用户名: 密码: 验证码:
柴达木盆地盐湖岩芯痕量汞的赋存形态及其环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
察尔汗盐湖位于柴达木盆地中部,是中国目前最大的盐湖,也是富含多种矿物的大型综合盐湖。察尔汗盐湖岩芯沉积物记录着丰富的盐湖地质信息,通过对其样品中痕量类金属元素汞垂直分布的研究,可反演和追溯该区域内汞的迁移史,反映该地区地质变迁过程及古气候变化,同时也对该地区元素地球循环、生态效应及环境评价等研究有着重要的意义。本论文在导师主持的国家自然科学基金重点和面上项目(20836009、40773045)资助下,以察尔汗盐湖地芯样品为研究对象,首次研究了察尔汗盐湖地芯样品中汞的分布行为。
     主要研究内容:①建立适用于测定盐湖地芯样品及盐湖区内高矿化度水体中汞含量的分析方法;②通过对地芯样品中的总汞(THg)、总铁(TFe)、总锰(TMn)的提取、测定及分析,揭示地芯样品中汞的垂向分布特征;③通过对地芯样品中水溶态汞(Hg-H2O)、铁锰氧化物结合态汞(Hg-oxal)、有机物结合态汞(Hg-H2O2)、硫化矿物吸附态汞(Hg-pyrite)的连续浸提与测定分析,揭示各种形态汞在岩芯样品中的垂向分布与迁移转化规律。
     主要研究成果:
     ①通过改进氢化物发生-原子荧光法(HG-AFS)天然水体系痕量汞分析,建立了可适用于高盐度沉积物样品中汞含量的测定方法;
     ②察尔汗盐湖不同岩性样品中,总汞(THg)的含量大小为:黏土>淤泥>盐类物质夹粉砂>细纱质盐类>纯石盐,但研究发现,盐类物质对汞的富集作用没有特别明显的差异;
     ③盐湖地芯样品0 ~ -103.15 m中总汞(THg)含量的垂向分布特征为:总汞的含量由上至下呈表层(0.00 ~ -10.04 m)较高,中间区段(-10.04 ~ -40.27 m)不均一,-40.27 ~-49.65 m较低,-49.65 ~ -82.64 m增大,-82.64 ~ -103.15 m整体含量有所降低的趋势;
     ④察尔汗盐湖盐类矿物沉积层(0.00 m~-47.07 m)地芯样品中,THg与TFe、TMn的地球化学相关系数分别为0.41和0.36,说明在盐湖沉积层中TFe、TMn对THg的垂向含量分布具有明显影响;在湖相粉砂沉积层(-47.07 m~-103.15 m)地芯样品中,TFe、TMn对THg的地球化学相关系数分别为0.25和0.05,表明湖相沉积层铁锰氧化物对THg的垂向分布影响相对较小。总体而言,在0.00 ~-103.15 m的地芯样品中,含铁氧化物对总汞含量分布的影响大于锰氧化物对总汞分布的影响。
     ⑤察尔汗盐湖地芯样品中痕量汞各赋存形态的含量大小:Hg(oxal) > Hg (pyrite) > Hg(H_2O) > Hg(H_2O_2) ,说明样品中的汞主要以铁锰氧化物结合态Hg(oxal)和硫化物结合态Hg (pyrite)形式存在;水溶态汞Hg(H_2O)和有机物结合态汞Hg(H_2O_2)在地芯样品中含量极低。
Qarhan Salt Lake located in the central Qaidam Basin is the largest salt lake in China, and it has various mineral in salt lake. The vertical distribution of mercury records the earth's geological information in Qaidam Basin. It would not only demonstrate traces back on the region’s history for mercury migration, but also reflect the geological processing and fluctuation in the palaeoclimate information. The results could reveal the effect of the earth recycling, ecological and the environmental evaluation. Under the joint financial supports from the National Natural Science Foundation of China (Grants 20836009 and 40773045), the vertical distributions of mercury in Qarhan Salt Lake was carried out.
     The researching contents include:①Establish a sensitive mercury analysis method for high saline brines and core samples from the salt lake;②The core example includes (expressed as THg), total iron(expressed as TFe), total manganese(expressed as TMn), were extracted determined and then were analyzed. It reveal the vertical distribution of the THg, TFe and TMn.③The Hg-H2O,Hg-oxal,Hg-H2O2 and Hg-pyrite in core samples from the salt lake, were extrated determined and then were analyzed and it reveals the various forms of mercury in the core samples in the vertical distribution and the migation regular pattern.
