用户名: 密码: 验证码:
大体积Fe-Ga磁致伸缩合金的深过冷定向凝固
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩合金是重要的传感和微驱动材料,在声纳换能器、武器系统和机器人领域具有广泛应用。目前较为常用的以Tb-Dy-Fe为代表的超磁致伸缩材料虽然具有应变大、居里温度高等优良的性能,但同时具有脆性大、原材料成本高等一些缺点。而近年来出现的Fe-Ga系磁致伸缩合金具有高强度、良好韧性和低成本,并且在单晶材料的[100]方向获得了近400 ppm的大磁致伸缩等优异性能,从而使之具有广泛的应用前景和商业价值。
     关于Fe-Ga系磁致伸缩合金的大量研究成果表明:适当的合金成分、快速凝固和取向生长是制备高性能Fe-Ga材料的先决条件。因此,寻求一种可生长大体积、可良好取向和可得到快速凝固亚稳结构的凝固控制技术就成为制备高性能Fe-Ga类磁致伸缩材料的关键问题之一。深过冷快速定向凝固无疑在这些方面具有得天独厚的优势。深过冷技术是近年来发展迅速的一种新型快速凝固技术,在深过冷条件下,一旦受到激发形核,合金熔体可以高达数米每秒的速度高速生长,通过人为控制合金晶体生长时的形核条件,可以制备出成分均匀的定向材料,被认为是极具发展潜力的新型快速定向凝固技术。因此,本文使用熔融玻璃净化结合循环过热的方法首先开展了净化剂玻璃成分及其它因素对Fe_(81)Ga_(19)合金净化效果的影响的研究;为有效应用深过冷快速定向凝固技术,又开展了深过冷凝固条件下Fe_(81)Ga_(19)合金组织演变规律及其磁力显微镜的研究工作;并在此基础上将该技术引入Fe-Ga合金的定向材料制备中。此外,还对所制备的Fe_(81)Ga_(19)合金棒材晶体生长中的择优取向、微观结构以及磁性能进行了分析;最后,对不同过冷度下激发过冷熔体获得的Fe_(81)Ga_(19)合金棒材的织构和磁致伸缩性能进行了探讨。主要得到以下几方面研究成果:
     通过熔融玻璃净化结合循环过热的方法对B_2O_3、NaSiCa+B_2O_3(简称Na-Si-Ca-Al-B)和Na-Si-Ca-Al-B+Na_2B_4O_7玻璃作为净化剂对Fe_(81)Ga_(19)合金熔体过冷的效果分别作了分析。发现B_2O_3玻璃净化机制只是物理吸附,只能获得较小过冷;Na-Si-Ca-Al-B玻璃为物理化学综合净化,获得过冷度大,但其粘度过大,造成获得过冷度不稳定;Na-Si-Ca-Al-B+Na_2B_4O_7玻璃保留了物理化学综合净化机制,同时有效降低了Na-Si-Ca-Al-B玻璃的粘度。并分析了样品重量、过热度、保温时间等其它影响因素对过冷度的影响,确定了过冷实验的具体工艺:采用70%Na-Si-Ca-Al-10B+30%Na_2B_4O_7玻璃作为净化剂,加热过程中应先在400℃以下低温充分排气两分钟,在过热度为200 K左右,保温1.5 min,进行过热循环,使Fe_(81)Ga_(19)合金熔体成功获得最高300 K以上的过冷度。
     通过对过冷Fe_(81)Ga_(19)合金的凝固组织演化过程及其磁畴结构的研究发现:在0~315 K宽的过冷度范围内,Fe_(81)Ga_(19)合金的凝固组织可被分为三大类:即在低过冷度下(ΔT≤50 K)的熔断枝晶、中间过冷度范围内(50 K<ΔT<200 K)的细小等轴晶以及大过冷度下(ΔT>200 K)时的再结晶组织;并对其各自的形成机制进行了探讨。值得注意的是,在过冷度为150~200 K的范围内,凝固组织中细小粒状晶粒的生长具有一定方向性,由此选定该过冷区域作为深过冷定向凝固的激发过冷度区间。另外,对过冷样品的磁力显微镜研究显示,Fe_(81)Ga_(19)合金的表面磁畴结构对过冷度的变化也非常敏感。
     基于以上两方面研究,利用过冷度的遗传性,在200 K过冷度下通过点激发和面激发过冷熔体方式,成功实现了Fe_(81)Ga_(19)合金的深过冷快速定向凝固。通过对200 K过冷度下点激发制备Fe_(81)Ga_(19)合金定向凝固棒材的取向分析发现,样品柱状晶部分具有很强的[100]织构,该棒材的[100]择优取向与试样轴向的夹角为10°左右,这个结果优于以往文献中报道的最优结果;通过XRD、DSC、TEM等手段对该棒材样品的微观结构研究发现,深过冷快速定向凝固的Fe_(81)Ga_(19)合金内部不是均匀的完全无序的A2结构,而是在微观上弥散着许多由Ga的原子团簇构成的发生晶格畸变的DO3结构以及一些纳米尺度的具有[111]取向的嵌入畴的结构;通过对该样品磁性能研究发现,在该样品的轴向方向上获得了超过800 ppm的大磁致伸缩性能,这几乎是以往报道中块体Fe-Ga材料中获得最大磁致伸缩性能的两倍,我们认为激发过冷熔体制备的Fe_(81)Ga_(19)多晶棒材沿轴向方向高度的[100]织构以及快速凝固过程中出现的Ga的原子团簇构成晶格畸变DO3结构以及不均匀的微观结构是磁致伸缩性能大大提高的主要因素。
     最后,还对激发过冷度对定向凝固Fe_(81)Ga_(19)合金棒材凝固组织、织构以及其对性能的影响进行了研究,发现在可以获得定向组织的激发过冷度区间内,随着激发过冷度的提高,获得棒材的[100]取向程度逐渐提高,其饱和磁致伸缩性能也有所提高,从150 K激发过冷度的750 ppm提高到210 K时的885 ppm。另外,由于样品的[100]择优取向与棒材轴向存在一定夹角,造成其磁致伸缩性能随着磁场的增加出现先增加后减小的现象。
Magnetostrictive materials are widely used in various sensor and micro-actuator applications as sonar transducers, weapon systems and robot devices. At present, the widely used RFe2 intermetallic compounds (where R refers to rare-earth elements) such as Tb-Dy-Fe alloys show large magnetostrictive strains and high Curie temperatures. However, Terfenal alloys are brittle, require large fields for saturation, and are expensive due to the high costs of Tb and Dy. Very recently, it was found that the magnetostriction of bcc Fe is greatly enhanced by the addition of Ga. A large magnetostriction of 400 ppm can be achieved in a single crystal [100] oriented Fe_(81)Ga_(19) alloy which depends on the quenching conditions. In addition to their high magnetostriction, Fe-Ga alloys show high mechanical strength, good ductility, and low associated cost which render it a good candidate for commercial application.
