用户名: 密码: 验证码:
群桩负摩阻力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基负摩阻力问题是工程界广泛关注和研究的重点和难点课题之一。由于问题的复杂性,目前仍有很多问题没有得到很好地解决。本文采用模型试验、数值模拟和理论计算相结合的方法,对竖直/倾斜群桩中各位置桩基的桩身下拽力、中性点位置、群桩效应以及地基土固结时间效应、桩顶荷载与地面堆载的施荷顺序等影响因素进行了系统研究;基于极限平衡原理建立了负摩阻力群桩效应系数计算公式和群桩竖向抗拔承载力计算公式:开发了减少负摩阻力措施的新方法——扩底楔形桩及其施工方法,并对其力学特性进行了初步探讨,以求得到一些能为工程设计提供有益参考的结论。具体地,论文主要研究内容及所取得的主要研究成果包括以下几个方面:
     (1)设计了考虑桩周土体含水率、桩端持力层刚度特性等因素对桩身下拽力和中性点位置影响的模型试验,结合数值模拟方法分析了桩顶荷载与地面堆载的施荷顺序、桩基长径比以及桩-土摩擦系数等因素对桩基负摩阻力特性的影响。研究结果表明,先进行地面堆载后进行桩顶加载情况比先进行桩顶加载后进行地面堆载情况的桩身轴力和桩顶下拽位移要小,同时加载情况所得的相应值介于两者之间;相同地面堆载等级下,摩擦端承型桩负摩阻力作用引起的桩身下拽力比端承型桩情况小;摩擦端承型桩,当桩周土体含水率在最优含水率附近时,土层的下陷量较大致使桩体沉降量也相对增大,中性点位置反而有所上升。
     (2)设计了桩顶荷载与地面堆载共同作用下竖直单、群桩的模型试验,结合数值模拟方法对竖直群桩的负摩阻力特性进行了系统研究。分析了地基土固结时间效应、加载速率与加载方式、桩间距、桩基位置(中心桩、边桩和角桩)、桩基数目以及地面堆载等级等因素对桩身下拽力、桩顶下拽位移和中性点位置的影响规律。研究结果表明,随着地基土固结沉降的发展,桩侧负摩阻力值也得到发展并逐渐趋于稳定,表现出明显的时间效应;当桩-土相对位移达到一个较小值(几毫米)时,桩侧负摩阻力就能得到充分发展;桩侧负摩阻力的发展随着加载速率的减慢而减小并最终趋于一个稳定值;分级加载比直接加载产生的桩身下拽力值略小,随着荷载等级的增大,两者的差异减少并最终趋于一致;由于受群桩效应的影响,群桩中角桩的桩身下拽力值和桩顶下拽位移值大于边桩和中心桩的相应值。
     (3)设计了桩顶荷载与地面堆载共同作用下倾斜单、群桩的模型试验,结合数值模拟方法对倾斜群桩的负摩阻力特性进行了研究,并与相应的竖直单、群桩进行了对比分析。探讨了桩基倾斜角、桩间距等因素对桩身下拽力、桩项下拽位移和侧向位移的影响规律。研究结果表明,由于受桩基倾斜角的影响,群桩效应相对不明显;在小倾斜角范围内,桩身下拽力沿桩深方向的分布规律与竖直桩基类似,且桩身下拽力随着桩基倾斜角的增大而略有所增大,桩顶下拽位移随着桩基倾斜角的增大而有明显增大;地面堆载作用下,斜群桩中桩顶产生明显的侧向位移,并且随着地面堆载等级、桩基倾斜角的增大而增大。
     (4)基于极限平衡原理,假定土体受力时对桩体作用的有效影响面积,建立了负摩阻力作用下群桩效应系数的理论计算公式。该计算公式综合考虑了群桩布置形式、桩间距、桩基长径比以及桩周土体性质等因素对负摩阻力群桩效应系数的影响;该公式计算简便且公式中的参数容易得到,尤其是对有效影响面积进行简化后的计算模型。通过运用该公式对本文模型试验及工程实例进行计算,并与实测结果进行比较分析,计算结果与实测结果吻合良好,从而验证该计算方法的准确性。
     (5)提出了一种既可以提高桩基承载力又能有效降低负摩阻力对桩基影响的新桩型——扩底楔形桩,并申请了国家发明专利(专利号:200810011854.4)。简要介绍了该新桩型的施工工艺和力学机理;基于数值模拟分析方法,初步探讨了其竖向承载力、竖向抗拔力以及地面堆载引起的桩侧负摩阻力等力学特性,并与等体积混凝土的常规扩底桩、楔形桩和等截面桩进行对比分析;研究了桩端土体与桩周土体模量比、桩-土摩擦系数、楔形角、扩大头直径以及桩体模量等因素对扩底楔形桩力学性状的影响规律。研究结果表明,扩底楔形桩桩身轴力沿桩深方向的分布规律兼有楔形桩和扩底桩的特点;当桩端土体与桩周土体模量比适中时,选用扩底楔形桩比较适合,可以同时发挥桩侧摩阻力和桩端阻力值的优势;相同地面堆载等级作用下,扩底楔形桩中桩侧负摩阻力引起的桩顶下拽位移最小、桩身下拽力值介于常规楔形桩和扩底桩两者之间。由此说明,扩底楔形桩是降低负摩阻力对桩基影响的有效方法之一。
     (6)基于极限平衡原理,假定桩基上拔破坏时的破坏面是由倒置截顶圆锥面和圆柱面组成的复合破坏面,建立了计算单、群桩极限抗拔力的简单理论计算公式。利用“最大最小值原理”确定复合破坏面的临界桩长L_(cr)和破坏曲线中的待定系数N,从而确定破坏面形状和极限抗拔力值P_u。该计算公式考虑了桩基长径比、土体容重、土体凝聚力、内摩擦角以及桩-土摩擦系数等因素对破坏面形状和极限抗拔力值的影响。通过运用简化计算公式和数值模拟方法对工程实例进行计算,并与实测结果进行对比分析,理论计算结果与数值模拟、实测结果吻合良好,由此说明采用本文方法计算桩基的极限抗拔力的可靠性。
Negative skin friction is one of most important and difficult projects on pile foundation design field,which is widely attentioned by engineers.However,the problem of negative skin friction is very complex and there are some issues that have not been well solved in engineering practice.Study on dragload,neutral point,group effect and considering consolidation time of soil,loading sequence effect for vertical or inclined pile groups are taken by using model test,numerical simulation and theoretical calculation methods.Based on limit equilibrium principle,the theoretical calculation formulas for pile group effect coefficient under negative skin friction and uplift capacity of pile groups are built.A new method:pedestal wedge pile which can reducing the influence of negative skin friction is developed,and its mechanical properties are preliminary studied.These researches may be providing helpful reference conclusions for engineering design.Concretely,the main research contents and results of this paper includes:
     (1) Model test on dragload and neutral point which influenced by the water content of pile surrounding soil and the stiffness of pile end soil are designed.Combined with numerical simulation method,the characteristics of negative skin friction which influenced by loading sequence of pile head load and surface load,friction coefficient of pile-soil interface and length-diameter ratio of pile are discussed.The results show that,in surface loading after pile head load conditions,the dragload and downdrag which caused by negative skin friction are maximum.The dragload of end bearing pile are larger than that of friction end bearing pile under the same surface load.When the water content of pile surrounding soil is close to optimum water content,the position of neutral point is higher than other conditions.
     (2) Model test and numerical simulation on negative skin friction for vertical single pile and pile groups under pile head load and surface load are designed.Dragload,downdrag and neutral point which are influenced by soil consolidation progresses,loading rate or mode,pile spacing,the positions of pile(central pile,edge pile and corner pile),the numbers of piles and surface load grade are discussed.The results show that,negative skin friction increases rapidly at beginning and then slowly down,finally stabilizes at a constant as soil consolidation progresses.Negative skin friction can be fully developed when the relative displacement of pile-soil reaches to a small value(several mm).Negative skin friction decreases rapidly at beginning and then slowly down,finally stabilizes at a constant as loading rate decrease.Dragload caused by step loading mode is a little smaller than that caused by direct loading modes,and the difference become smaller when surface load increasing.Dragload and downdrag of comer pile are larger than that of edge pile and central pile because of pile group effect.
