用户名: 密码: 验证码:
永磁同步电动机伺服系统自适应逆控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机伺服系统广泛应用于工业、农业、国防、航空航天、社会生活等各个领域。随着科技的不断进步,对于伺服控制系统的要求也越来越高。因此,研究先进的永磁同步电动机伺服系统控制策略、开发高性能永磁同步电动机伺服系统,对提高我国工业发展水平、促进国防现代化建设,具有极其重要的现实意义和实用价值。
     永磁同步电动机伺服系统作为一个非线性、多变量、强耦合的时变系统,在运行过程中,参数变化、外界扰动和噪声等非线性因素将使系统性能变差。因此,要提高永磁同步电动机伺服系统性能,必须采用先进的控制策略以克服参数变化和外界扰动对系统产生的不利影响。
     本文针对提高永磁同步电动机伺服系统性能进行了深入分析,结合信号处理的方法,提出了基于复合自适应逆控制策略的永磁同步电动机伺服控制系统,采用位置环、速度环、电流环控制结构。其中,速度环和电流环采用基于矢量控制的id=0控制策略,通过id=0控制策略可以使电动机获得较宽的调速范围和较好的转矩性能。
     永磁同步电动机伺服系统的关键性能指标是位置控制精度,为了提高位置控制精度,系统位置环采用复合自适应逆控制策略。当控制器为对象的逆模型时,位置输出跟随位置输入,同时对系统存在的扰动进行消除。在自适应逆控制系统中,被控对象的输入同时驱动对象和对象模型,对象输出和对象模型的输出之差即为对象的噪声,利用该噪声去驱动对象的逆模型并在对象输入中予以消除。自适应逆控制策略从根本上消除了噪声对位置输出的影响,提高了伺服系统的控制性能。
     为了进一步提高自适应逆控制的性能,本文对变步长最小均方(Least mean square, LMS)算法进行了分析和改进。提出了基于相关误差的非线性变步长LMS算法,提高了LMS算法的收敛速度并有效地克服了参数扰动对算法的影响。
     非线性滤波器作为非线性自适应逆控制的重要组成部分,直接影响着自适应逆控制策略的控制效果。为了更好的实现非线性自适应逆控制,本文将动态径向基函数(Radial Basis Function,RBF)神经网络和FIR滤波器相结合构成非线性滤波器,并采用混沌多群体粒子群优化(Chaos Multi-population Particle Swarm Optimization, CMPSO)算法对非线性滤波器的权值进行离线优化,进一步提高了自适应滤波器的收敛速度和精度,有效地实现了系统建模、逆建模以及扰动消除器的设计,进而提高了自适应逆控制策略的控制效果。
     最后,本文将基于动态RBF神经网络和FIR的非线性滤波器与基于相关误差的非线性变步长LMS算法相结合,实现了永磁同步电动机伺服系统自适应逆控制。进一步将PI控制策略与自适应逆控制策略相结合,提出了一种复合自适应逆控制策略。仿真和实验结果表明,基于本文提出的复合自适应逆控制策略的永磁同步电动机伺服系统具有较好的动态响应、较高的稳态精度和较强的抗干扰能力,证明了本文所提出的控制策略的有效性和先进性。
The permanent magnet synchronous motor control system has been widely used in industry, agriculture, aerospace and various fields of social life. With the continuous progress of science and technology, servo system requirements have become increasingly stringent. So study the high-performance permanent magnet synchronous motor servo system control strategy and development high-performance permanent magnet synchronous motor servo system products has extremely important practical significance and practical value to improve industrial levels and promote the development of defense industry.
     The permanent magnet synchronous motor servo system as a nonlinear, multivariable, strong coupling varying systems is difficult to describe in precise mathematical model. In the process, the external disturbance and other nonlinear factors will lead to poor system performance. Therefore, to improve the performance of the control system of permanent magnet synchronous motor servo system, advanced control strategies must be used to overcome parameter variations, external disturbances and make the system has good tracking performance and strong robustness.
     This paper proposed composite adaptive inverse control strategy for permanent magnet synchronous motor servo control system based on nonlinear signal processing method. The system adopts the position loop, speed loop and current loop control structure. The speed loop and current loop based on id=0control method. The id=0control method can make permanent magnet synchronous motor achieves wide speed range and good torque performance.