     Researches on Fe-Ga magnetostrictive alloys show that proper composition range, metastable phase formation and [100] preferred orientation are crucial for the improving of magnetostrictive property. Therefore, a controllable solidification technique is urgently wanted to prepare bulk Fe-Ga magnetostrictive alloys which could achieve high texture and the metastable phase formed in rapid solidification. Our recent work indicates that Fe-Ga alloys produced by the technique of rapid directional solidification from the undercooled melts (UDS) meet all these expectations. UDS is a newly-developed rapid solidification technique. When the melt is triggering nucleated in a specific undercooling range, the dendrites grow rapidly into the undercooled melts with a preferred orientation at a speed of several m/s. So, directional solidified alloys with a homogenous composition can be obtained through the control of nucleation condition of crystal growth which renders UDS a potentially directional solidification technique. In this paper, the effect of denucleating glass composition on the undercooling of Fe-Ga alloy melts was investigated using the method of glass fluxing combined with superheating cycles. Microstructure evolution and MFM domain structures of undercooled Fe_(81)Ga_(19) alloys were also studied with respect to different undercoolings. Then, based on the results of these experiments, UDS technique was applied in the preparation of directional solidified Fe-Ga alloys. The texture, microstructure and the magnetic properties of directional solidified Fe-Ga alloys were also investigated systematically. In addition, the effect of triggering undercooling on the texture and the magnetostriction property of Fe_(81)Ga_(19) alloys prepared by UDS technique were discussed. The main conclusions are as follows:
     Firstly, adopting glass fluxing combined with superheating cycling method, the undercooling and its stability of Fe_(81)Ga_(19) alloy melts were investigated using different kinds of denucleating glass: B_2O_3, NaSiCa+B_2O_3(simplified as Na-Si-Ca-Al-B) and Na-Si-Ca-Al-B+Na_2B_4O_7. The results showed that different glass has different denucleating mechanism. The purification of B_2O_3 glass is only a physical process, by which the stable bulk undercooling cannot be obtained during superheating-cooling cycles. While taking Na-Si-Ca-Al-B glass as purifying agent, its denucleating mechanism is a comprehensively physicochemical process. But the stability of undercooling is still undesirable because of the separation between melt and glass during cooling process in superheating cycling. A stable bulk undercooling of above 300 K can be obtained by physicochemical denucleating process in the case of 70% Na-Si-Ca-Al-10B+30%Na_2B_4O_7 molten glass owing to its suitable viscosity. Combined with the analyses of the effect of sample weight, superheating temperature and holding time on undercooling of Fe_(81)Ga_(19) alloy, a stable experimental process was established which has been proved feasible.
     Secondly, high undercoolings up to 305 K have been successfully achieved in the bulk Fe_(81)Ga_(19) magnetostrictive alloy melts by means of glass fluxing combined with superheating cycling method. When the undercooling is less than 50 K, the structures consist of coarse and broken dendrites with some cells present. The remelting of primary dendrites plays an important role in the crystal growth and the refinement. When the undercooling is in the rage of 100-200 K, the grain size decreases smoothly with increasing undercooling. Within the range of 230-260 K, abnormal large grains coexist with fine equiaxed grains. When the undercooling reaches 305 K, only large grains with an average size of 200μm exist. The competition between the strain energy stored in the rapid solidified crystals with the critical strain energy for recrystallization which results in different degrees of recrystallization explains the experiment results reasonable. In addition, the magnetic domain structure of undercooled Fe_(81)Ga_(19) alloys has been found to be very sensitive to the variation of undercooling during the solidification process. With increasing the degree of undercooling, the evolution of domain patterns, magnetic contrast and the degree of the orientation were investigated which is relative to the magnetostriction. It should be noted that the grains tended to possess a preferred orientation within the undercooling range 150-200 K.
     Thirdly, bulk textured Fe_(81)Ga_(19) alloy rods were successfully prepared using the technique of UDS by point and face triggering. The columnar grains of Fe_(81)Ga_(19) rod directional solidified by point triggering have strong [100] texture. This preferred orientation of the [100] axis was approximately 10°from the rod direction. The microstructure of the rod was also studied by XRD, DSC and TEM. Results showed that the Fe_(81)Ga_(19) alloy present in our sample is not a homogeneous bcc solution, but rather a nanodispersion of small Ga clusters within the A2 matrix which is corresponding to the modified DO3 structure. All these unique structural features have been attributed to the enhancement of magnetostrition of F81Ga19 alloy. The saturation magnetostriction is above 800 ppm, which is about 2 times as large as the maximum of the earlier report on Fe-Ga bulk samples. It has been ascribed to the high concentration of Ga-Ga atom pairs created by rapid solidification and their preferential orientation in (100) textured rod.
     Lastly, the effect of triggering undercooling on the texture and magnetostriction of directional solidified Fe_(81)Ga_(19) alloy rods was discussed. Results showed that the [100] preferred orientation and the magnetostriction property were enhanced with the increasing of triggering undercooling in the rage of undercooling which could achieve directional growth crystals. The magnetostriction increases from 750 ppm for the triggering undercooling of 150 K to 885 ppm for the triggering undercooling of 210 K. In addition, the magnetostriction was found to decrease after it was saturated with the increasing applied field. It may be attributed to the fact that the [100] direction of textured grains tilted about 10°from the rod axis.
引文
[1]钟文定.铁磁学(中册).北京:科学出版社. 1987: 21.
    [2]近角聪信.磁性体手册(下).韩俊德,杨膺善译.北京:冶金工业出版社. 1985: 106.
    [3] Hall, R.C. Real time kinematic solutions of a non-contacting, Three dimensional metrology frame. J. Appl. Phys. 1959, 30: 816.
    [4] Legvold, S., Alstad, J., Rhyne, J. Giant magnetostriction in dysprosium and holmium single crystals. Phys. Rev. Lett. 1963, 10(12): 509-511.
    [5] Clark, A.E., Bozorth, R., DeSavage, B. Anomalous thermal expansion and magnetostriction of single crystals of dysprosium. Phys. Lett. 1963, 5 (2): 100-102.
    [6] Rhyne, J., Legvold, S. Magnetostriction of Tb single crystal. Phys. Rev. A. 1965, 138: 507-514.
    [7] Clark, A.E., Belson, H.S. Magnetostriction of Tb-Fe and Tb-Co compounds. AIP Conf. Proc. 1972, 5: 1498.
    [8] Clark, A.E. Magnetostrictive rare earth-Fe2 compounds, in Ferromagnetic materials, (vol.1, Wohlfarth, ed). North Holland: Amsterdam. 1980: 531-589.
    [9] Clark, A.E., Belson, H.S. Magnetocrystalline anisotropy in cubic rare earth-Fe2 compounds. AIP Conf. Proc. 1973, 10: 749-753.
    [10] Clark, A.E. Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase compounds. AIP Conf. Proc. 1974, 18: 1015-1029.
    [11] Shi Zhengxin, Chen Zhongmin, Wang Xianhui, Lin Menghua, Zhang Yunmeng. Directionally solidified TbxDy1-x(MyFe1-y)1.9 giant magnetostrictive materials and their applications in transducer. J. Alloy Compd. 1997, 258: 30-33.