     (3) Model test and numerical simulation on negative skin friction for inclined single pile and pile groups under pile head load and surface load are designed,and compares with the results of relevant vertical single pile and pile groups.Dragload,downdrag and neutral point which are influenced by tilt angles and pile spacing are discussed.The results show that,pile group effect is relative not significantly because of the existing of tilt angles.In small tilt angles range,the dragload distributions along pile depth of inclined pile is similar to that of vertical pile,and its values increased slightly with the tilt angles increasing.Downdrag increased significantly with the tilt angles increasing.The lateral displacement is developed significantly under surface loading,and its values increased with the surface load or tilt angles increasing.
     (4) Based on limit equilibrium principle,assuming an effective influence area around various locations of piles,the theoretical calculation formula for pile group effect coefficient under negative skin friction is built.Various pile parameters such as the arrangement of group piles,pile spacing,length-diameter ratio of piles and soil properties such as density,angle of internal friction and pile-soil interface friction coefficient are considered in the formula.This formula can be calculated easily,and the parameters in the formula can also be obtained easily.Especially,when the effective influence area calculation method is simplified,the formula is more easy to taken.The calculatied values are then compared with model test results carried out by this paper and also with the engineering example results reported on literature.The calculation results are found to be in good agreement with the measured values, which validating the accuracy of the developed calculation formula.
     (5) A new method:pedestal wedge pile which can improving bearing capacity and reducing the influence of negative skin friction is developed,and national patent(patent number:200810011854.4) is application.The construvtion technology and mechanical mechanism of new pile type are brief introduced.Its mechanical properties of bearing capacity,uplift capacity and negative skin friction are preliminary studied,and the conventional pedestal pile,wedge pile and equal section pile which are in the same concrete volume are comparative analysied.The mechanical properties of pedestal wedge pile which are influenced by modulus ratio of pile end soil and pile surrounding soil,friction coefficient of pile-soil interface,wedge angles,diameter of enlarged pile head and pile modulus are discussed.The results show that,the mechanical properties of pedestal wedge pile have the characteristics of both conventional pedestal pile and wedge pile.When modulus ratio of pile end soil and pile surrounding soil is in middle,it is suitable to chose pedestal wedge pile.It can develop pile shaft and pile top resistance adequately in the same time.In the same surface load,downdrag of pedestal wedge pile is minimum,and dragload are between conventional wedge pile and pedestal pile.It is showed that,pedestal wedge pile is one of effective methods which can reducing the influence of negative skin friction.
     (6) Based on limit equilibrium principle,assuming a composite failure surface(inverted truncated circular pyramidal and cylindrical surface),the theoretical calculation formula for uplift capacity of single pile and pile groups is built."Maximum minimum principle" is used to determining the coefficients of critical length of pile(L_(cr)) and coefficient of failure curves (N),which are assumed for the failure surface shape.Then the failure surface and uplift capacity(P_u) are determined.Various pile parameters such as the arrangement of pile groups, pile spacing,pile length,pile diameter and soil properties such as unit weight,angle of internal friction and pile-soil interface friction angle,which influencing the uplift capacity of pile groups directly are considered in the formula.The calculatied values of uplift capacity and failure surface of pile groups are then compared with numerical simulation results and experimental results.The calculation results are found to be in good agreement with numerical simulation and measured values,which validating the accuracy of the developed calculation method.