     Solutions in this study can be summerized as following:
     ①The hydride generation-atomic fluorescence spectrometry (HG-AFS) for mercury analysis established by our group is suits for mercury analysis in the high salinity sample.
     ②There are different lithology examples of contents in the salt lake as follows: clay > silt > salt containing mealy sand > arenaceous salt with silt particles > pure salt particles. The results showed that salt minerals does not have significant influence for mercury distribution.
     ③In the Qarhan global core samples, the content of mercury in the section of 0.00~ -10.04m is high, -10.04~-40.27 m is inhomogeneous, -40.27~-49.65 m is low, and -49.65~-82.64 m shows quickly increase, but -82.64~-103.15 m is in reduce trend.
     ④The geochemical statistical correlations (r) among THg, TFe and TMn in the vertical distribution global core samples with depth 0.00 ~ -47.07 m in the character of salt mineral deposit type in Qaidam Basin are 0.41 and 0.36, respectively. Those results demonstrate that the effect of TFe and TMn in core samples for THg vertical distribution plays is obverious. However, the geochemical statistical correlations (r) among THg, TFe and TMn in the vertical distribution global core samples with depth -47.07 ~ -103.15 m in the character of clay mineral deposit type in Qaidam Basin are 0.41 and 0.36, respectively, and it demonstrates that the effect of iorn and manganese oxidates existed in clay for the vertical distribution of mercury is minor. For vertical distribution of mercury, generally, the effect of iorn oxidates existed core samples between 0.00 and -103.15 m is higher that that of manganese oxidates.
     ⑤The concentrations of different mercury species in the core of the salt lake is in the order of Hg(oxal) > Hg (pyrite) > Hg(H2O) > Hg(H2O2). it explains that the two main mercury speciations are Hg(oxal) and Hg (pyrite),and the concentrations of dissolved mercery and organic mercury existed in core samples are in minor levels.
引文
[1]于昇松.西藏盐湖及其水系中的痕量金属[J].海洋与湖沼,1992,23(4):407-4l4.
    [2]邓勃,迟锡增,刘明钟,等.应用原子吸收与原子荧光光谱分析[M].北京:化学工业出版社,2006,pp:533-536.
    [3]展惠英.环境化学[M].兰州:甘肃科学技术出版社,2008,pp:1-6 .
    [4]温武瑞,离培,李海英,等.我国汞污染防治的研究与思考[J].环境保护,2010,12(3): 33-35.
    [5]程金平,刘彩娥,王文华.汞等重金属元素在黄浦江中迁移富集研究[J].水科学进展,2005,15(6):767-772.
    [6] Wheatly B,Wheatley M A.Methylmercury and the health of indigenous peoples:a risk management challenge for physical and social sciences and for public health policy[J]. The science of the Total Environment, 2000,25(9): 23-29.
    [7] She J B,IP C C M, Tang C W Y, et al. Spatial and temporal variations of mercury in sediments from Victoria Harbour, Hong Kong[J]. Marine Pollution Bulletin, 2007, 5(54): 480-486.
    [8]李川江,冉明.土壤汞污染与土壤汞污染防治[J].重庆三峡学院学报,2009,25(117):67-70.
    [9]戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,33(4):75-78.
    [10]胡一珠,邓天龙,胡志中,等.土壤样品中汞的形态分析研究进展[J].广东微量元素科学,2010,17(11):19-24.
    [11]李朝华,苏庆平,侯彩红,等.固体沉积物中汞形态分析方法进展[J].理化检验—化学分册,2008,4(3):295-298.
    [12]依艳丽,李迎,张大庚.不同水分条件下汞在土壤中形态转化的研究[J].沈阳农业大学学报,2010,41(1):42-45.
    [13] Leticia GR, Mercedes VR, Martin EJ. Geochemistry of mercury in esdiment of oyster areas in Sonora, Mexico [J]. Mar Pollut Bull, 2006,26(6):557-560.
    [14]郑冬梅,王起超,孙丽娜,等.不同污染类型沉积物中汞的形态分布[J].境科学与技术,2010,33(7):44-56.
    [15]陈丽萍,胡恭任.土壤和沉积物中汞的提取与检测方法研究进展[J].环境与健康杂志,2009,26(6):557-560.