    [12] Clark, A.E., Teter, J.P., Wun-Fogle, M. Magnetostrictive properties of Tb0.3Dy0.7(Fe1-xCox)1..9 and Tb0.3Dy0.7(Fe1-xNi1-x)1.9. IEEE. Trans. Magn. 1987, 23 (5): 3526-3528.
    [13] Clark, A.E., Teter, J.P., Wun-Fogle, M. Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9(T=Co, Mn). J. Appl. Phys. 1991, 69(8): 5771-5773.
    [14] Zhang, H.P., Zhu, H.P., Du, T. Effect of V on microstructure and magnetic properties of polycrystal Tb-Dy-Fe alloy. J. Alloy Compd. 1997, 258: 20-23.
    [15] Wang, J.H., Wu, G.H., Zhao, X.G., Jia, K.C., Zhan, W.S. Magnetic properties and magnetostriction of twin free single-crystal Tb0.27Dy0.73(Fe1-xAlx)2. J. Appl. Phys. 1996, 79(8): 4668-4670.
    [16] Xie, J.W., Fort, D., Bi, Y.J., Abell, J.S. Microstructure and magnetostrictive properties of Tb-Dy-Fe(Al) alloys. J. Appl. Phys. 2000, 87(9): 6295-6297.
    [17] Clark, A.E., Teter, J.P., Wun-Fogle, M. Magnetic of RZn with R=Tb1-xDyx(0≤x≤0.6) and R=Tb1-yGdy(0≤y≤0.4). IEEE. Trans . Magn. 1995, 31(6): 4032-4034.
    [18] Mei, W., Okane, T., Umeda, T. Phase diagram and inhomogeneity of (TbDy)Fe(T)(T=Mn, Co, Al, Ti). J. Alloy Compd. 1997, 248: 132-138.
    [19]邝马华,杜挺,张洪平. Tb0.27Dy0.73Fe1.8M0.1(M=Zn, Ti, Al, Cr)四元磁致伸缩多晶合金的组织结构.杜挺科技文集-冶金、材料及其物理化学.杜挺:冶金工业出版社. 1996: 313-324.
    [20] Guo, Z.J., Zhang, Z.D., Zhao, X.G., Wang, B.W., Geng, D.Y. Phase transformation and magnetostriction of (R-Pr)(Fe-T)2 (R=Dy, Tb; T=Co, Ni). J. Mater. Sci. Tech. 2000, 16(2): 172-174.
    [21] Wang, B.W., Liu, W.L., Jin, G., Bi, J.Z. Structure and magnetostriction of (Dy0.7Tb0.3)0.5Pr0.5Fex alloys (1.10≤x≤1.85). J. Mater. Sci. Tech. 2000, 16(2): 177-178.
    [22] Li, Y.X., Xu, G.Z., Qu, J.P. Synthesis and magnetostriction of (CexTb1-x)0.5Pr0.5Fe2 compounds. J. Mater. Sci. Tech. 2000, 16(2): 179-180.
    [23] Zhu, H.Q., Liu, J.G., Wang, X.R. Applications of Terfenol-D in China. J. Alloy Compd. 1997, 258: 49-52.
    [24] Hall, R.C. Single crystal magnetic anisotropy and magnetostriction studies of iron-base alloys. J. Appl. Phys. 1960, 31: 1037-1038.
    [25] Tremolet de Lacheisserie, Etienne Du. Magnetostriction: Theory and Applications of Magnetoelasticity. Boca Raton, CRC Press, 1993: 189.
    [26] Ibarra, M.R., Algarabel, P.A., Marquina, C., Otani, Y., Yuasa, S. Miyajima, H. Giant room temperature volume magnetostriction in an Fe-Rh-Pd alloy. J. Magn. Magn. Mater. 1995, 140: 231-232.
    [27] Williams, G.M., Paclovic, A.S. The magnetostriction behaviour of iron single crystals. J. Appl. Phys. 1968, 39(2): 571-572.
    [28] Hall, R.C. Magnetostriction of aluminum-iron single crystals in the region of 6 to 30 percent aluminum. J. Appl. Phys. 1957, 28(6): 707-713.
    [29] Emsley, J. The Elements, 3rd ed. Clarendon: Oxford. 1998.
    [30] Kattner, U.R., Burton, B.P. in Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams No. 9, edited by H. Okamoto. ASM International, Materials Parks, OH, 1993: 12-28.
    [31] Okamoto, H., Tanner, L.E. in Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams No. 9, edited by H. Okamoto. ASM International, Materials Parks,OH, 1993: 49-61.
    [32] Okamoto, H. in Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams No. 9, edited by H. Okamoto. ASM International, Materials Parks, OH, 1993: 147-151.
    [33] Clark, A.E., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A. Magnetostrictive properties of Galfenol alloys under compressive stress. Mater. Trans. 2002, 43(5): 881-886.
    [34] Guruswamy, S., Srisukhumbowornchai, N., Clark, A.E., Restorff, J.B., Wun-Fogle, M. Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga. Scripta. Mater. 2000, 43: 239-244.
    [35] Srisukhumbowornchai, N., Guruswamy, S. Influence of ordering on the magnetostriction of Fe-27.5 at.% Ga alloys. J. Appl. Phys. 2002, 92(9): 5371-5379.
    [36] Ikeda, O., Kainuma, R., Ohnuma, I., Fukamichi, K., Ishida, K. Phase equilibria and stability of ordered b.c.c. phase in the Fe-rich portion of the Fe-Ga system. J. Alloy Compd. 2002, 347: 198-205.
    [37] Lograsso, T.A., Ross, A.R., Schlagel, D.L., Clark, A.E., Wun-Fogle, M. Structural transformations in quenched Fe-Ga alloys. J. Alloy Compd. 2003, 350: 95-101.
    [38] Kawamiya, N., Adachi, K., Nakamura, Y. Magnetic properties and M?ssbauer investigations of Fe-Ga alloys. J. Phys. Soc. Jap. 1972, 33(5): 1318-1327.
    [39] Wagini, H. Magnetic, electrical, and thermal properties of the BCCαphase in a Fe-Ga system. Z. Naturforsch. A. 1967, 22(1): 143-144.
    [40] Clark, A.E., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Cullen, J.R. Proc. 8th. Joint Intermag Conf. San Antonio. TX. 2001: 7-11.
    [41] Aldred, A.T. Magnetization of Iron-Gallium and Iron-Arsenic Alloys. J. Appl. Phys. 1965, 37(3): 1344-1346.
    [42] Clark, A.E., James, B., Restorff, J.B., Wun-Fogle, M., Lograsso, T.A., Schlagel, D.L. Magentostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 2000, 36(5): 3238-3240.
    [43] Wun-Fogle, M., Restorff, J.B., Clark, A.E., Erin Dreyer, Eric Summers. Stress annealing of Fe-Ga transduction alloys for operation under tension and compression. J. Appl. Phys. 2005, 97: 10M301.
    [44] Clark, A.E., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Cullen, J.R. Effect of quenching on the magnetostriction of Fe1-xGax(0.13    [45]徐翔,蒋成保,徐惠彬. Fe72.5Ga27.5合金的相结构和磁致伸缩性能.金属学报. 2005, 41(5): 483-486.