     The key performance of permanent magnet synchronous motor servo system is position accuracy. In order to improve it, the adaptive inverse control strategy is used in the position loop. The adaptive inverse control strategy combined with the idea of inverse control and adaptive control. When the controller is the inverse of the plant, the output of position can track the input precisely. Meanwhile the whole disturbance between the plant and model derive both the plant and model, and this disturbance was subtracted from the input of plant by driving the inverse of the model, and the noise and disturbance of system can be eliminated ultimately. This strategy solves the problem of high performance control of AC servo system preferably.
     To further enhance the performance of adaptive inverse control, an improved variable step size LMS algorithm based on dependent errors was proposed. This variable step size LMS algorithm improves the convergence speed and overcome the impact of parameter disturbances.
     Nonlinear filter as a key component of the nonlinear adaptive inverse control directly impact the performance of adaptive inverse control strategy. In order to better achieve the nonlinear adaptive inverse control, an improved nonlinear adaptive filter based on dynamic RBF neural network and FIR filter is proposed. Meanwhile, the chaos multi-population particle swarm optimization(CMPSO) algorithm is used to training of the nonlinear filter weights offline, and the training results as the initial weights of the nonlinear filter. This method improves the control performance of adaptive inverse control strategy.
     Combined with the proposed nonlinear filter and variable step size LMS algorithm, the permanent magnet synchronous motor servo system based on adaptive inverse control is realized. Further, a composite adaptive inverse control strategy is proposed based on the conventional PI control strategy and adaptive inverse control strategy. Simulation and testing results show that the composite adaptive inverse control strategy for permanent magnet synchronous motor servo system has good dynamic response, steady-state precision and disturbance-rejection ability. The validity and advantage of the proposed control strategy is proved.
引文
[1]刘锦波.电机与拖动[Ml.第一版.北京.清华大学出版社.2006.
    [2]唐任远.现代永磁电机[M].北京,机械工业出版社.2006.
    [3]郭庆鼎.现代永磁电动机交流伺服系统[Ml.第一版,北京,中国电力出版社.2006.
    [4]Markus Reichhartinger and Martin Horn. Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation[J]. World Academy of Science, Engineering and Technology,2010.
    [5]Kung Ying-Shieh. DSP-based Adaptive Fuzzy Control for a Sensorless PMSM Drive[J]. IEEE,2007.
    [6]Patil N J. Implementation of Model Reference Adaptive Fuzzy Controller[J]. IET-UK International Conference on Information and Communication Technology in Electrical Sciences,2007.
    [7]Ming Yang. Fuzzy PID Controller Using Adaptive Weighted PSO for Permanent Magnet Synchronous Motor Drives[J]. The Second International Conference on Intelligent Computation Technology and Automation,2009.
    [8]Rajesh Kumar. Identification and Control of PMSM Using Artificial Neural Network[J].IEEE,2007.
    [9]Fayez F M, El Sousy. Hybrid H∞ Based Wavelet-Neural-Network Tracking Control for Permanent Magnet Synchronous Motor Servo Drives[J]. This article has been accepted for publication in a future issue of this journal, but has not been fully edited.Content may change prior to final publication,2009.
    [10]张建民.协作型模糊混沌神经网络研究[D].哈尔滨工程大学博士学位论文,2006.
    [11]Xu Dong.Adaptive Model Following Speed Control Method of Permanent Magnet Synchronous Motor[J]. IEEE, 2009.
    [12]H.Madadi Kojabadi.MRAS-based Adaptive Speed Estimator in PMSM Drives[J].AMC'06-Istanbul,2009.
    [13]Liu Yingpe.Fuzzy Based Direct Torque Control of PMSM Drive Using an Extened Kalman Filter[J].Proceedings of the Eighth International Conference on Machine Learning and Cybernetics,2009.
    [14]骆再飞.滑模变结构理论及其在交流伺服系统中的应用[D].浙江大学博士博士学位论文,2008.
    [15]王庆龙.交流电机矢量控制系统滑模变结构控制策略研究[D].合肥工业大学博士学位论文,2007.
    [16]赵永胜.模糊滑模控制及其在机电系统中应用的研究[D].华中科技大学博士学位论文,2007.
    [17]苏位峰,孙旭东,李发海.基于自抗扰控制器的异步电机矢量控制[J].清华大学学报(自然科学版),2004,44(10):1329-1332.
    [18]邵立伟,廖晓忠,张宇河.基于时间尺度的感应电机自抗扰控制器的参数整定[J].控制理论与应用,2008,25(2):205-209.
