卵量和受精率的影响[J].宁波大学学报,2008, 21(3):314-317.
    鲁钟.我国水产养殖业在世界水产养殖中占据主导地位[J].现代渔业信息, 2008,23(1): 21-22.
    马海清.水产养殖的灾变呼吸鱼虾营养生态学[J].中国饲料, 1996, 13: 18-20.
    麦康森.我国水产动物营养研究及饲料工业的现状和产业发展方向[C].全国水产学科前沿与发展战略研讨会论文汇编, 2005: 102-112.邱德全,周鲜娇,邱明生.氨氮胁迫下凡纳滨对虾抗病力和副溶血弧菌噬菌体防病效果研究[J].水生生物学报,2008, 32(4):455-461.
    任洪涛,赵淑娟.浅析影响鱼类摄食量的因素[J].中国水产,2004,11:71-72.
    沈文英,胡洪国,潘雅娟.温度和pH对南美白对虾消化酶活性的影响[J].海洋与湖沼,2004, 35(6):543-548.
    石芳永,张延青,刘鹰.海水生物滤器硝化动力学的研究进展[C]//封闭循环水养殖-新理念·新技术·新方法.北京:中国教育文化出版社,2009.
    宋波澜,林小涛,王伟军,等.不同流速下红鳍银鲫趋流行为与耗氧率的变化[J].动物学报,2008,54(4):686-694.
    孙德文,詹勇,许梓荣.环境温度在鱼类养殖业中的重要作用研究[J].水产养殖,2003, 24(2):36.
    孙学亮,邢克智,陈成勋,王庆奎,于学全,胡金城.急性温度胁迫对半滑舌鳎血液指标的影响[J].水产科学,2010, 29(7):387-392.
    田相利,任晓伟,董双林,等.温度和盐度对半滑舌鳎幼鱼消化酶活性的影响[J].中国海洋大学学报,2008, 38(6):895-901.
    童燕,陈立侨,庄平,等.急性盐度胁迫对施氏鲟的皮质醇、代谢反应及渗透调节的影响[J].水产学报,2007, 31(1):38-44.
    王安利,苗玉涛,王维娜,等.水产动物诱食剂的研究进展[J].中国水产科学, 2002,9(3):265-272.
    王华,李勇,陈康,等.工厂化养殖半滑舌鳎生长、摄食和水质的变化特征和规律[J].水生态学杂志, 2009,2(4):52-59.
    王海英,薛长湖,孙谧,等.大菱鲆肠道蛋白酶的分离纯化及性质的初步研究[J].水产学报, 2005, 29(5):624-629.
    王瑁,丘书院.花尾胡椒鲷幼鱼的生长率及生长耗能的研究[J].海洋科学, 2000,24(4):9-11.
    王文博,汪建国,李爱华,等.拥挤胁迫后鲫鱼血液皮质醇和溶菌酶水平的变化及对病原的敏感性[J].中国水产科学,2004,11(5):408-411.
    吴垠.几种养殖鱼类越冬生理生化指标的变化:血清蛋白组分[J].大连水产学院学报,1995, 10(4):19-26.
    王媛,杨康健,吴中,等.氯氰菊酯对鲫鱼血清中谷丙转氨酶及谷草转氨酶活力的影响[J].水产科学,2005, 9(24): 8-10.
    夏苏东,李勇,王文琪,等.蛋白质营养对高密度养殖凡纳滨对虾生长与免疫力的影响[J].海洋科学,2009, 5:51-58.
    谢冰,徐亚桐.废水生物处理方法和原理.北京:中国轻工业出版社.2007.
    徐钢春,顾若波,闻海波,等.环境胁迫对河蚬溶菌酶和超氧化物歧化酶活性的影响[J].安徽农业大学学报,2007, 34(1):74-78.
    徐增洪,石文雷,陆莺.河蟹配合饵料添加诱食剂的研究[J ] .淡水渔业, 1997, 27(2) :16 - 17.