    [46] Kellogg, R.A., Flatau, A.B., Clark, A.E., Wun-Fogle, M., Lograsso, T.A. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19. J. Appl. Phys. 2002, 91(10): 7821-7823.
    [47] Cullen, J.R., Clark, A.E. Magnetoelasticity of Fe-Ga and Fe-Al alloys. J. Magn. Magn. Mater. 2001, 226: 948.
    [48] Clark, A.E., Hathaway, K.B., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Keppens, V.M., Petculescu, G., Taylor, R.A. Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. J. Appl. Phys. 2003, 93: 8621-8623.
    [49] Clark, A.E., Teter, J.P., McMaster, O.D. Magnetostriction“jumps”in twinned Tb0.3Dy0.7Fe1.9. J. Appl. Phys. 1998, 63: 3190.
    [50] Clark, A.E., James, B., Restorff, J.B., Wun-Fogle, M., Lograsso, T.A., Schlagel, D.L. Magentostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 2000, 36(5): 3238-3240.
    [51]韩志勇,张茂才,高学绪,周寿增. Ga原子对Fe-Ga合金原子磁矩的影响.北京科技大学学报. 2004, 4: 387-389.
    [52] Srisukhumbowornchai, N., Guruswamy, S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. 2001, 90(11): 5680-5688.
    [53] Kellogg, R.A., Flatau, A.B., Clark, A.E., Wun-Fogle, M., Lograsso, T.A. Texture and grain morphology dependencies of saturation magnetostriction in rolled polycrystalline Fe83Ga17. J. Appl. Phys. 2003, 93(10): 8495-8497.
    [54] Cheng, S.F., Das, B.N., Wun-Fogle, M., Lubitz, P. Structure of melt-spun Fe-Ga-based magnetostrictive alloys. IEEE Trans. On Magns. 2002, 38(5): 2838.
    [55] Liu, G.D., Liu, L.B., Liu, Z.H., Zhang, M., Chen, J.L., Li, J.Q., Wu. G.H., Li, Y.X., Qu, J.P., Chin, T.S. Giant magnetostriction of Fe85Ga15 stacked ribbon samples. Appl. Phys. Lett. 2004, 84(12): 2124-2126.
    [56] Weston, J.L., Butera, A., Lograsso, T., Shamsuzzoha, M., Zana, I., Zangari, G., Barnard, J. Fabrication and characterization of Fe81Ga19 thin films. IEEE Trans. On Magns. 2002, 38(5): 2832.
    [57]江洪林,张茂才,高学绪,朱洁,周寿增.快淬Fe83Ga17薄带的显微组织和磁致伸缩性能.金属学报.2006, 42: 177-180.
    [58] Zhang, M.C., Jiang, H.L., Gao, X.X., Zhu, J., Zhou, S.Z. Magnetostriction and microstructure of the melt-spun Fe83Ga17 alloy. J. Appl. Phys. 2006, 99: 023903.
    [59]刘国栋,李养贤,胡海宁,曲静萍.甩带Fe85Ga15合金的巨磁致伸缩研究.物理学报. 2004, 53(9): 3191-3194.
    [60] Turnbull, D. The supercooling of liquid metals. J. Appl. Phys. 1949, 20: 817.
    [61] Turnbull, D. Isothermal rate of solidification of small droplets of mercury and tin. J. Chem. Phys. 1950, 18: 768.
    [62] Turnbull, D. Correlation of liquid-solid interfacial energies calculated from supercooling of small droplets. J. Chem. Phys. 1950, 18: 769.
    [63] Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets, J. Chem. Phys. 1952, 20(3): 411-424.
    [64]魏炳波.液态镍基合金的净化、深过冷与快速凝固[博士论文].西安:西北工业大学. 1989.
    [65] Perepezko, J.H. Nucleation in undercooled melts. Mater. Sci. Eng. 1984, 65: 125-135.
    [66] Perepezko, J.H., Anderson, I.E. in T J Rowland and E S Machlin (eds). Rapidly Solidified Amorphous and Crystalline Alloys, Proc Symp of Materials Research Society. North-holland. Amsterdam. 1982: 49.
    [67] Ebakard, S., Spaepen, F., Cochrane, R.F., Greer, A.L. Undercooling experiments on quasicrystal-forming melts. Mater. Sci. Eng. 1991, 133A: 569.
    [68] Drehman, A.J., Greer, A.L., Turnbull, D. Bulk formation of a metallic glass: Pd40Ni40P20. Appl. Phys. Lett. 1982, 41: 716.
    [69] Kattamis, T.Z., Flemings, M.C. Dendrite structure and grain size of undercooled melts. Trans. Metall. Soc. AIME. 1966, 236: 1523-1531.
    [70] Cao, C.D., Lu, X.Y., Wei, B.B. Peritectic solidification of highly undercooled Cu-Co alloy. Adv. Space. Res. 1999, 24(10): 1251-1255.
    [71] Lu, X.Y., Cao, C.D., Wei, B.B. Microstructure evolution of undercooled iron-copper hypoperitectic alloy. Mater. Sci. Eng. A. 2001, 313(1-2): 198-206.
    [72] Wu, Y., Piccone, T.J., Shiohara, Y., Flemings, M.C. Dendritic growth of nickel-tin: Part III, Metallurgical Transactions A. 1988, 19A: 1109-1119.
    [73] Ludwig, A. Limit of absolute stability for crystal growth into undercooled alloy melts. Acta Metall. Mater. 1991, 39: 2795.
    [74] Lipton, J., Glickman, M.E., Kurz, W. Dendritic growth into undercooled alloy metals. Mater. Sci. Eng. 1984, 65: 57.
    [75] Okress, E.C., Wroughton, D.M., Comenetz, G. Electromagnetic levitation of solid and molten metals. J. Appl. Phys. 1952, 23: 545-552.
    [76] Herlach, D.M. Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng. R. 1994, R12: 172-277.
    [77] Hermann, R., Loser, W. Extension of the primary solidification region of Nd2Fe14B by levitation of undercooled melts. J. Appl. Phys. 1998, 83(11): 6399-6401.
    [78] Hays, C.C., Johnson, W.L. Undercooling of bulk metallic glasses processed by electrostaticlevitation. J. Non-Cryst. Solid, 1999, 250-252: 596-600.
    [79] Gao, J.R., Cao, C.D., Wei, B.B. Containerless processing of materials by acoustic levitation. Adv.Space.Res. 1999, 24(10): 1293-1297.
    [80] Xie, W.J., Wei, B.B. Space environment simulation for material processing by acoustic levitation. Chin.Phys.Lett. 2001, 18(1): 68-70.
    [81] Xie, W.J., Cao, C.D., Lu, Y.J., Wei, B.B. Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett. 2002, 89 (10): 104304.
    [82] Muck, O. Germany Patent No: 422004, 1923.
    [83] Okress, E.C., Wroughton, D.M., Comenetz, G. Eectromagnetic levitation of solid and molten metals. J. Appl. Phys. 1952, 23: 545-552.