引文
[1]史佩栋.桩基工程手册[M].北京:人民交通出版社,2008.
    [2]黄强.桩基工程若干热点技术问题[M].北京:中国建材工业出版社,1996.
    [3]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984.
    [4]赵明华.倾斜荷载下桩基的受力分析[D](博士学位论文).长沙:湖南大学,2001.
    [5]郑刚.高等基础工程学[M].北京:机械工业出版社,2007.
    [6]Terzaghi P.Soil Mechanics in Engineering Practice[M].New York:John Willey and sons,2rd Edition,1967.
    [7]Fellenius B H.Basics of foundation design[M].Richmond,British Columbia:BiTeech Publishers,1999.
    [8]Inoue Y,Tamaoki K,Ogai T.Settlement of building due to pile downdrag[A].Proceedings 9th International Conference on Soil Mechanics and Foundation Engineering[C].Tokyo:[s.n.],1977:561-564.
    [9]罗志强.桥台桩基负摩擦力的形成分析与消除措施[J].中南公路工程.2002,27(4):48-50.
    [10]袁灯平,黄宏伟,程泽坤.软土地桩基侧负摩阻力研究进展初探[J].土木工程学报.2006,39(2):53-60.
    [11]中华人民共和国国家标准.建筑桩基技术规范(JGJ94-2008)[S].北京:中国建筑工业出版社,2008.
    [12]中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002.
    [13]中华人民共和国交通部.公路桥涵地基与基础设计规范(JTG D63-2007)[S].北京:人民交通出版社,2007.
    [14]Joharmessen L J,Bjerrum L.Measurement of the compression of a steel pile to rock due to settlement of the surrounding clay[A].Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering[C].Montreal:[s.n.],1965:261-264.
    [15]Endo M,Minou A,Kawasaki T,et al.Negative skin friction acting on steel piles in clay[A].Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering[C].Mexico:[s.n.],1969:85-92.
    [16]Fellenius B H.Downdrag on piles in clay due to negative skin friction[J].Canadian Geotechnical Journal.1972,9(4):323-337.
    [17]Walker L K,Darvall P,Le P.Drag-down on coated and uncoated piles[A].Proceedings of the Sth International Conference on Soil Mechanics and Foundation Engineering[C].Moscow:[s.n.],1973:257-262.
    [18]Okabe T.Large negative friction and friction-flee pile methods[A].Proceedings of the 9th International Conference on Soil Mechanics and Foundations Engineering[C].Tokyo:[s.n.],1977:679-682.
    [19]魏汝龙.大面积填土对邻近桩基的影响[J].岩土工程学报.1982,4(2):132-137.
    [20]Combarieu O.Frottement n(?)gatif sur les pieux,Rapport de recherche LCPC No.136[R].Paris: Laboratoire Central des Ponts et Chauss(?)es,1985.
    [21]Jeong S.Nonlinear three dimensional analysis of downdrag on pile groups[D](Phd thesis).College Station:Texas A & M University,1992.
    [22]李光熠,汪彬.钢管桩负摩阻力及水平位移的测定[J].岩土力学.1988,9(2):89-97.
    [23]Phamvan P.Negative skin friction on driven piles in Bangkok subsoils[D](Phd thesis).Bangkok:Asian Institute of Technology,1989.
    [24]Little J A.Downdrag on piles:review and recent experimentation[A].Proceedings of Settlement 94:Vertical and Horizontal Deformations of Foundations and Embankment,ASCE.[C].New York:Geotechnical Special Publication,No.40,1994:1805-1826.
    [25]Acar Y B,Avent R,Taha M.Downdrag.on friction piles:A ease history[A].Proceedings of Settlement 94:Vertical and Horizontal Deformations of Foundations and Embankment,ASCE[C].New York:Geoteehnical Special Publication,No.40,1994:986-999.
    [26]李大展,滕延京,何颐华,等.湿陷性黄土中大直径扩底桩垂直承载性状的试验研究[J].岩土工程学报.1994,16(2):11-21.
    [27]张献辉,高永贵.自重湿陷性黄土中大直径桩荷载传递机理试验研究[J].西安建筑科技大学学报.1996,28(4):467-471.
    [28]马时冬.桩身负摩阻力的现场测试与研究[J].岩土力学.1997,18(1):8-15.
    [29]张广林.国营524厂金工车间单桩负摩擦力试验[J].岩土工程技术.1998(1):41-47.
    [30]吴文,徐松林,吕福庆,等.大型堆载条件下桩土性状的试验研究[J].岩土力学.1998,19(3):65-71.
    [31]冯忠居,谢永利,张宏光,等.地面水对黄土地区桥梁桩基承载力影响试验研究[J].岩石力学与工程学报.2005,24(10):1758-1765.
    [32]律文田,冷伍明,王永和.软土地区桥台桩基负摩阻力试验研究[J].岩土工程学报.2005,27(6):45-55.
    [33]陈雪华,律文田,王永和.台后填土对桩基的影响分析[J].岩土工程学报.2006,27(7):910-913.
    [34]齐静静.湿陷性黄土地区地基处理试验研究[D](硕士学位论文).南京:东南大学,2005.
    [35]周淼.结构性软土固结及桩基负摩阻性状研究[D](硕士学位论文).杭州:浙江大学,2005.
    [36]王波,王保田,张福海,等。膨胀土地基桥台桩基负摩阻力现场试验研究[J].河海大学学报(自然科学版).2006,34(4):447-450.