    [19]孙凯.自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现[D].天津大学博士学位论文,2007.
    [20]Li Ruihua. Aaaptive Inverse Control of Permanent Magnet Sychronous Motor Drive in a Micro-Electric VehiclefJ]. Proceedings of the Eighth International Conference on Machine Learning and Cybernetics,2009.
    [21]李明.基于动态神经网络的非线性自适应逆控制研究[D].南京理工大学博士论文,2007.
    [22]Chou T Y, Liu T H, Cheng T T.Designe and implementation of an adaptive inverse controller for a micro-permanent magnet synchronous motor control system[J]. IET Applications,2009, (5):471-481.
    [23]Bimal K Bose.Modern Power Electronics and AC Drives[J].Beijing:China Machine Press,2004.
    [24]顾绳谷.电机及拖动基础第四版[M].北京:科学出版社,2008.
    [25]胡寿松.自动控制原理第五版[Ml.北京:科学出版社,2007.
    [26]刘豹,唐万生.现在控制理论[M].北京:机械工业出版社,2006.
    [27]Amit Vilas Sant, K R Rajagopal,Nimit K Sheth.Permanent Magnet Synchronous Motor Drive Using Hybrid PI Speed Controller With Inherent and Noninherent Switching Functions[J]. IEEE TRANSACTIONS ON MAGNETICS,2011.
    [28]B WIDROW, E WALACH.Adaptive inverse control[J]. Prentice Hall, Upper Saddle River, NJ,1996.
    [29]B WIDROW.Adaptive model control applied to real time blood pressure regulation[J]. Pattern Recognition and Machine Learning, New York, Plenum Press,1971:310-324.
    [30]B WIDROW, J MCCOOL, B MEDOFF. Adaptive control by inverse modeling[J].Conf.Rec.of 12th Asilomar Conference on Circuits, Santa Clara, Systems and Computers,1978:90-94.
    [31]B WIDROW, D SHUR, S SHAFFER.On adaptive inverse control[J].Conf.Rec.of 15th Asilomar Conference on Circuits, Santa Clara, Systems and Computers,1981:185-189.
    [32]G L Plett. Adaptive inverse control of unknown stable SISO and MIMO linear systems.Int J Adaptive control signal processing,2008,16(4):243-27.
    [33]G L Plett. Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamie Neural Networks. IEEE Trans. Neural Networks,2003,14(2):360-376.
    [34]M Shafiq, S H Riyaz.Intemal model control structure using Adaptive inverse control strategy.ICCA.Final Program and book of abstracts.The 4th international conference on control and automation.2003:59-69.
    [35]B威德罗.自适应逆控制[M].刘树棠,韩崇昭,译.西安:西安交通大学出版社,2000.
    [36]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用[Ml.北京:国防工业出版社,2004.
    [37]卢志刚,李伟,冀尔康,等.基于U-LMS算法的船舶自适应逆控制[J].计算机仿真,2006,23(6):315-317.
    [38]Dang Y N, Han CH Z H. Study on the stability of the Volterra series model based adaptive control systems[J].Control Theory and Applications,2002,19(1):80-84.
    [39]李明,杨承,舒宇.改进ε-滤波LMS算法非线性自适应逆控制系统[J].第二十七界中国控制会议.2008.
    [40]叶军.基于复合正交神经网络的自适应逆控制研究[J].计算机仿真.2004,21(2):92-94.
    [41]杜刚,战兴群,张卫明,等.基于改进径向基函数网络的船舶非线性航向自适应逆控制[J].上海交通大学学报,2006,40(6):987-992.
    [42]F J Lin, L T Teng, H Chu.Modified Elman neural network controller with improved particle swarm optimization for liner synchronous motor drive[J].IET Electric Power Applications,2008,2(3):201-214.
    [43]卢志刚,冀尔康,李伟,等.基于混合Elman网络的非线性自适应逆控制[J].仪器仪表学报,200,26(8):349-351.
    [44]F M Fayez, E Sousy.Hybrid H∞-based Wavelet Neural Network Tracking Control for Permanent Magnet Synchronous Motor Servo Drives[J].IEEE transaction on industrial electronics,2010,57(9):3157-3166.
    [45]刘金琨,刘涛.基于小波神经网络的自适应逆控制及其应用[J].系统工程与电子技术,2003,25(5):591-594.