    [84] Gomersall, D.W., Shiraishi, S.Y., Ward, R.G. Undercooling phenomena in liquid metal droplets. J. Aust. Inst. Met. 1965, 10: 220.
    [85] Herlach, D.M. Containerless undercooling and solidification of pure metals. Annu. Rev. Mater. Sci. 1991, 21: 23-44.
    [86] Herlach, D.M. Non-equiulibrium solidification of undercooled metallic melts. Mat. Sci. Eng. R. 1994, 12: 172-277.
    [87] Li, D., Ecker, K., Herlach, D.M. Development of grain structures in highly undercooled germanium and copper. J. Cryst. Growth. 1996, 160: 59-65.
    [88] Hermann, R., L?ser, W. Extension of the primary solidification region of Nd2Fe14B by levitation of undercooled melts. J. Appl. Phys. 1998, 83(11): 6399-6401.
    [89] Herlach, D.M. Metastable materials solidified from undercooled melts. J. Phys: Condens. Mater. 2001, 13: 7737-7751.
    [90] Nagashio, K., Takamura, Y., Kuribayashi, K. Coupled growth in the peritectic Nd-Ba-Cu-O system from highly undercooled melt. Scripta. Mater. 1999, 41(11): 1161-1167.
    [91] Nagashio, K., Takamura, Y., Kuribayashi, K. Phase selection of peritectic phase in undercooled Nd-based superconducting oxides. Acta. Mater. 2000, 48: 3049-3057.
    [92] Nagashio, K., Takamura, Y., Kuribayashi, K., Shiohara, Y. Microstructural control of NdBa2Cu3O7-delta superconducting oxide from highly undercooled melt by containerless processing. J. Cryst. Growth. 1999, 200: 118-125.
    [93] Walker, J.L. Physical Chemistry of Process Metallurgy. Part 2, ed. G.R.S. Pierrre. AIME Inter. Sci Punbishers. NY, 1961: 845.
    [94] Horway, G. The tension field created by a special nucleus freezing into its less dense undercooled melt. J. Heat Mass Transfer. 1965, 8: 195-243.
    [95] Kattamis, T.Z. Dendritic peculiarities in undercooled and interally chilled Fe-25pct Ni alloy. Metall. Trans. 1997, 2: 2000-2003.
    [96] Kattamis, T.Z. Mechanism of establishment of cast microstructure during solidification of highly undercooled melts. J. Cryst. Growth. 1976, 34: 215-220.
    [97] Kattamis, T.Z., Flemings, M.C. Solidification of highly undercooled castings. Trans. AFS. 1967, 75: 191-198.
    [98] Powell, G.L., Hogen, L.M. The undercooling of copper and copper-oxygen alloys. Trans. Metall. Soc. AIME. 1968, 242: 2133-2138.
    [99] Powell, G.L., Hogen, L.M. The influence of oxygen content on the grain size of undercooled silver. Trans. Metall. Soc. AIME. 1969, 245: 407.
    [100] Jones, B.L., Weston, G.M. Structural features of undercooled nickel and nickel-oxygen alloys. J. Australian Inst. Metals. 1970, 15(4): 189-194.
    [101] Jones, B.L., Weston, G.M. Grain refinement in undercooled copper. J. Australian Inst. Metals. 1970, 15(3): 167-170.
    [102] Willnecker, R., Herlach, D.M., Feueerbacher, B. Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Phys. Rev. Lett. 1989, 62: 2707-2710.
    [103] Eckier, K., Cochrane, R.F., Herlach, D.M, Evidence for a transition from diffusion controlled to thermally controlled solidification in metallic alloys. Phys. Rev. B. 1992, 45: 5019-5022.
    [104] Eckler, K., Herlach, D.M. Discussion of 'Solidification of highly undercooled Fe-P alloys' (and reply). Metall. Trans. 1992, 23A: 2672.
    [105] Li, J.F., Liu, Y.C., Lu, Y.L., Zhou, Y.H., Yang, G.C. Structural evolution of undercooled Ni-Cu alloys. J .Cryst Growth. 1998, 192: 462-470.
    [106] Li, J.F., Zhou, Y.H., Yang, G.C. Solidification behavior of undercooled Cu70Ni30 alloy melt. Mat. Sci. Eng. A. 2000, 277: 161-168.
    [107]郭学锋,杨根仓,邢建东. Cu50Ni50过冷熔体在玻璃涂层壳型中的凝固组织.机械工程学报. 2000, 36(10): 46-49.
    [108] Han, X.J., Yang, C., Wei, B., Chen, M., Guo, Z.Y. Rapid solidification of highly undercooled Ni-Cu alloys. Mat. Sci. Eng. A. 2001, 307: 35-41.
    [109]郭学锋,吕衣礼,杨根仓.过冷Cu-Ni-Fe合金凝固组织的演化.材料研究学报. 1998, 12(4): 380-384.
    [110] Liu, F., Cai, Y., Guo, X.F., Yang, G.C. Structure evolution in undercooled DD3 single crystal superalloy. Mater. Sci. Eng. A. 2000, 291: 9-16.
    [111] Liu, F., Guo, X.F., Yang, G.C. Recrystallization mechanism for the grain refinement in undercooled DD3 single-crystal superalloy. J. Cryst. Growth. 2000, 210: 489-494.
    [112] Li, J.F., Li, J.G., Zhang, X.P., Zhou, Y. H. Structure formation on undercooled Fe-30Ni alloy. Acta. Metall. Sin. 2000, 13 (5): 1029-1033.
    [113] Zheng, H.X., Xie, H., Guo, X.F., Structural evolution of undercooled single-phase Ni-2wt%Pb monotectic alloy. Acta. Metall. Sin. 2001, 14(1): 72-78.
    [114] Schwarz, M., Karma, A., Eckler, K., Herlach, D.M. Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev.Lett. 1994, 73(10):1380-1383.
    [115] Mullis, A.M., Cochrane, R.F. Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys. J.Appl.Phys. 1997, 82(5): 3783-3790.
    [116] Mullis, A.M., Cochrane, R.F. Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys, in Solidification 98, Edited by Marsh, S.P., Dantzig, J.A., Trivedi, R., Hofmeister, W., Chu, M.G., Lavernia, E.J., Chun, J.-H. The Minerals, Metals&Materials Society. 1998: 203-212.
    [117] Leonhardt, M., Loser, W., Lindenkreuz, H.G. Metastable phase formation in undercooled eutectic Ni78.6Si21.4 melts. Mater. Sci. Eng. A. 1999, 271: 31-37.
    [118] Loser, W., Hermann, R., Leonhardt, M. Metastable phase formation in undercooled near-eutectic Nb-Al alloys. Mater. Sci. Eng. A. 1997, 224: 53-60.
    [119] Yang, C.L., Yang, G.C., Liu, F., Chen, Y.Z., Liu, N., Chen, D., Zhou, Y.H. Metastable phase formation in eutectic solidification of highly undercooled Fe83B17 alloy melt. Physica B. 2006, 373: 136-141.
    [120]魏炳波,杨根仓,周尧和.深过冷液态金属的凝固特点.航空学报. 1991, 12(5): A213-A220.