    [37]徐兵,曹国福.部分桩身在回填土中的钻孔灌注桩负摩阻力试验研究[J].岩土工程学报.2006,28(1):56-58.
    [38]Fellenius B H.Results from long-term measurement in piles of drag load and downdrag[J].Canadian Geotechnical Journal.2006,43(4):409-430.
    [39]黄雪峰,陈正汉,哈双,等.大厚度自重湿陷性黄土中灌注桩承载性状与负摩阻力的试验研究[J].岩土工程学报。2007,29(3):338-346.
    [40]王兰民,孙军杰,黄雪峰,等.黄土场地震陷时桩基负摩阻力的现场试验研究[J].岩土工程学报.2008,30(3):341-348.
    [41]肖俊华,周国然,袁聚云,等.高桩码头桩基础负摩擦力现场试验研究——上海洋山深水港工程 现场试验[J].岩土力学.2008,29(4):1097-1102.
    [42]夏力农,杨秀竹.桩顶荷载影响负摩阻力的现场试验与数值模拟[J].铁道科学与工程学报.2008,5(5):46-49.
    [43]刘争宏.浸水条件下湿陷性黄土场地桩基特性研究[D](硕士学位论文).西安:西安理工大学,2008.
    [44]Fellenius B H,Siegel T C.Pile drag load and downdrag in a liquefaction event[J].Journal of Geoteehnieal and Genenvironmental Engineering,ASCE.2008,134(9):1412-1416.
    [45]Sawaguehi M.Model tests in relation to a method to reduce negative skin friction by tapering a pile[J].Soils and Foundations.1982,22(3):130-131.
    [46]Shibata T,Sekiguehi H,Yukitomo H.Model test and analysis of negative skin friction acting on piles[J].Soils and Foundations.1982,22(2):29-39.
    [47]Rao S N,Krishnamurthy N R.Studies of negative skin friction in model pile[J].Geoteehnical Engineering.1982,13:83-91.
    [48]Kaniraj S R,Hora P.An experimental study of downdrag on model piles[A].Proceedings of the 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering[C].Kyoto:[s.n.],1987.
    [49]Toma T M.A model study of negative skin friction on a fixed base pile in soft clay[D](Phd thesis).Edinburgh:Heriot-watt University,1989.
    [50]Ergun M U,Sonmez D.Negative skin friction from surface settlement measurements in model group tests[J].Canadian Geotechnical Journal.1995,32(6):1075-1079.
    [51]吴一伟,费涵昌,林侨兴,等.砂土液化对桩基的影响[J].同济大学学报.1995,23(3):360-364.
    [52]陆明生.桩基表面负摩擦力的试验研究及经验公式[J].水运工程.1997(5):54-58.
    [53]Lee C J,Chen H T,Wang W H.Negative skin friction on a pile due to excessive ground water withdrawal[A].International Conference Centrifuge 98[C].Tokyo:[s.n.],1998:513-518.
    [54]周国庆,杨维好.中砂融沉位移与单桩负摩阻力关系得试验研究[J].中国矿业大学学报.1999,28(6):535-538.
    [55]谢耀峰,王云球.码头桩基负摩擦力的模型试验研究[J].建筑结构.2004,34(12):29-30.
    [56]张晓健,刘汉龙,高玉峰.PCC单桩性状室内模型试验研究[J].岩土力学.2004,25(9):1495-1498.
    [57]张晓健,刘汉龙,高玉峰.PCC桩桩芯土室内模型试验研究[J].土木工程学报.2005,38(12):99-102.
    [58]苗鹏,肖宏彬,张春顺.膨胀土中桩的负摩阻力时程性研究[J].株州工学院学报.2006,20(6):98-100.
    [59]谢依航.基桩负摩擦力之模型试验[D](硕士学位论文).台北:国立中央大学,2006.
    [60]杨庆,孔纲强,郑鹏一,等.堆载条件下单桩负摩阻力模型试验研究[J].岩土力学.2008,29(10):2805-2810.
    [61]王小军.黄土地区高速铁路建设中的重大工程地质问题研究[D](博士学位论文).兰州:兰州大学,2008.
    [62]孙波.堆载作用下的单桩承载力特性研究[D](硕士学位论文).上海:上海交通大学,2008.
    [63]孔纲强,杨庆,郑鹏一,等.考虑时间效应的斜桩基负摩阻力室内模型试验研究[J].岩土工程学报.2009,31(4):.
    [64]Wong K S,Teh C I.Negative skin friction on piles in layered soil deposits[J].Journal of Geotechnical Engineering,ASCE.1995,121(6):457-465.
    [65]Teh C I,Wong K S.Analysis of downdrag on pile groups[J].Geotechnique.1995,45(2):191-207.
    [66]施建勇,赵维炳,周春儿.钢桩负摩擦分析[J].岩土工程学报.1995,17(2):53-59.
    [67]Chow Y K,Lim C H,Karunaratne G P.Numerical modeling of negative skin friction on pile groups[J].Computers and Geoteehnics.1996,18(3):201-204.
    [68]陈福全,龚晓南,马时冬.桩的负摩阻力现场试验及三维有限元分析[J].建筑结构学报.2000,21(3):77-80.
    [69]游雅惠.降水引致單椿基礎負摩擦力行为之有限元素分析[D](硕士学位论文).台北:国立中央大学,2001.
    [70]Lee C J,Bolton M D,Al-tabbaa A.Numerical modelling of group effects on the distribution of dragloads in pile foundations[J].Geoteehnique.2002,49(5):325-335.
    [71]Lee C J,Ng W W.Development of downdrag on piles and pile groups in consolidating soil[J].Journal of Geoteehnical and Geoenvironmental Engineering.2004,130(9):905-914.