    薛敏,李爱杰,张显娟.中国对虾幼虾饲料中最佳蛋白能量比的研究[J].青岛海洋大学学报,1998,28(2):245- 251.
    阎锡柱.甜菜碱对鲤鱼诱食促生长的研究[J ] .水产学杂志, 1996, 2 (9) :31 - 34.
    阎锡柱.饲料中添加甜菜碱对尼罗非鲫生长、肌肉组成和消化率的影响[J ].水产学报, 1998, 22 (2) :1 - 4.
    闫有利.甜菜碱及其盐酸盐用作鲤鱼饲料添加剂的初步研究[J ] .水产科学, 1994,13 (2) :13 - 15.
    杨振才,谢小军,孙儒泳.温度和体重对鲤鱼(Cyprinus carpio)最大摄食率和消化率的影响[J].河北师范大学学报(自然科学版), 1993, 4:68-72.
    叶元土,林仕梅,罗莉,等.温度、pH值对南方大口鲶、长吻鳜蛋白酶和淀粉酶活力的影响[J].大连水产学院学报,1998, 13(2):17-23.
    袁红霞,秦粉菊,徐世清.氰戊菊酯对鲫鱼肝胰脏和鳃组织免疫相关酶活性的影响[J].湖北农业学报, 2010, 49(2):412-415.
    袁磊,张潞.生态环境与生态饲料[J].饲料广角, 2001, 11: 16-18.
    张波,孙耀,郭学武等.黑鲪的最大摄食率与温度和体重的关系[J].海洋水产研究, 1999, 20(2):82-85.
    张立钢.猪生长的营养仿真模型的建立[D ].哈尔滨:东北农业大学,2000:30-33.
    张硕,董双林.中国对虾氮收支的初步研究[J].海洋学报, 1999, 21(6): 81-86.
    张小栓,李楠,蔡文贵,等.我国水产养殖水污染成因及其对策研究[J].中国渔业经济,2007,5:36-41.
    张兆琪,张美昭,李吉青,等.牙鲆耗氧率、氮排泄率与体质量及温度的关系[J].青岛海洋大学学报,1997, 27(4):483-489.
    支兵杰,刘伟,赵春刚,等.盐度对大麻哈鱼幼鱼消化酶及碱性磷酸酶活力的影响[J].上海海洋大学学报, 2009, 3:289-294.
    中国渔业年鉴.农业部渔业局.北京. 2005.
    中华人民共和国标准局.GB 17378.4-1998海洋监测规范[S].北京:中国标准出版社.1998.
    周景祥,陈勇,黄权,等.鱼类消化酶的活性及环境条件的影响[J].华北大学学报,2001, 2:70-74.
    周顺伍,邹思湘,姜涌明,等.动物生物化学(第三版) [M].中国农业出版社,2003, pp:156-175.
    Ali A, Al-Asgah N A. Effect of feeding different carbohydrate to lipid ratios on thegrowth performance and body composition of Nile Tilapia (Oreochromisniloticus) fingerlings[J].Anim. Res., 2001, 50:91-100.
    Almendras J M E. Ammonia excretion rates of the sea bass, Lates calcarifer, in freshand sea water[J]. The Israeli Journal of Aquaculture–Bamidgeh, 1994, 46:76-82.
    Anderson T A.水产养殖低污染饲料与饲料对策[J].亚洲水产养殖, 1997, 2: 1-8.
    Arnason T, Bj?rnsson B, Steinarsson A, et al.. Effects of temperature and bodyweight on growth rate and feed conversion ratio in turbot (Scophthalmusmaximus) [J].Aquaculture, 2009, 295:218-225.
    Bendiksen E A, Jobling M, Arnesen A M. Feed intake of Atlantic salmon parr Salmosalar L. in relation to temperature and feed composition[J]. Aquaculture
    Research, 2002, 33(7): 525-532.