    [121] Li, D.L., Yang, G.C., Zhou, Y.H. Formation of bulk metallic glasses: Ni62Nb38. C-MRS International’90. Beijing. China. 1990: 6.
    [122]朱定一,杨晓华,韩秀君. Fe-Sn偏晶合金的深过冷快速凝固组织.中国有色金属学报. 2003, 13(2): 328.
    [123] Lee, K.L., Kui, H.W. Phase separation in undercooled molten Pd80Si20: Part 1. Materials Research Society. 1999, 14(9): 3653-3662.
    [124] Guo, Wenhua. Phd Thesis. The Chinese University of Hong Kong. 1999.
    [125] Lux, B., Haour, G., Mollard, F. Dynamic undercooling of superalloys. Metall. 1981, 35(12): 1235-1239.
    [126] Kiminami, C.S., Axmann, W., Sahm, P.R. Solidification of a supercooled Pd77.5Cu6Si16.5 bulk sample. J. Mater. Sci. Lett. 1989, 8: 201-203.
    [127] Stansscu, J., Sahm, P.R., Ludwig, A. Autonomous directional solidification for single crystal turbine blades, 40th Annul Technical Meeting: Investment Casting Institute, 1992, Las Vegas, 29: 4-13.
    [128] Ludwig, A., Wagner, I., Laakmann, J., Sahm, P.R. Undercooling of superalloy melts: Basis of a new manufacturing technique for single-crystal turbine blades. Mat. Sci. Eng. A. 1994,178(1-2): 299-303.
    [129] Wagner, L.A., Sahm, P.R. Autonomous directional solidification (ADS), a novel casting technique for single crystal components. In Kissinger, R.D., Deye, D.J., Anton, D.J. eds. Superalloys 1996. The Minerals Metals & Society. 1996: 497-506.
    [130]谢发勤,李金山,傅恒志. Cu-Ni单相合金的深过冷定向凝固过程研究.科学通报. 1999, 44(18): 1947-1951.
    [131] Xie, Faqin., Zhang, Jun., Mao, Xiemin., Li, Delin., Fu, Hengzhi. Rapid directional solidification excited from bulk supercooled melt. J. Mater. Proc. Tech. 1997, 63(1-3): 776-778.
    [132] Li, Jinfu., Lu, Yili., Yang, Gencang., Zhou, Yaohe. Directional solidification of undercooled melt. Pro. Nat. Sci. 1997, 7(6): 736-741.
    [133] Zhou, Zhenhua., Fu, Hengzhi. Rapid directional solidification from highly undercooled Cu-5wt. %Ni alloy melts. J. Mater. Sci. Lett. 2000, 19(16): 1491-1494.
    [134]刘峰. DD3高温合金的深过冷快速凝固及其快速凝固用特殊涂层[博士论文].西安:西北工业大学. 2001.
    [135]郑红星.过冷Ni-Pb偏晶合金凝固组织及凝固行为[硕士论文].西安:西安理工大学. 2002.
    [1] Okamoto, H. in Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams No. 9, edited by H. Okamoto. ASM International, Materials Parks, OH, 1993: 147-151.
    [2]达道安.真空设计手册.北京:国防工业出版社. 1979(5): 292.
    [3]戴娟.严重塑性变形FeCo合金退火织构的演变[硕士论文].沈阳:东北大学. 2007.
    [4]陈绍楷,李晴宇,苗壮,许飞.电子背散射(EBSD)及其在材料研究中的应用.稀有金属材料及工程. 2006, 35(3): 500-504.
    [5] Kunze, K., Wright, S.I., Adams, B.L. Advances in automatic EBSP single orientation measurements. Textures and Microstructures. 1993, 20: 41-54.
    [6] Dingley, D.J., Randle, V. Microtexture determination by electron back-scatter diffraction (review). J. Mater. Sci. 1992, 27: 4545-4566.
    [7]孙志刚,张绍英,张宏伟,韩宝善,沈保根. Sm2Fe14.5Cu0.5Ga2Cx快淬带的磁力显微镜研究.物理学报. 1999, 48: 16-21.
    [8]刘经燕,王建平,陈益瑞.测试技术及应用.广州:华南理工大学. 2001: 145-167.
    [9]张曙光,纪建伟,罗兴吾.检测技术.北京:中国水利水电出版社. 2002: 183-206.
    [10]江丽萍.定向凝固和粉末粘结Tb-Dy-Fe超磁致伸缩材料的制备与性能研究[博士论文].沈阳:东北大学. 2007.
    [1]蒲键,王敬丰等.深过冷合金中的非平衡现象分析.材料导报. 2002, 16(7): 24-26.
    [2] Powell, G.L.F., Hogen, L.M. The undercoolings of copper and copper-oxygen alloys. Trans. Metall. Soc. AIME. 1968, 242: 2133-2138.
    [3] Merz, G.D., Kattamis, T.K. Mechanical Behavior of Cast Single Phase Alloys Solidified From Undercooled Melts. Metall Trans A. 1977, 8A: 295.
    [4] Willnecker, R., Herlach, D.M., Feuerbacher, B. Nucleation in bulk undercooled nickel-base alloys. Mater. Sci. Eng. 1988, 98: 85.
    [5] Evens, P.V., Vitta, S., Hamerton, R.G. Solidification of germanium at high undercoolings: morphological stability and the development of grain structure. Acta Metall. Mater. 1990, 38(2): 223.
    [6] Li, D., Eckler, K., Herlach, D.M. Development of grain structures in highly undercooled germanium and copper. J. Cryst. Growth. 1996, 160: 59-65.
    [7] Turnbull, D. Isothermal rate of solidification of small droplets of mercury and tin. J. Chem. Phys. 1950, 18: 768.
    [8] Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 1952, 20(3): 411-424.
    [9] Perepezko, J.H. Nucleation in undercooled melts. Mater. Sci. Eng. 1984, 65: 125-135.
    [10] Perepezko, J.H., Anderson, I.E. in T J Rowland and E S Machlin (eds). Rapidly Solidified Amorphous and Crystalline Alloys, Proc Symp of Materials Research Society. North-holland. Amsterdam. 1982: 49.
    [11] Okress, E.C., Wroughton, D.M., Comenetz, G. Electromagnetic levitation of solid and molten metals. J. Appl. Phys. 1952, 23: 545-552.
    [12] Herlach, D.M. Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng. R. 1994, R12: 172-277.
    [13] Hermann, R., Loser, W. Extension of the primary solidification region of Nd2Fe14B by levitation of undercooled melts. J. Appl. Phys. 1998, 83(11): 6399-6401.
    [14] Jansen, R., Sahm, P.R. Solidification under microgravity. Mater. Sci. Eng. 1984, 65: 199-212.
    [15] Ludwig, A. Limit of absolute stability for crystal growth into undercooled alloy melts. Acta Metall. Mater. 1991, 39: 2795.
    [16] Lipton, J., Glickman, M.E., Kurz, W. Dendritic growth into undercooled alloy metals.Mater. Sci. Eng. 1984, 65: 57.