    [72]袁灯平,黄宏伟,马金荣.软土地基桩侧负摩阻力三维非线性数值分析[J].地下空间.2004,24(4):456-460.
    [73]Jeong S,Lee J,Lee C J.Slip effect at the pile-soil interface on dragload[J].Computers and Geoteehnics.2004,31(3):115-126.
    [74]Lee C J,Lee J H,Jeong S.The influence of soil slip on negative skin friction in pile groups connected to a cap[J].Geotechnique.2006,56(1):53-56.
    [75]Comodromos E M,Bareka S V.Evaluation of negative skin friction effects in pile foundations using 3D nonlinear analysis[J].Computers and Geoteehnics.2005,32(3):210-221.
    [76]Hanna A M,Sharif A.Drag force on single piles in clay subjected to surcharge loading[J].International Journal of Geomeehanics,ASCE.2006,6(2):89-96.
    [77]李晋.黄土桩基桩土共同作用性状仿真与试验研究[D](博士学位论文).西安:长安大学,2006.
    [78]夏力农,王星华,蒋春平.桩顶荷载对桩基负摩阻力特性的影响[J].防灾减灾工程学报.2005,25(4):359-362.
    [79]夏力农,王星华.桩体材料弹性模量对桩基负摩阻力特性的影响[J].防灾减灾工程学报.2006,26(2):143-146.
    [80]Hoque M A.Coupled consolidation model for negative skin friction on plies in clay layers[D](Master thesis).California:Concordia University,2006.
    [81]Habib M A.Numerical analysis of pile groups in Muiti-layered soil subjected to negative skin friction[D](Master thesis).Montreal:Concordia University,2006.
    [82]吉战兵.上海国际航运中心洋山深水港区一期工程斜顶桩板桩承台结构设计及研究[D](硕士学位论文).上海:上海交通大学,2006.
    [83]赵敏,张玉,刘银利.桩负摩阻力时间效应分析[J].地下空间与工程学报.2007,3(7):1327-1329.
    [84]刘汉龙,张晓健。负摩擦作用下PCC桩沉降计算[J].岩土力学.2007,28(7):1483-1486.
    [85]屠毓敏,王建江.邻近堆载作用下排桩负摩擦力特性研究[J].岩土力学.2007,28(12):2652-2655.
    [86]赵明华,刘思思.多层地基单桩负摩阻力的数值模拟计算[J].岩土工程学报.2008,30(3): 336-340.
    [87]聂如松,冷伍明,杨奇,等.填土荷载对邻近桩排影响的有限元分析[J].公路交通科技.2008,25(4):73-78.
    [88]吴兴龙,吴雅峰,梁民阳,等.桩承式围堤对邻近桥梁桩基的影响分析[J].岩土力学.2008,29(7):2004-2008.
    [89]Kong G Q,Yang Q,Luan M T.Study of loading rate effects on characteristics of negative skin friction for pile groups[J].Electronic Journal of Geoteehnical Engineering.2008,13(L):1-12.
    [90]杨维好,黄家会.负摩擦力作用下端部嵌固桩的竖向稳定性分析[J].土木工程学报.1999,32(2):59-61.
    [91]魏鉴栋,凌道盛,陈云敏.受大面积堆载影响负摩擦桩的Q-S曲线分析[J].浙江大学学报(工学版).2007,41(1):166-170.
    [92]Elmasry M A.The negative skin friction of bearing piles[D](Master thesis).Zurich:Swiss Federal Institute of Teehnoiogy,1963.
    [93]Broms B.Negative skin friction[A].Proceedings 6th Asian Conference on Soil Mechanics and Foundation Engineering[C].Singapore:[s.n.],1979:41-75.
    [94]刘明振.含有自重湿陷性黄土夹层的场地上群桩负摩擦力的计算[J].岩土工程学报.1999,21(6):749-752.
    [95]Garlanger J E,Lambe T W.Proceedings of a symposium on downdrag of piles,Research Report No.73-56,MIT[R].Massachusetts:Cambridge,1973.
    [96]日本建筑学会.建筑基础构造设计规准[S].1974.
    [97]Seed H B,Reese L C.The action of soft clay along friction piles[J].Transactions,ASCE.1957,122(SM11):731-754.
    [98]Kezdi A.The bearing capacity of pile and pile groups[A].Proceedings of 4th International Conference on Soil Mechanics and Foundations Engineering[C].London:[s.n.],1957:46-51.
    [99]左藤悟.基桩承载力机理[J].土木技术.1965,20(1):1-5.
    [100]Coyle H M,Reese L C.Load transfer for axially loaded piles in clay[J].Journal of the Soil Mechanics and Foundations Division,ASCE.1966,92(SM2):1-26.
    [101]Poorooshasb H B,Alamgir M,Miura N.Negative skin friction on rigid and deformable piles[J].Computers and Geotechnics.1996,18(2):109-126.
    [102]曹汉志.桩的轴向荷载传递及荷载沉降曲线的数值计算方法[J].岩土工程学报.1986,8(6):37-49.
    [103]周国林.单桩负摩阻力随时间发展的传递函数法[J].岩土力学.1992,13(2):99-105.
    [104]屠毓敏,俞洪良.负摩擦桩非线性分析[J].中国公路学报.2001,14(1):31-34.
    [105]屠毓敏.承受超载作用的桩基性状研究[J].土木工程学报.2002,35(1):79-82.
    [106]赵明华,贺炜,曹文贵.基桩负摩阻力计算方法初探[J].岩土力学.2004,25(9):1442-1446.
    [107]赵明华,邬龙刚,贺炜.基桩负摩阻力的时效分析[J].湖南科技大学学报(自然科学版).2005,20(3):37-41.