    Bj(?)rnsson B, Steinarsson A, Arnason T. Growth model for Atlantic cod (Gadusmorhua): Effects of temperature and bodyweight on growth rate[J].Aquaculture,2007, 271:216-226.
    Bj(?)rnsson B, Steinarsson A, Oddgeirsson M. Optimal temperature for growth andfeed conversion of immature cod (Gadus morhua L.) [J]. ICES J. Mar. Sci. ,2001, 58:29-38.
    Black J L, Campbell R G, Williams I H, et al.. Simulation of energy and amino acidutilization in the pig[J]. Res Dev Agrie., 1986, 3:121-145.
    Blancheton J P. Developments in recirculation systems for Mediterranean fishspecies[J]. Aquac.eng., 2000, 22:17~31.
    Borgatti A R, Pagliari V, Ventrella V. Gill(Na+-K+)-ATPase involvement andregulation during salmonid adaptation to salt water. [J] Comp Biochem Physiol.,1992, 102A: 637-643.
    Brett J R. In: Hoar W S, Randall D J, Brett J R. (Eds.), Environmental Factors andGrowth. Fish Physiology, vol. 8. Academic Press, London, 1979, pp:599-675.
    Bureau D P, Kirkland J B, Cho C Y. The partitioning of energy from digestiblecarbohydrate by rainbow trout (Oncorhynchus mykiss).14th Symposium on
    Energy Metabolism of Farm Animals, SEP 14-20, 1997 NEWCASTLE, NORTH
    IRELAND. Energy Metabolism of Farm Animals, 1998, pp:163-166.
    Burel C, Person-Le Ruyet P, Gaumet F, et al.. Effects of temperature on growth andmetabolism in juvenile turbot[J]. J.Fish Bio1., 1996, 49:678-692.
    Buterbaugh G L and Willoughby H. A feeding guide for brook,brown and rainbowtrout[J]. Prog.Fish Cult., 1967, 29:210.
    Cho C Y,Kaushik S J. Nutritional energetics in fish:energy and protein utilization inrainbow trout (Salmo gairdneri) [M].World Rev NutrDiet., 1990, 61:l36-172.
    Christopher J B, Lena G. The acute phase response and innate immunity of fish[J].Developmental and Comparative Immunology, 2001, 25:725-743.
    Dabrowski K, Arslan M, Terjesen B F. The effect of dietary indispensable amino acidimbalances on feed intake: Is there a sensing of deficiency and neural signalingpresent in fish[J]. Aquaculture, 2007, 268: 136-142.
    Dosdat A, Servais F, Metailler R, et a1.. Comparison of nitrogenous losses in fiveteleost fish species[J]. Aquaculture, 1996, 141:107-127.
    Ellen K G., Wheaton F W. Engineering aspects of water quality monitoring andcontrol. In: Proceeding from the aquaculture symposium, Engineering aspects ofintensive aquaculture. Northeast regional agricultural engineering service, Ithaca,NY14853-5701, Cornell University, April 4~6.1991:201~232.
    Elliott J M . Number of meals in a day, maximum weight of food consumed in a dayand maximux rate feeding for brown trout[J]. L. Freshwate. Biol., 1995, 5:287-303.
    Emmans G C. Problems in modeling the growth of poultry[J]. World’S Poult Sci.,1995, 51 :78-89.
    Ewa Kulczykowska and Francisco Javier Sanchez Vazquez. Neurohormonalregulation of feed intake and response to nutrients in fish: aspects of feedingrhythm and stress[J]. Aquaculture Research, 2010, 41:654-667.
    Fivelstad S, Berghei A, Holland P M, et al.. Water flow requirements in the intensiveproduction of Atlantic salmon (Salmo salar L.) parr-smolt at two salinitylevels[J]. Aquaculture, 2004, 231(1-4): 263-277.Foss A, Imsland A K, Roth B, et al.. Interactive effects of oxygen saturation andammonia on growth and blood physiology in juvenile turbot[J]. Aquaculture,2007, 271:244-251.