    [17] Kattamis, T.Z., Flemings, M.C. Dendrite structure and grain size of undercooled melts. Trans. Metall. Soc. AIME. 1966, 236: 1523-1531.
    [18] Cao, C.D., Lu, X.Y., Wei, B.B. Peritectic solidification of highly undercooled Cu-Co alloy. Adv. Space. Res. 1999, 24(10): 1251-1255.
    [19] Lu, X.Y., Cao, C.D., Wei, B.B. Microstructure evolution of undercooled iron-copper hypoperitectic alloy. Mater. Sci. Eng. A. 2001, 313(1-2): 198-206.
    [20] Drehman, A.J., Greer, A.L., Turnbull, D. Bulk formation of a metallic glass: Pd40Ni40P20. Appl. Phys. Lett. 1982, 41: 716.
    [21]周根树,杨根仓,周尧和.液态金属的自分离净化法.材料科学进展. 1993, 7(2): 115-119.
    [22]惠增哲,杨根仓,周尧和.大体积Ni-Sn共晶合金的化学净化与过冷.材料研究学报. 1998, 12(1): 37-41.
    [23] Wei Bingbo, Yang Gencang, Zhou Yaohe. High undercooling and rapid solidification of Ni-32.5% Sn eutectic alloy. Acta. Metall. Mater. 1991, 39(6): 1249-1258.
    [24]周根树. [博士论文].西安:西北工业大学. 1993.
    [25]李德林. [博士论文].西安:西北工业大学. 1991.
    [26]邢力谦. [博士论文].西安:西北工业大学. 1990.
    [27]潘守芹.新型玻璃.上海:同济大学出版社. 1992: 1-17.
    [28] Okamoto, H. in Phase Diagrams of Binary Iron Alloys, edited by H. Okamoto. ASM International, Materials Parks, OH, 1993: 147-151.
    [29]刘峰. DD3高温合金的深过冷快速凝固及其快速凝固用特殊涂层[博士论文].西安:西北工业大学. 2001.
    [30]刘峰,郭学峰,杨根仓.过冷DD3单晶高温合金的净化影响因素及途径.铸造. 2000, 6: 335.
    [31]陈光,傅恒志.非平衡凝固新型金属材料.北京:科学出版社. 2004: 78-80.
    [32] Gan, F.X. Moern Glass Science and Technology. Beijing: Science and Technology Press. 1986: 39-42.
    [33]郭学锋,杨根仓.玻璃净化剂组分对Cu50Ni50合金熔体过冷度稳定性的影响.中国有色金属学报. 2000, 10(1): 77-80.
    [34]谢发勤.深过冷定向凝固技术研究[博士论文].西安:西北工业大学. 1997.
    [35]张振忠. Fe-B-Si共晶合金深过冷快速凝固及块体纳米软磁材料制备[博士论文].西安:西北工业大学. 2000.
    [36] Perepezko, J.H. Kinetic processes in undercooled melts. Mater. Sci. Eng. A. 1997, 226-228: 374-382.
    [1] Walker, J.L. Principles of Solidification. New York: Wiley. 1964: 122.
    [2] Hunt, J.D., Jackson, K.A. Nucleation of solid in an undercooled liquid by cavitations. J. Appl. Phys. 1966, 37: 254-257.
    [3] Jones, B.L., Weston. G.M. Grain refinement in undercooled copper. J. Australian Inst. Metals. 1970, 15(3): 167-170.
    [4] Li, J.F., Liu, Y.C., Lu, Y.L., Zhou, Y.H., Yang, G.C. Structural evolution of undercooled Ni-Cu alloys. J. Cryst. Growth. 1998, 192: 462-470.
    [5] Schwarz, M., Karma, A., Eckler, K., Herlach, D.M. Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett. 1994, 73(10): 1380-1383.
    [6] Mullis, A.M., Cochrane, R.F. Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys. J. Appl. Phys. 1997, 82(5): 3783-3790.
    [7] Okamoto, H. in Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams No. 9, edited by H. Okamoto. ASM International, Materials Parks, OH, 1993: 147-151.
    [8] Boettinger, W.J., Coriell, S.R., Trivedi, R. In: Mehrabian, R., Parrish, P.A.(Eds.). Rapid Solidification Processing: Principles and Technologies IV. Claitor’s. Baton Rouge. LA. 1988: 13.
    [9] Liu, F., Yang, G.C., Guo, X.F. Research of grain refinement in undercooled DD3 single crystal superalloy. Mater. Sci. Eng. A. 2001, 311: 54-63.
    [10] Zheng, H.X., Ma, W.Z., Zheng, C.S., Guo, X.F., Li, J.G. Rapid solidification of undercooled monotectic alloy melts. Mater. Sci. Eng. A. 2003, 355: 7-13.
    [11] Liu, F., Guo, X.F., Yang, G.C. Recrystallization mechanism for the grain refinement in undercooled DD3 single-crystal superalloy. J. Crystal Growth. 2000, 219: 489-494.
    [12] Li, J.F., Liu, Y.C., Lu, Y.L., Zhou, Y.H., Yang, G.C. Structural evolution of undercooled Ni-Cu alloys. J. Crystal Growth. 1998, 192: 462-470.
    [13] Li, J.F., Zhou, Y.H., Yang, G.C. Solidification behavior of undercooled Cu70Ni30 alloy melt. Mater. Sci. Eng. A. 2000, 277: 161-168.
    [14] Chai, G., B?ckerud, L., Amberg, L. Study of dendrite coherency in Al-Si alloys during equiaxed dendritic solidification. Z. Metallkd. 1995, 86: 54.
    [15] Perepezko, J.H. Kinetic processes in undercooled melts. Mater. Sci. Eng. A. 1997, 226-228:374.
    [16] Turnbull, D. Under what conditions can a glass be formed?. Contemp. Phys. 1969, 10: 473.
    [17] Herlach, D.M., Gillessen, F., Volkmann, T., Wollgarten, M., Urban, K. Phase selection in undercooled quasicrystal-forming Al-Mn alloy melts. Phys. Rev. B. 1992, 46: 5203-5210.
    [18] Algoso, P.R., Hofmeister, W.H., Bayuzick, R.J. Solidification velocity of undercooled Ni–Cu alloys. Acta Mater. 2003, 51: 4307.
    [19] Powell, G.L.F. The influence of oxygen content on the grain size. of undercooled silver. Trans TMS-AIME. 1969, 245: 1785.
    [20] Powell, G.L.F., Hogan, L.M. The undercoolings of copper and copper-oxygen alloys. Trans TMS-AIME. 1968, 242: 2133.
    [21] Powell, G.L.F., Hogan, L.M. The influence of oxygen content on the grain size of undercooled silver. Trans Metall Soc AIME. 1969, 245: 407.
    [22] Jones, B.L., Weston, G.M. The structural features of undercooled nickel and nickel-oxygen alloys. J. Aust. Inst. Met. 1970, 15: 4189.
    [23] Hu, H. in Metallurgical Treatises, ed. Tien, T.K., Elliot, J.F. Conference Proceedings. The Metallurgical Society AIME. 1981: 385.