    [46]韩璞,于萍,王东风.基于支持向量回归的自适应逆控制方法[J].华北电力大学学报,2006,33(3):31-35.
    [47]贺星耀,徐德民,万建.基于预测的模型参考自适应逆控制[J].长安大学学报,2004,24(1):100-103.
    [48]Li Li zheng, He Qing hua. Adaptive inverse control based on an incremental linear regression model in one unknown systems[J]. Engineering and Electronics.2002,24(10):53-58.
    [49]Yu Huamin, Zhu Haiehao, Shi Yin.Active noise control FXLMS Algorithm based on Non minimum phase adaptive inverse control[J]. Journal of vibration Engineering.2003.16(3):331-336.
    [50]X J Liu, J Q Yi, D B Zhao, W Wang.A Kind of Nonlinear Adaptive Inverse Control systems Based on Fuzzy Neural Networks[J].Proeeedings of the Third International Conference on Machine Learning and Cybernetics,2004:946-950.
    [51]Muhammad S, Tahir K, Newton Raphson. Based Adaptive Inverse Control Scheme for Tracking of Nonlinear Dynamic Plants[J]. The first International Symposium on Systems and Control in Aero Pace and Astronautics, 2006:1339-1343.
    [52]Sun L N, Ru C H, Rong W B.Hysteresis Compensation for Piezoelectric Actuator Based on Adaptive Inverse Control.Proceedings of the 5th lorld Congress on Intelligent Control and Automation,2004:5036-5039.
    [53]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2001.
    [54]葛宝明,蒋静坪.永磁同步电机磁阻转矩的有效利用及其预测控制系统[J].电工技术学报,2000(6):6-10.
    [55]郭庆鼎,孙宜标,王丽梅.现代永磁同步电动机交流伺服系统[M].北京,中国电力出版社,2006.
    [56]李华德主编.交流电动机控制系统[M].北京:电子工业出版社,2003.
    [57]尚喆.永磁同步电动机磁场定向控制的研究[D].浙江大学博士学位论文,2007.
    [58]王久和.交流电动机的非线性控制[M].北京:电子工业出版社,2009.
    [59]工成元.电机现代控制技术[M].机械工业出版社,2006.
    [60]Chen J J, Chin K P. Automatic Flux-weakening Control of Permanent Magnet Synchronous Motors Using a Reduced order Controller[J]. IEEE Trans.On PE,2000,15(5):881-890.
    [61]Zhang B, Pong M H.Maximum Torque Control and Vector Control of Permanent Magnet Synchronous Motor[J].International Conference on PE and Drive systems,1997,2:548-552.
    [62]陈坚.电力电子学第二版[M].北京:高等教育出版社,2004.
    [63]刘凤君.正弦波逆变器[M].北京:科学出版社,2002.
    [64]SVPWM Techniques and Applications in HTS PMSM Machines Control[J]. JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA,2008,6(2):192-196.
    [65]陈国呈.PWM逆变技术及应用[M].北京:中国电力出版社,2007.
    [66]Bhim Singh, B.P. Singh, Sanjeet Dwivedi.DSP Based Implementation of Fuzzy Precompensated PI Speed Controller for Vector Controlled PMSM Drive[J]. IEEE,2008.
    [67]工松.永磁同步电机的参数辨识及控制策略研究[D].北京交通大学博士学位论文,2011.
    [68]Simon Haykin. Adaptive Filter Theory (Fourth Edition)[M].Beijing:Publishing House of Electronics Industry,2003.
    [69]Karshenas A M, Dunniganand M W, Williams B W. Adaptive Inverse Control Algorithm for Shock Testing[J].IEEE Proceeding:Control Theory and Application,2010,147(3):267-276.
    [70]B Widrow, Gregory L Plett.Adaptive Inverse Control based on Linear and Nonlinear Adaptive Filtering.Adaptive Neural Inverse Control Applied to Power Systems[J].Proceedings of the International Workshop on Neural Networks for Identification, Control, Robotics and Signal/Image processing,1996:30-38.
    [71]Shaw C C, Liu T S, Chien S H.Adaptive Inverse Control for Pickup Head Flying Height in Near Field Optical Disk Drives.5th Asian Control Conference, Melbourne, Australia,2004,2:1050-1057.
    [72]Nestor O, Perez, Araneibia.Convex Optimization Based Enforcement of Robust BIBO Stability on the AIC Scheme Using a Modified RLS Algorithm.IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France,2006:111-568.