    Franco-Nava M A, Blancheton J P, Deviller G, et al.. Effect of fish size and hydraulicregime on particulate organic matter dynamics in a recirculation aquaculturesystem: elemental carbon and nitrogen approach [J]. Aquaculture, 2004,239:179-198.
    Gadomski D M, Caddell S M. Effects of temperature on early life history stages ofCalifornia halibut Paralichthys californicus[J]. Fish. Bull., 1991, 89:567-576.
    Good C, Davidson J, Welsh C, et al.. The impact of water exchange rate on the healthand performance of rainbow trout Oncorhynchus mykiss in water recirculationaquaculture systems [J]. Aquaculture, 2009, 294(1-2): 80-85.
    Gowen R J,Bradbury N B. The Ecological impact of salmonid farming in coastalwaters:A review[J]. Oceanogr Mar Biol Ann Rev., 1987, 25: 563-575.
    Halver J E, Hardy R W. Fish Nutrition. Academy Press.USA. 2002, pp:29-37.
    Handeland S O, Imsland A K, Stefansson S O. The effect of temperature and fish sizeon growth, feed intake, food conversion efficiency and stomach evacuation rateof Atlantic salmon post-smolts[J]. Aquaculture, 2008, 283:36-42.
    Higuera M, Garzon A, Hidalgo M C, et al.. Influence of temperature and protein turnover rates in the white muscle of carp [J ]. Fish Physiology and Biochemistry,1998, 18 (1) :85 - 95.
    Himck B A and Peter R E. Bombesin-like immunoreactivity in the forebrain andpituitary regulation of anterior-pituitary hormone-release by bombesin ingoldfish[J]. Neuroendocrinology, 1995, 61(4):365-376.
    Hofer R. The Adaptation of digestive enzymes to temperature,seasons and diet in
    Rutilus rutilu and scardinius erythrophthalmus:amylase[J]. J Fish Biol., 1978,14:565-572.Hontela A, Stacey N E. Cyprinidae[C]//Munro A D, Scott A P, Lam T J.Reproductive Seasonality in Teleosts:Environmental Influence.Boca Roton:CRC Press, 1990:53-57.
    Imsland A K, Foss A, Gunnarsson S, et al.. The interaction of temperature and salinityon growth and food conversion in juvenile turbot(Scophthalmus maximus) [J].Aquaculture, 2001,198:353-367.
    Imsland A K, Foss A, Naevdal G, et al.. Countergradjent variation in growth and foodconversion efficiency of juvenile turbot[J]. J.Fish Bio1., 2000, 57:1213-1222.
    Imsland A K, Gunnarsson S, Asgeirsson A, et al.. Commercial-scale validation oftemperature-step rearing on growth physiology in turbot, Scophthalmusmaximus[J]. Journal of the World Aquaculture Society, 2008, 39:684-691.
    Imsland A K, Schram E, Roth B, et al.. Improving growth in juvenile turbot(Scophthalmus maximus Rafinesque) by rearing fish in switched temperatureregimes[J]. Aquaculture International, 2007, 15:403-407.
    Imsland A K, Sunde L M, Folkvord A, et al.. The interaction between temperature andsize on growth of juvenile turbot[J]. J. Fish Biol. , 1996, 49:926-940.
    Irwin S, Halloran J, FitzGerald R D. Stocking density, growth and growth variation injuvenile turbot(Scophthalmus maximus Rafinesque) [J]. Aquaculture, 1999, 178:77-88.
    James A F, Robert C S. Effect of temperature on diet ammonia excretion of fingerlingwalleye[J]. Aquaculture, 1992,102:115-126.
    Jobling M. Fish Bioenergetics. Chapman & Hall, London. 1994. pp:309.
    John C, Barnaby W, Michael R. Modeling carbon dioxide, pH, and un-ionizedammonia relationships in serial reuse systems [J]. Aquaculture Engineering, 2009,40:28-44.