    [24] Lograsso, T.A., Ross, A.R., Schlagel, D.L., Clark, A.E., Wun-Fogle, M. Structural transformations in quenched Fe-Ga alloys. J. Alloy Compd. 2003, 350: 95-101.
    [25] Wuttig, M., Dai, L.Y., Cullen, J. Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl. Phys. Lett. 2002, 80(7): 1135-1137.
    [26] Han, B.S., Li, D., Zheng, D.J., et al. Fractal study of magnetic domain patterns. Phys. Rev. B. 2002, 66: 433.
    [27]崔培,钮萼,于敦波,褚武扬,乔利杰.力-磁-环境耦合作用下超磁致伸缩材料TbDyFe表面畴变的观察.功能材料. 2007, 38: 1117-1120.
    [28] Bai, F.M., Li, J.F., Viehland, D. Magnetic force microscopy investigation of domain structures in Fe-x at.% Ga single crystals (12    [29]荣传兵,张宏伟,张健,张绍英,沈保根.纳米晶永磁中面缺陷对畴壁钉扎机理的研究.物理学报. 2003, 52(3): 708-712.
    [1] Clark, A.E., James, B., Restorff, J.B., Wun-Fogle, M., Lograsso, T.A., Schlagel, D.L. Magentostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 2000, 36(5): 3238-3240.
    [2] Clark, A.E., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A. Magnetostrictive properties of Galfenol alloys under compressive stress. Mater. Trans. 2002, 43(5): 881-886.
    [3] Guruswamy, S., Srisukhumbowornchai, N., Clark, A.E., Restorff, J.B., Wun-Fogle, M. Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga. Scripta. Mater. 2000, 43: 239-244.
    [4] Kawamiya, N., Adachi, K., Nakamura, Y. Magnetic properties and M?ssbauer investigations of Fe-Ga alloys. J. Phys. Soc. Jap. 1972, 33(5): 1318-1327.
    [5] Liu, G.D., Liu, L.B., Liu, Z.H., Zhang, M., Chen, J.L., Li, J.Q., Wu. G.H., Li, Y.X., Qu, J.P., Chin, T.S. Giant magnetostriction of Fe85Ga15 stacked ribbon samples. Appl. Phys. Lett. 2004, 84(12): 2124-2126.
    [6] Srisukhumbowornchai, N., Guruswamy, S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. 2001, 90(11): 5680-5688.
    [7] Xie, F.Q., Zhang, J., Mao, X.M., Li, D.L., Fu, H.Z. Rapid directional solidification excited from bulk supercooled melt. J. Mater. Proc. Tech. 1997, 63: 776-778.
    [8] Stanescu, J., Sahm, P.R., Schadich-Stubenrauch, J. Autonomous directional solidification for single crystal turbine blade. 40th Annual Technical Meeting: Investment Casting Institute. 1992, 29: 4-13.
    [9]谢发勤,张军.深过冷熔体激发快速定向凝固.材料科学与工艺. 1996, 4(3): 102-106.
    [10]范雄.金属X射线学.北京:机械工业出版社. 1998: 138.
    [11]朱玉斌,周廉.材料织构的测量记忆发展.稀有金属材料与工程. 1995, 24(6): 38-42.
    [12]毛卫民,张新明.晶体材料织构定量分析.北京:冶金工业出版社. 1995: 51-58.
    [13]李树棠. X射线衍射试验方法.北京:冶金工业出版社. 1993: 91.
    [14]毛卫民,张新明.晶体材料织构定量分析.北京:冶金工业出版社. 1995: 81-82.
    [15] Bunge, H.J. Texture analysis in materials science: mathematical methods. Butterworths&Co. 1982: 47-77.
    [16] Lograsso, T.A., Ross, A.R., Schlagel, D.L., Clark, A.E., Wun-Fogle, M. Structural transformations in quenched Fe-Ga alloys. J. Alloy Compd. 2003, 350: 95-101.
    [17]郭贻诚.铁磁学.北京:人民教育出版社. 1965: 204.
    [18] Cullen, J.R., Clark, A.E. Magnetoelasticity of Fe-Ga and Fe-Al alloys. J. Magn. Magn. Mater. 2001, 226: 948.
    [19] Wuttig, M., Dai, L.Y., Cullen, J. Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl. Phys. Lett. 2002, 80(7): 1135-1137.
    [20]韩志勇[博士论文].北京:北京科技大学. 1994.
    [21] Liu, L.B., Fu, S.Y., Liu, G.D., Wu, G.H., Sun, X.D., Li, J.Q. Transmission electron microscopy study on the microstructure of Fe85Ga15 alloy. Physica B. 2005, 365: 102-108.
    [22] Wu, G.H., Yu, C.H., Meng, L.Q., Chen, J.L., Yang, F.M., Qi, S.R., Zhan, W.S., Wang, Z., Zheng, Y.F., Zhao, L.C. Appl. Phys. Lett. 1999, 75: 2990.
    [1] Herlach, D.M. Non-equilibrium solidification of undercooled metallic melts. Key Engineering Materials. 1993, 81: 89-94.
    [2]魏炳波, Barth, M.液态金属快速结晶的热力学驱动力.金属学报. 1994, 30(7): 289-293.
    [3] Zhou, Zhenhua., Fu, Hengzhi. Rapid directional solidification from highly undercooled Cu-5wt. %Ni alloy melts. J. Mater. Sci. Lett. 2000, 19(16): 1491-1494.
    [4] Eckler, K., Cochrane, R.F. Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys Physical Review B. Physical Review B. 1992, 9: 5019-5022.
    [5]谢发勤,李金山,傅恒志. Cu-Ni单相合金的深过冷定向凝固过程研究.科学通报. 1999, 44(18): 1947-1951.
    [6] Li, J., Lu, Y., Yang, G., Zhou, Y. Directional solidification of undercooled melt. Pro. Nat. Sci. 1997, 7(6): 736-741.
    [7]刘峰. DD3高温合金的深过冷快速凝固及其快速凝固用特殊涂层[博士论文].西安:西北工业大学. 2001.
    [8]郑红星.过冷Ni-Pb偏晶合金凝固组织及凝固行为[硕士论文].西安:西安理工大学. 2002.
    [9] Zhou, J., Li, J. Grain refinement in bulk undercooled Fe81Ga19 magnetostrictive alloy. J. Alloys Compd. 2008, 461: 113-116.
    [10] Zhou, J.K., Li, J.G. An approach to the bulk textured Fe81Ga19 rods with large magnetostriction. Appl. Phys. Lett. 2008, 92: 141915.
    [11]谢发勤,李金山.负温度梯度熔体中晶体生长取向与控制.甘肃工业大学学报. 2002, 9: 19-22.
    [12] Hoyt, J.J., Sadigh, B., Asta, M., Foiles, S.M. Kinetic phase field parameters for the Cu-Ni system derived from atomistic computations. Acta Mater. 1999, 47(11): 3181-3187.
    [13] Wu, G.H., Yu, C.H., Meng, L.Q., Chen, J.L., Yang, F.M., Qi, S.R., Zhan, W.S., Wang, Z., Zheng, Y.F., Zhao, L.C. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett. 1999, 75: 2990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700