    [108]张昊,王录民,杨明宇.负摩擦桩的非线性性能分析[J].河南工业大学学报(自然科学版).2005,26(2):1-4.
    [109]Zhou W,Chen R,Chen Y.Development of negative skin friction of piles on soft ground[A].Proceedings of Sessions of GeoShanghai:Foundation Analysis and Design-Innovative Methods[C].Shanghai:[s.n.],2006:277-284.
    [110]陈仁朋,周万欢,曹卫平,等.改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J].岩土工程学报.2007,29(6):824-830.
    [111]曹卫平.桩土界面荷载传递双曲线模型的改进及其应用[J].岩石力学与工程学报.2009,28(1):144-151.
    [112]Pouios H G,Mattes N S.The analysis of downdrag in end-bearing piles[A].Proceedings.of the 7th International Conference on Soil Mechanics and Foundations Engineering[C].Mexico:[s.n.],1969:203-208.
    [113]Poulos H G,Davis E H.The development of negative friction with time in end-bearing piles[J].Australian Geomechanics.1972,35(1):11-20.
    [114]Pouios H G,Davis E H.Pile foundation analysis and design[M].New York:John Wiley and Sons,1980.
    [115]Kuwabara F,Poulos H G.Downdrag forces in group of piles[J].Journal of Geotechnical Engineering.1989,115(6):806-818.
    [116]Chow Y K,Chin J T,Lee S J.Negative skin friction on pile groups[J].International Journal for Numerical and Analytical Methods in Geomechanics.1990,14(2):75-91.
    [117]姚笑青.桩基沉降的实践与负摩阻力的理论分析[D](博士学位论文).上海:同济大学,1999.
    [118]王建华,陆建飞,沈为平.Biot固结理论在单桩负摩擦研究中的应用[J].岩土工程学报.2000,22(5):590-593.
    [119]王建华,高绍武,陆建飞.表面堆载作用下群桩负摩擦研究[J].计算力学学报.2003,20(2):169-174.
    [120]高绍武,王建华,毛娜.层状地基中单桩负摩擦问题积分方程解法[J].岩土力学.2005,26(9):1456-1460.
    [121]韩佳明.桩基负摩阻力的计算研究[D](硕士学位论文).西安:西安科技大学,2004.
    [122]魏成国.湿陷性黄土地基桩基湿陷负摩擦力计算与研究[D](硕士学位论文).西安:西安理工大学,2006.
    [123]黄洪超.软土地基中桩土滑移性状研究[D](硕士学位论文).杭州:浙江大学,2007.
    [124]Poulos H G.A practical design approach for piles with negative friction[J].Geotechnical Engineering Issue GEI.2008,161(1):19-27.
    [125]赵锡宏,张启辉,张保良.承受负摩擦力的桩基沉降计算的迭代法[J].岩土力学.1999,20(2):17-21.
    [126]苏骏.堆载作用下钻孔灌注长桩的性状研究[J].建筑技术开发.2003,30(12):28-31.
    [127]袁灯平,黄宏伟,马金荣.软土地基桩侧表面负摩阻力解析模型[J].上海交通大学学报.2005,39(5):731-735.
    [128]赵明华,雷勇,刘晓明.基于剪切位移法的基桩负摩阻力计算[J].湖南大学学报(自然科学版).2008,35(7):1-6.
    [129]Randolph M F,Wroth C P.Analysis of deformation of vertically loaded piles[J].Journal of the Geotechnical Engineering Division,ASCE.1978,104(12):1465-1488.
    [130]Lee C J.Pile groups under negative skin friction[J].Journal of Geotechnical Engineering,ASCE.1993,119(10):1587-1600.
    [131]Lee C Y.Pile group settlement analysis by hybrid layer approach[J].Journal of Geotechnieal Engineering.1993,119(6):984-997.
    [132]Guo W D.Vertically loaded single piles in gibson soil[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(2):189-193.
    [133]Shen W Y,Teh C I.A variational solution for downdrag force analysis of pile groups[J].The International Journal of Geomechanics.2002,2(1):75-91.
    [134]Randolph M F,Yroth C P.An analysis of vertical deformation of pile groups[J].Geotechnique.1979,29(4):157-166.
    [135]Bjerrum L,.lohannessen I J,Eide O.Reduction of negative skin friction on steel piles to rock[A].Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering[C].Mexico:[s.n.],1969:27-34.
    [136]Bozozuk M.Bearing capacity of a pile preloaded by download[A].Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering[C].Stockholm:[s.n.],1981:631-636.
    [137]Baligh M M,Vivatrat V,Figi H.Downdrag on bitumen-coated piles[J].Journal of the Geoteehnieal Engineering Division,ASCE.1978,104(11):1355-1370.
    [138]Clemente F M.Downdrag a comparative study of bitumen coated and uncoated prestressed piles[A].Proceedings Associated Pile and Fitting 7th Pile Talk Seminar[C].New York:[s.n.],1979:49-71.
    [139]Tawfiq K S,Caliendo J A.Bitumen coating versus plastic sheeting for reducing negative skin friction[J].Journal of Materials in Civil Engineering,ASCE.1995,7(I):69-81.
    [140]张咏梅.桩基消除负摩阻力装置[P].中国,92103616.
    [141]Yeung A T,Viswanathan R,Briaud J L.Field investigation of potential contamination by bitumen-coated piles[J].Journal of Geoteehnical Engineering.1996,122(9):736-744.
    [142]Briaud J L.Downdrag on Piles and Reduction With Bitumen[A].Proceedings of a seminar sponsored by the Metropolitan Section,ASCE[C].New York:[s.n.],1995.