    Kah O, Potet A, Danger J M, et al.. Characterization,cerabral distribution andgonadotropin release activity of neuropeptide Y(NPY) in the goldfish[J]. FishPhysiol Bionchem, 1989, 7:69-76.
    Keshavanath P, Manjappa K, Gangadhara B. Evaluation of carbohydrate rich dietsthrough common carp culture in manured tanks[J]. Aquac. Nutr., 2002,8:169-174.
    Kikuchi K. Nitrogen excretion rate of Japanese Flounder a criterion for designingclosed recirculating culture systems[J]. The Israeli Journal ofAquaculture-Bamidgeh, 1995, 47:112-118.
    King R D. Description of a growth simulation model for predicting the effect of dieton Broiler composition and growth[J]. Pouh Sci., 2001, 80:245-253.Koskela J, Pirhonen J, Jobling M. Effect of low temperature on feed intake, growthrate and body composition of juvenile Baltic salmon[J]. AquacultureInternational, 1997, 5(6): 479-488.
    Laining A, Traifalgar R F, Thu M. Influence of Dietary Phytic Acid on Growth, FeedIntake, and Nutrient Utilization in Juvenile Japanese Flounder, Paralichthysolivaceus[J]. Journal of the World Aquaculture Society, 2010, 41(5): 746-755.
    Leung K M Y, Chu J C W, Wu S S. Effects of body weight, water temperature andration size on ammonia excretion by the areolated grouper (Epinephelusareolatus) and mangrove snapper (Lutjanus argentimaculatus) [J]. Aquaculture,1999, 170 : 215-227.
    Lin X., Volkoff H, Narnaware Y, Bernier N J, et al.. Review. Brain regulation offeeding behaviour and feed intake in fish. Comparative Biochemistry andPhysiology, Part A. 2000.126:415-434.
    Ling J, Chen S. Impact of organic carbon on nitrification performance of differenttypes of biofiters[J]. Aquaculture Engineering, 2005, 33:150-162.
    Liu FG, Yang S D, Chen H C. Effect of temperature, stocking density and fish size onthe ammonia excretion in palmetto bass (Morone saxatilis x M-chrysops) [J].Aquaculture Research, 2009, 40(4): 450-455.
    Luo Y P, Xie X J. The effect of temperature on post-feeding ammonia excretion andoxygen consumption in the southern catfish[J]. J Comp Physiol B., 2009,179:681-689.
    MacLean E, Donaldson E M. The role of growth horrmone in the growth of inpoikiloterms[A]. Schrreibman M P, Seanes C G, Pang P K T. The endocrinologyof growth, development and metabolism in vertebrates [M]. New York:Academic Press, 1993, pp: 43-71.
    Mario V, Addison L L and Frank L C. Effect of variations in daily feeding frequencyand ration size on growth of shrimp, Litopenaeus vannamei(Boone), inzero-water exchange culture tanks [J]. Aquaculture, 1999,179:141-148.
    Martinez-Alvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: Biotic andabiotic factors[J]. Rev Fish Biol Fish., 2005, 15:75-88.
    McCormick S D. Methods for the nonlethal gill biopsy and measurements ofNa+-K+-ATPase activity[J]. Can.J.Fish.Aquat.Sci., 1993, 50:656-658.
    McDonald P, Edwards R A, Greenhalgh J F D. Animal Nutrition. Longman Scientificand Technical, New York,(赵义斌和胡令浩,主译) pp:207-209.
    Mead J W. Allowable ammonia for fish culture[J]. Pro gressive Fish Culturist., 1985,47:135-145.
    Moons L, Batten T F, Vandesande F. Coparative distribution of substance P (BP) andcholecytokinin(CCK) bingding sites and immunoreactivity in the brain of the seabass[J]. Peptides, 1992, 13:37-46.