    [16]余海洋,廖梦霞,邓天龙.水环境中痕量超痕量元素汞的形态分析技术进展[J].世界科技研究与发展,2006,28(2):52-56 .
    [17] Ayyamperumal T, Jonathan M P, Srinivasalu S, et al. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India [J]. Environmental Pollution ,2006,143(2):34–45.
    [18]毛丽莎,李永儒,刘红河.电热消解仪消解-原子荧光光谱法测定土壤中的汞[J].卫生研究,2010,39(1) :89-91.
    [19] James V Cizdziel, Candice Tolbert,Carry Brown. Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event [J]. Spectrochimica Acta Part B,2010,65 (2):176–180.
    [20]刘林,陆彦彬.微波消解-原子荧光光谱法同时测定土壤中微量砷和汞[J].监测分析,2006, 23(1):74-75.
    [21]秦德萍,黄志勇,邓志兰,等.土壤及蔬菜中微量汞的同位素稀释电感耦合等离子体质谱测定[J].分析测试学报,2010,29(2):142-146.
    [22]杨娟芬,任飞,金婉芳,等.微波消解-冷原子吸收光谱法测定食品中汞的讨论[J].光谱实验室,2008,25(2):65-68.
    [23]赵亚男,邓天龙,吴怡,等.沉积物样品中痕量元素汞的形态分析研究进展[J].广东微量元素科学,2009,16(2):1-6.
    [24]曹鹏,邓天龙,吴怡,等.高矿化度水体样品中痕量砷形态分析方法研究进展[J].广东微量元素科学,2009,16(12):8-14.
    [25]荆淼,沈阳,沈金灿,等.应用带八级杆碰撞/反应池(ORS)的电感耦合等离子体质谱(ICP-MS)同时测定大洋海水中的痕量元素[J].环境化学,2004,23(5):600-604.
    [26]刘莹,翟世奎,张爱滨,等.ICP-MS测定海水中溶解态痕量重金属-直接稀释法[J].海洋学报,2008,30(5):151-158.
    [27] Suzuki T, Sensui M. Application of the microwave acid digestion method to the decomposition of rock samples[J]. Analytica Chimica Acta, 1991, 245: 43-48.
    [28] Yoshikuni N. Rapid decomposion and dissolution of silicate rocks by fusion with lithium tetraborate and lithium sulphate[J]. Talanta, 1989, 36(6): 709-910.
    [29] Cai H W, Jiang P, Jin L, et al. Microwave enhanced alkaline degestion of silicate samples for determination of Fe2O3 [J]. Talanta, 2008, 77(3): 800-803.
    [30]尹伟,卢瑛,李军辉,等.广州城市土壤汞的分布特征及污染评价[J].土壤通报,2009,40(5):1185-1188.
    [31]张磊,张磊,周震峰等.青岛市不同功能区常见绿化植物及土壤汞污染特征[J].生态环境,2008,17(2):802-806
    [32]王冬进.原子吸收法直接测量土壤中的汞含量[J].污染防治技术,2010,23 (1):82-83.
    [33]孙翔.氢化物-原子荧光法同时测定水中砷和汞[J].医学动物防治,2010,26 (3):286-287.
    [34]孙艳.土壤中总汞的原子荧光测定法[J].职业与健康,2009,25(11):1147-1148.
    [35]依艳丽,李迎,张大庚.不同水分条件下汞在土壤中形态转化的研究[J].沈阳农业大学学报,2010,41(1):42-45.
    [36]辛文采,张波,夏宁,等.氢化物发生-原子荧光光谱法测定海洋沉积物中砷、锑、铋、汞、硒[J].理化检验-化学分册,2010,56(2):143-145.
    [37]周少贤,庄志瑶,李红,等.氢化物发生-原子荧光法测定海产品中的砷和汞[J].广东微量元素科学,2010,17(1):32-35.
    [38]张锦茂,梁敬,陈璐,等.色谱-原子荧光光度计联用技术的新进展及其在食品、环境领域的应用[J].光谱仪器与分析,2010,1(3):76-88.
    [39]张兰,陈玉红,施燕支,等.高效液相色谱-电感耦合等离子体质谱联用技术测定二价汞、甲基汞、乙基汞与苯基汞[J].环境化学,2009,28(5):772-775.