    [143]Bdaud J L.Bitumen selection for reduction of downdrag on piles[J].Journal of Geotechnical and Geoenvironmental Engineering.1997,123(12):1127-1134.
    [144]孔纲强,杨庆.一种扩底预应力锥形管桩及其施工方法[P].中国,200810011854.4.
    [145]宰金珉,将刚,王旭东,等.复合桩基非线性共同作用模型试验设计与研究[A].土工测试技术实践与发展,第24届全国土工测试学术研讨会论文集[C].北京:黄河水利出版,2005:27-32.
    [146]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,2003.
    [147]Itasca.Fast Lagrangian Analysis of Continua in 3-Dimensions,version 3.0,manual[S].Minnesota,2002.
    [148]Ei-Naggar M H.The 2002 canadian geotechnical colloquium:the role of soil-pile interaction in foundation engineering[J].Canadian Geotechnical Journal.2004,41(3):485-509.
    [149]Walker J M.Pain modulation by release of the endogenous cannabinoid anandamide[J].Journal of Chemistry.1999,96(21):12198-12203.
    [150]Koerner M K,Mukhopadhyay C.Behavior of negative skin fi'iction on model piles in medium-plastic silt[J].Highway Research Record,No.405.1972:34-44.
    [151]Norlund R L.Bearing capacity of piles in cohesionless soils[J].Journal of Soil Mechanics and Foundations Division,ASCE.1963,89(3):1-34.
    [152]Robinsky E I,Sagar W L,Morrison C F.Effect of shape and volume on the capacity of model piles in sand[J].Canadian Geotechnical Journal.1964,1(4):189-204.
    [153]Sawaguchi M,Takahashi K.Model test on negative friction acting on batter piles[A].Proceedings of 32nd Japan Annual Meeting on Civil Engineering[C].Janpan,1977:556-557.
    [154]Rybnikov A M.Experimental investigation of bearing capacity of bored-cast-in-place tapered piles[J].Soil Mechanics and Foundation Engineering.1990,27(2):48-52.
    [155]Zil'berberg S D,Sherstnev A D.Construction of compaction tapered pile foundation[J].Soil Mechanics and Foundation Engineering.1990,27(3):96-101.
    [156]Kodikara K K,Moore I D.Axial response of tapered piles in cohesive frictional ground[J].Journal of Geotechnical Engineering.1993,119(4):675-693.
    [157]Spronken J T.Bearing capacity of tapered piles[D](Master thesis).Alberta:University of Calgary,1998.
    [158]Wei J Q,Hesham M.Experimental study of axial behaviour of tapered piles[J].Canadian Geotechnical Journal.1998,35(4):641-654.
    [159]Ei-Naggar M H,Wei J Q.Uplift behaviour of tapered piles established from model tests[J].Canadian Geotechnical Journal.2000,37(1):56-74.
    [160]Sakr M,Ei-Naggar M H,Nehdi M.Load transfer of fibre-reinforced polymer(FRP) composite tapered piles in dense sand[J].Canadian Geotechnical Journal.2004,41(1):70-88.
    [161]王忠海.楔形桩承载力的试验研究[D](博士学位论文).天津:天津大学,2002.
    [162]蒋建平,高广运,顾宝和.扩底桩、楔形桩、等直径桩对比试验研究[J].岩土工程学报.2003,25(6):764-766.
    [163]Ghazavi M.Analysis of kinematic seismic response of tapered piles[J].Geotechnical and Geological Engineering.2007,25(1):37-44.
    [164]Sakr M,Ei-naggar M H,Nehdi M.Wave equation analyses of tapered FRP-concrete piles in dense sand[J].Soil Dynamics and Earthquake Engineering.2007,27(2):168-182.
    [165]Join G S,Gupta S P.A comparative study of multi-under reamed pile with large diameter pile in sandy soil[A].Proceeding 3rd Budapest Conference on Soil Mechanics and Foundation Engineering[C].Springer New York,1968:563-570.
    [166]Sonapal R E,Thakkar N S.Model under reamed pile load tests[A].Proceeding 5th South East Asian Conference on Soil Engineering[C].Bangkok:[s.n.],1977:103-140.
    [167]刘文白,周健,孟克特木尔.扩底桩的抗拔承载力试验及计算[J].工业建筑.2003,33(4):42-45.
    [168]许宏发.桩的抗拔承载力与非线性计算理论研究[D](博士学位论文).南京:解放军理工大学,2001.
    [169]王卫东,吴江斌,许亮,等.软土地区扩底抗拔桩承载特性试验研究[J].岩土工程学报.2007,29(9):1418-1422.
    [170]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报.1998,20(1):112-113.
    [171]刘祖德.抗拔桩基础,在《桩基工程技术》中[M].北京:中国建材工业出版社,1996:642-674.
    [172]Balla A.The resistance to breaking out of mushroom foundations for pylons[A].Proceeding 5th International Conference on Soil Mechanics and Foundation Engineering[C].Pads:[s.n.],1961:569-576.
    [173]Meyerhof G G,Adams J I.The ultimate uplift capacity of foundation[J].Canadian Geotechnical Journal.1968,5(4):225-244.
    [174]Meyerhof G G.Uplift resistance of inclined anchors and piles[A].Proceeding 8th International Conference on Soil Mechanics and Foundations Engineering[C].Moscow:[s.n.],1973:167-172.
    [175]Das B M,Seeley G R,Smith J E.Uplift Capacity of Pile Groups in Sand[J].Journal of Geotechnical Engineering,ASCE.1976,97(SM1):79-83.
    [176]Das B M.A procedure for estimation of uplift capacity of rough piles[J].Soils and Foundations.1983,23(3):122-126.