    Munillamoran R, SaboridoRey F. Digestive enzymes in marine species. I. Proteinaseactivities in gut from redfish(Sebastesrnentella),seabrearn(Sparus aurata)andturbot(Scophthalmus maximus)[J]. Comp Biochem Physiol., 1996,113B(2):395-402.
    National Research Council (NRC). Predicting Feed Intake of Food-ProducingAnimals. National Academy Press. Washington D C, USA, 1987, pp:29-35.
    National Research Council(NRC). Predicting Feed Intake of Food-Producing Animals.Washington, D.C.: National Academy Press. 1987, pp:16-25.
    National Research Council. Nutrient Requirements of Swine,10th RevisedEdition .Washington D C:National Academy press, 1998:10-11.
    National Research Council. Nutritent Requirement of Cold Water Fishes.Washington,D.C.: National Academy Press. 1981. pp:101-123.
    Oruc E, Usta D. Evaluation of oxidative stress responses and neurotoxicity potentialof diazinon in different tissues of Cyprinus carpio [J]. Environmental Toxicologyand Pharmacology, 2007, 23:48-55.
    Pedersen T and Jobling M. Growth rates of large, sexually mature cod, Gadusmorhua,in relation to condition and temperature during an annual cycle[J].1989,81:161-168.
    Pedro N, Alonso-gomez A L, Gancedo B, et al.. Effect of alphahelical-CRF onfeeding in goldfish[J]. Behav Neurosci., 1997,111:398-403.
    Pedro N, Pinillos M L, Valenciano A I, et al.. Inhibitory effect of serotonin on feedingbehavior in goldfish[J]. Peptides, 1998, 19:505-511.
    Peng C and Peter R E. Neuroendocrine regulation of growth hormone secretion andgrowth in fish[J]. Zoological Studies, 1997, 36(2):79-89.
    Peragon J, Barroso J B, Garcia-Salguero L, et al.. Carbohydrates affectprotein-turnover rates, growth, and nucleic acid content in the white muscle ofrainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1999, 179: 425-437.
    Person-Le Ruyet J, Galland R, Le Roux A, et al.. Chronic ammonia toxicity injuvenile turbot, Scophthalmus maximus[J]. Aquaculture, 1997, 154:155-171.
    Pirozzi I, Booth M A, Allen G L. The interactive effects of dietary protein and energyon feed intake, growth and protein utilization of juvenile mulloway(Argyrosomus japonicus) [J]. Aquaculture Nutrition, 2010, 16:61-71.
    Porter C B, Krom M D, Robbins M G, et al.. Ammonia excretion and total N budgetfor gilthead seabream (Sparus aurata) and its effect on water qualityconditions[J]. Aquaculture, 1987, 66: 287-297.
    Robertson A I, Pheillips M J. Mangrove as filters of shrimp pond effluent:predictionsand biogeochemical research needs[J]. Hydrobio-logia, 1995, 295: 311-321.
    Schram E, Roques J A C, Abbink W, et al.. The impact of elevated water ammoniaconcentration on physiology, growth and feed intake of African catfish (Clariasgariepinus) [J].Aquaculture, 2010, 306:108-115.
    Schram E, Verdegem M C J, Widjaja R T O B H, et al.. Impact of increased flow rateon specific growth rate of juvenile turbot (Scophthalmus maximu,Rafinesque1810) [J]. Aquaculture, 2009, 292:46-52.
    Shiro H. Characterization of Na+-K+-ATPase in the freshwater crayfish, Procambarusclaki(Girard) [J]. Comp Biochem Physiol., 1977, 56B:135-138
    Shozo H, Sugiura, Faye M, et al.. Effects of dietary supplements on the availability ofminerals in fish meal:preliminary observations[J]. Aquaculture, 1998, 160(4):283-303.
    Silverstein J, Breinginger J, Baskin D, et al.. Neuropeptide Y abundance and geneexpression in the salmon brain: A role in regulation of food intake[J]. Am Zool.,1996, 36:82A.