    [73]Li Aijun,Wang Xinmin,Liu Huiying.Nonlinear system based on neural network adaptive inverse control[J]. Measurement and Control Technology,2010,21(11):61-63.
    [74]Wang Zhuo, LI Ping, GUO Shuo.Adaptive Inverse Control for Nonlinear Systems Based on RBF Neural Network.Proceedings of the 5th WorldCongresson Intelligent Control and Automation, Hangzhou, China,2009: 485-487.
    [75]柳晓著,易建强,赵冬斌,等.基于RBF网络的非线性自适应逆控制系统[J].控制与决策,2004,19(10):1175-1182.
    [76]于萍.自适应逆控制方法研究及应用[D].华北电力大学博士论文,2006.
    [77]卢志刚,冀尔康,李伟,等.基于混合Elman网络的非线性自适应逆控制[J].仪器仪表学报增刊,2005,26(8):349-351.
    [78]Jin Tsong Jeng.Nonlinear adaptive inverse control for the magnetic bearing system[J]. Journal of Magnetism and Magnetic Materials,2010,20(9):186-188.
    [79]Shlomo Karni, Gengsheng Zeng. A new convergence factor for adaptive filters[J]. IEEE Transaction on Circuit and System,2009,36(7):1011-1012.
    [80]Yue Wang, Chun Zhang and Zhihua Wang. A new variable step size LMS algorithm with application to active noise control[J]. IEEE,2003.
    [81]Gao Ying. A Variable Step Size LMS Adaptive Filtering Algorithm and Analysis[J]. Electronic Journal,2009,8: 1094-1097.
    [82]徐凯,纪红,乐光新.一种改进的变步长自适应滤波LMS算法[J].电路与系统学报,2004,9(4):115-117.
    [83]邢务强,郭华.基于相关箕舌线的变步长自适应滤波算法[J].微电机,2011,44(8):105-106.
    [84]李晓波,樊养余,白勃,等.双变因子LMS自适应滤波算法[J].火力与指挥控制,2011,36(9):42-45.
    [85]Bogdan M,Wilamowski.Advantages of Radial Basis Function Networks for Dynamic System Design[J].IEEE Transactions on industrial electronics,2011,58(12):5438-5450.
    [86]王群京,殷伟,姜卫东,等.基于神经网络预测控制的PMSM伺服系统仿真研究[J].电器传动,2008,10(38):54-57.
    [87]Yuan X F, Wang Y, Sun W, et al. RBF Networks-Based Adaptive Inverse Model Control System for Electronic Throttle.IEEE Transactions on Control Systems Technology,2010,18:750-756.
    [88]Suni V T Elanayar, Yung C Shin.Radial basis unction neural network for approximation and estimation of nonlinear stochastic dynamic systems, IEEE Transaction on Neural Network,1994,5(4):584-603.
    [89]LIU X J, YI J Q, ZHAO D B, et al. A kind of nonlinear adaptive inverse control system based on RBF networks[J].Control and Decision,2009,19(10):1175-1177.
    [90]Yuan Xiaofang, Wang Yaonan, Sun Wei, et al.RBF Networks-Based Adaptive Inverse Model Control System for Electronic Throttle[J].IEEE Transactions on Control Systems Technology,2010,3(18):750-756.
    [91]杜刚,战兴群,张卫明,等.基于改进型径向基函数网络船舶非线性航向自适应逆控制[J].上海交通大学学报,2006,40(6):988-992.
    [92]韩华.基于LMS算法的自适应逆控制方法研究[D].中南大学博士论文,2008.
    [93]J Kennedy, R Ebethart.Particle swarm optimization[J].Proc IEEE International Conference on Neural Netorks, 1995:1943-1948.
    [94]Holland J H.Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press,1975.
    [95]J Kennedy, R Eberhart.Swarm Intelligence.San Francisco:Morgan Kaufman Publishers,2001.
    [96]Shi Yuhui, Eberhart R.A modified particle swam optimization[J]. Proc.IEEE Int Congress Evolutionary Computation. Anchorage, USA,1998:69-73.
    [97]Clerc. The swarm and queen:towards a deterministic and adaptive particle optimization[J]. Proceedings of the IEEE Congress on Evolutionary Computation,1999,1951-1957.