    [177]Das B M,Shin E C.Uplift capacity of rigid vertical metal piles in clay under inclined pull[J].International Journal of Offshore and Polar Engineering.1993,3(3):231-235.
    [178]Chattopadhyay B C,Pise P J.Uplift capacity of piles in sand[J].Journal of Geotechnical Engineering Division,ASCE.1986,112(9):888-904.
    [179]Rao N S,Prasad Y V S N.Estimation of uplift capacity of helical anchors in clays[J].Journal of Geotechnical Engineering,ASCE.1993,119(2):352-357.
    [180]Reddy E S B,O' reilly M,Chapman D N.Modified t-z model:a software for tension piles[J].Computers and Structures.1998,68(6):613-625.
    [181]杜广印,黄锋,李广信.抗压桩与抗拔桩侧阻的研究[J].工程地质学报.2000,8(1):91-93.
    [182]何思明.抗拔桩破坏特性及承载力研究[J].岩土力学.2001,22(3):308-310.
    [183]Shanker K,Basudhar P,Patra N.Uplift capacity of single piles:predictions and performance[J].Geotechnical and Geological Engineering.2007,25(2):151-161.
    [184]孙晓立,杨敏.使用修正变形协调法分析抗拔桩非线性变形[J].岩石力学与工程学报.2008,27(6):1270-1277.
    [185]郦建俊,黄茂松,木林隆,等.分层地基中扩底桩抗拔承载力的计算方法研究[J].岩土力学.2008,29(7):1997-2003.
    [186]Sowa V A.Pulling capacity of east in sire bored piles[J].Canadian Geotechnicai Journal.1970,7(4):482-493.
    [187]Vesic A S.Tests on instrumented piles[J].Ogeeehee River Site and Journal of Soil Mechanics and Foundation Engineering Division,ASCE.1970,96(2):561-583.
    [188]Das,B.m.& Seeley G R.Uplift capacity of buried model piles in sand[J].Journal of Geoteehnieal Engineering,ASCE.1975,101(7):711-715.
    [189]Ismael N F,Klym T W.Uplift and beating capacity of short piers in sand[J].Journal of Geotechnieal Engineering Division,ASCE.1979,105(5):579-593.
    [190]Ismael N F,Ai-sanad H A.Uplift capacity of bored piles in calcareous soils[J].Journal of Geotechnical Engineering.1985,116(10):928-940.
    [191]Ismael N F,Ai-sanad H A,Ai-otaihi F.Tension tests on bored piles in cemented desert sands[J].Canadian Geoteehnical Journal.1994,31(3):597-603.
    [192]Levacher D R,Sieffert J G.Tests on model tension piles[J].Journal of Geotechnical Engineering Division,ASCE.1984,105(5):579-593.
    [193]Rao K S,Venkatesh K H.Uplift behaviour of short piles in uniform sand[J].Soils and Foundations. 1985,25(4):1-7.
    [194]Madav M R.Efficiency of pile groups in tension[J].Canadian Geotechnical Journal.1987,24(1):149-153.
    [195]Siddamal U V.Behaviour of pile groups under uplift Ioads[D](Master thesis).India:Indian Institute of Technology Kharagpur,1989.
    [196]Chattopadhyay B C.Uplift capacity of pile groups[A].Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering[C].India:New Delhi,1994:539-542.
    [197]史鸿林,土维雅,刘庆展.用抗拔桩处理水工建筑物抗浮的试验研究[J].水利水电技术.1996(7):49-55.
    [198]黄锋.单桩在压与拔荷载下桩侧摩阻力发展机理研究[D](博士学位论文).北京:清华大学,1998.
    [199]Ho C E,Lim C H,Tan C G.Large diameter slurry bored piles in tension[A].Deep Foundations on Bored and Auger Piles[C].Netherlands:Balkema,1998:129-136.
    [200]Alawneh A S,Malkawi A H,Al-deeky H.Tension tests on smooth and rough model piles in dry sand[J].Canadian Geotechnical Journal.1999,36(4):746-753.
    [201]Patra N R,Pise P J.Behaviour of pile groups under oblique pulling loads[A].Proceedings of the 4th International conference on deep foundation practice[C].Singapore:[s.n.],1999:359-366.
    [202]刘文白,周健.上拔荷载作用下扩展基础的颗粒流数值模拟[J].水利学报.2004(12):1-10.
    [203]Dash B K,Pise P J.Effect of compressive load on uplift capacity of model piles[J].Journal of Geotechnical and Geoenvironmental Engineering.2003,129(11):987-992.
    [204]Ramasamy G,Dey B,Indrawn E.Studies on skin fi'ietion in piles under tensile and compressive load[J].Indian Geotechnical Journal.2004,34(2):276-289.
    [205]吕凡任,陈仁朋,陈云敏,等.软土地基上微型桩抗压和抗拔特性试验研究[J].土木工程学报.2005,38(3):99-105.
    [206]Mccabe A B,Lehane B M.Behaviour of axially loaded pile groups driven in clayey silt[J].Journal of Geotechnical and Geoenvironmental Engineering.2006,132(3):401-410.
    [207]吴春秋,肖大平,吴俊.深埋纯地下建筑不同抗拔桩型承载性状试验研究[J].岩土工程学报.2007,29(9):1392-1397.
    [208]De-Nicola A,Randolph M F.Tensive and compressive shaft capacity of piles in sand[J].Journal of Geotechnieal Engineering.1993,119(12):1952-1973.
    [209]Van Baars S,Van Niekerk W J.Numerical modelling of tension piles[A].International Symposium Beyond 2000 in Computational Geotechnies[C].Balliema:[s.n.],1999:227-235.
    [210]杨什生.软土地基中抗拔桩的受力与变形性状研究[D](硕士学位论文).杭州:浙江大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700