    Slikavuoplo S I, Dale T, Mortensen A. The effects of stocking density on gonadgrowth, survival and feed intake of adult green sea urchin (Strongylocentrotusdroebachiensis) [J]. Aquaculture, 2007, 262: 78-85.
    Stejskal V, Kouril J, Valentova O, et al.. Size-related oxygen consumption andammonia excretion of Eurasian perch (Perca fluviatilis L.) reared in arecirculating system[J]. Aquaculture Research, 2009, 41(1):135-142.
    Strange R J , Schreck C B. Anesthetic and handling stress on survival and cortisolconcentration in yearling Chinook salmon ( Oncorhynchus tshawytscha) [J ]. JFish Res Bd Can., 1978, 35: 345 - 349.
    Tran-Duy A, Smit B, Van Dam A A. Effects of dietary starch and energy levels onmaximum feed intake, growth and metabolism of Nile tilapia, Oreochromisniloticus[J]. Aquaculture, 2008, 277: 213-219.
    Van Ham E H, Berntssen M H G, Imsland A K, et al... The influence of temperatureand ration on growth, feed conversion, body composition and nutrient retentionof juvenile turbot (Scophthalmus maximus)[J]. Aquaculture, 2003, 217:547-558.
    Volkoff H, Canosa L F, Unniappan S, et al.. Review: neuropeptides and the control offeed intake in fish. General and Comparative Endocrinology[J]. 2005, 142:3-19.
    Volkoff H, Peter R E. Interactions between orexin A, NPY and galanin in the controlof feed intake of the goldfish, Carassius auratus. Regulatory Peptides, 2001,101:59-72.
    Wang H Y,Wang Y J,Wang Q Y, et al.. Purification and characterization of stomachprotease from the turbot (Scophthalmus maximus L.) [J]. Fish Physiology andBiochemistry, 2006,32:17-188.
    Wheaton F W, Hochheimer J N, Kaiser G E, et al.. Nitrification principles.In:Timmons, M.B.,Losordo,T.M.(Eds), Aquqculture Water Resue Systems:Engineering Design and Management. Elsevier, Amsterdam. 1994:101-126.
    Whittemore C T, Faweett R H. Theoretical aspects of a flexible model to simulateprotein and lipid growth in pigs[J]. Anim Prod., 1976, 22:87-96.
    Whittemore C T. Development of recommended energy and protein allowances forgrowing pigs[J]. Agric Syst., 1983, 11:159-186.
    Wu S S. The environmental impact of marine fish culture: Towards a sustainablefuture[J]. Marine Pollution Bulletin, 1995, 31: 159-166.
    Yamamoto T, Konishi K, Shima T, et al.. Infuence of dietary lipid and carbohydrate ofrainbow trout Oncorhynchus mykiss, under selffeeding conditions[J]. FisheriesSciences, 2001, 67:221-227.
    Yigit M, Ergun S, Turker A, et al.. Using ammonia nitrogen excretion rates as anindex for evaluating protein quality of prawns in turbot (Psetta maeotica)nutrition[J]. Turkish Journal of Veterinary & Animal Sciences, 2005, 29(6):1343-1349.
    Zakes Z, Karpinski A. Influence of water temperature on oxygen consumption andammonia excretion of juvenile pikeperch, Stizostedion lucioperca (L.) reared in arecirculating system[J]. Aquaculture Research, 1999, 30(2):109-144.
    Zhang Z Z, Goodwin A E, Pfeiffer T J. Effects of temperature and size on ammoniaexcretion by fasted golden shiners[J]. North American Journal of Aquaculture,2004, 66(1):15-19.
    Zhu S M, Chen S L. Effects of air-diffussion turbulent flow on nitrification rate infixed film biofilters: a comparison study [J]. North American Journal ofAquaculture, 2001, 65:240-247.
    Zhu S M, Chen S L. The impact of temperature on nitrification rate in fixed filmbiofilters[J].Aquacultural engineering, 2002, 26:221-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700