    [98]Clerc M, Kennedy J.The particle swarm-explosion, stability and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [99]Sugenthan P N.Particle swarm optimizer with neighbourhood operator.Proceedings of the IEEE Congress on Evolutionary Computation(CEC), Piscataway, NJ,1999:1958-1962.
    [100]Vanden Bergh E Engelbrecht A P.Training Product Unit Networks Using Cooperative Particle Swarm Optimizers[C]. In.Proc of the third Genetic and Evolutionary Computation Conference. San Francisco, USA, Microprocessors and Micro systems,2002,26:363-371.
    [101]Vanden Bergh, E Engelbrecht, A P Effects of Swarm Size on Cooperative Particle Swarm Optimizers[J].Proceedings of the Genetic and Evolutionary Computation Conference GECCO, SanFrancisco, USA,2001.
    [102]高浩,冷文浩,须文波.一种全局收敛的PSO算法及其收敛分析[J].控制与决策,2009,24(2):196-201.
    [103]Elwer A S, Wahsh S A. Improved Performance of Permanent Magnet Synchronous Motor by Using Particle Swarm Optimization Techniques.Proceedings of the 26th Chinese Control Conference, Zhangjiajie, Hunan, China,2007: 326-330.
    [104]朱海梅,吴永萍.一种高速收敛粒子群优化算法[J].控制与决策,2010,1(25):20-24.
    [105]唐贤伦.混沌粒子群优化算法理论及应用研究[D].重庆大学博士学位论文,2007.
    [106]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,4:613-615.
    [107]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [108]D C Huynh, M W Dunnigan.Parameter estimation of an induction machine using advanced particle swarm optimization algorithms[J]. IET Electric Power Applications,2010,4(9):748-760.
    [109]唐贤伦.混沌粒子群优化算法理论及应用研究[D].重庆大学博士学位论文,2007.
    [110]Blackwell T, Branke J. Multi swarms, Exclusion and Anti-Convergence in Dynamic Environments [J]. IEEE Transactions on Evolutionary Computation,2006,10(4):459-472.
    [111]黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2008,21(2):75-188.
    [112]窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904.
    [113]田野.粒子群优化算法及应用研究[D].吉林大学博士论文,2010.
    [114]吴浩扬,朱长纯,常炳国,等.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30.
    [115]Huang T, Mohan A S.A Hybrid Boundary Condition for Robust Particle Swarm Optimization[J]. IEEE Antennas and Wireless Propagation Letters,2005,4:112-117.
    [116]Xu S, Rahmat Samii Y.Boundary Conditions in Particle Swarm Optimization Revisited [J].IEEE Antennas and Wireless Propagation Letters,2007,55(3):760-765.
    [117]Ozcan E, Mohan C.Analysis of a Simple Particle Swarm Optimization System[J].Intelligent Engineering Systems through Artificial Neural Networks,1998,253-258.
    [118]李明.基于动态神经网络的非线性自适应逆控制研究[D].南京理工大学博士论文,2007.
    [119]庞中华,崔红.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社,2009.
    [120]B Widrow, G L Plett.Adaptive Inverse Control based on linear and nonlinear adaptive filtering[J].Proceedings of World Congress,1996:620-627.
    [121]戴先中,刘国海,张兴华.交流传动神经网络逆控制[M].北京:机械工业出版社,2007.
    [122]王久和.交流电动机的非线性控制[M].北京:电子工业出版社,2009.
    [123]刘金馄.先进PID控制及仿真[M].北京:电子工业出版社,2003.
    [124]杜刚,战兴群,张炎华.一种混合型非线性船舶航向自适应逆控制[J].船舶通讯导航学术会议论文集,2008.
    [125]Yulin Gong, Yongyin Qu.The Design of Adaptive PI Speed Controller for Permanent Magnet Synchronous Motor Servo System[J].The International Conference on Computer, Informatics, Cybernetics and Applications,2011.
    [126]Yuzeng Zhang, Jianxin Song, Shuhan Song, et al. Adaptive PID Speed Controller Based on RBF for Permanent Magnet Synchronous Motor System[J].International Conference on Intelligent Computation Technology and Automation,2010:425-428.
    [127]Weider Chang, Shunpeng Shih:PID Controller Design of Nonlinear Systems Using an Improved Particle Swarm Optimization Approach[J].Commun Nonlinear Sci Numer Simulat,2010:3632-3639.
    [128]王松.永磁同步电机的参数辨识及控制策略研究[D].北京交通大学博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700