    [40]余晶晶,杨红霞,李冰,等.水浴浸提-高效液相色谱-电感耦合等离子体质谱法快速测定水产品中的甲基汞[J].分析化学,2010,38(2):299-302.
    [41]秦德萍,黄志勇,邓志兰等.土壤及蔬菜中微量汞的同位素稀释电感耦合等离子体质谱测定[J].分析测试学报,2010,29 (2):142-146.
    [42]戴骐,吴艳燕,张伟,等.电感耦合等离子体质谱(ICP-MS)法测定动物植物源食品中有害元素铅、砷、镉、汞、铜的含量[J].食品科技,2009,34(12):315-317.
    [43] Avila-Perez Pedro, Zarazua-Ortega G.[J]. International Journal of Environment and Pollution,2006,26 (3): 174-186.
    [44] Zhu X P, Alex and Ratos S D.Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: Elimination of the memory effect [J].Microchemical Journal, 2007, 86 (1): 37-41.
    [45] Hamilton M A,Rode P W,Merchantme . Determination and comparison of heavymetals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana [J].Microchemical Journal,2008,88 (1) : 52-55.
    [46]赵会峰,张加玲.浊点萃取分光光度法测定水样中的痕量汞[J].中国卫生检验杂志,2009,19(2):302-304.
    [47]滑照军,湛敏.催化动力学光度法测定痕量汞的研究进展[J].三峡环境与生态,2010,3(1):44-50.
    [48]黄麟,韩凤清.柴达木盆地盐湖演化与古气候波动[M].北京:科学出版社,2007,pp:127-129,136-137.
    [49]张彭熹.柴达木盆地盐湖[M].北京:科学出版社,1987,pp:217-218,74-83,32-40.
    [50]高世扬,彭广志.综合开发和利用柴达木盐湖资源[J].柴达木开发研究,1993, 3(1):30-34.
    [51]袁见齐,杨谦,孙大鹏,等.察尔汗盐湖钾盐矿床的形成条件[M].北京:地质出版社,1995,pp:52-53,59-60,67-73.
    [52]李承宝,张秀春.青海察尔汗盐湖钾资源开发现状[J].现代矿业,2009,2(1):16-19.
    [53]陶成,邓天龙,李泽琴.天然水中痕量无机汞和有机汞的氢化物原子荧光光谱法分析[J].广州化学,2003, 28(4):16~20.
    [54] Liao M X, Deng T L. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry[J]. Journal of Environmental Scienes, 2006, 18(5): 995-999.
    [55]黄麟,韩凤清.柴达木盆地盐湖演化与古气候波动[M].北京:科学出版社,2007,pp:127.
    [56]仇广乐,冯新斌,王少峰,等.贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征的研究[J].环境科学,2006,27(3):550-555.
    [57]张宏飞,李永华,姬艳芳,等.湘西汞矿区土壤中重金属的空间分布特征及生态环境意义[J].环境科学,2009,30(4):1159-1165.
    [58]沈军,王东启,史贵涛,等.黄浦江水源地水和沉积物中汞的分布[J].环境科学研究,2008,21(2):24-28.
    [59]陈文娟,方凤满,余建,等.安徽芜湖市土壤汞污染评价及影响因素分析[J].安徽师范大学学报,2009,32(2):168-172.
    [60]刘敬勇,常向阳,涂湘林,等.广东某硫酸冶炼工业区土壤铊污染及评价[J].地质论评,2009,55(2):242-250.
    [61]曹得菊,岳永德,黄祥明,等.巢湖水体Pb、Cu、Fe污染的环境质量评价[J].中国环境科学,2004,24(4):509 - 512.
    [62]中国科学院青海盐湖研究所分析室.卤水和盐的分析方法[M].北京:科学出版社, 1988:1-15.
    [63]戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,30(4):75-79.
    [64]刘培桐.环境学概论[M].北京:高等教育出版社,1986:31-35,42-49.
    [65] Heyer M, Burke J, Keeler G, et al. Atmospheric sources, transport and deposition of mercury in Michigan : two years of event precipita-tion[J]. Water Air Soil Pollut , 1995, 80(3):199-208.
    [66]王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20(5):22-25.
    [67] Reimann Do. Deposition of airborne mercury near point sources[J]. Water Air Soil pollute, 1974, 13(2): 174-193.
    [68]杨燕娜,温小乐.土壤汞污染及其治理措施的研究综述[J].能源与环境,2006,32(1):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700