用户名: 密码: 验证码:
考虑风电场的输电系统规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含风电场的输电系统规划是大规模风电接入电力系统环境下通过输电容量合理扩充和配置来满足未来负荷增长和风电接入的输电系统规划方法。随着风电装机容量在电力系统中所占比例的不断增长,风电所具有的间歇性、随机性以及不可控性给输电系统的规划和运行带来了新的问题。本文分析风电的自身特性,重点研究风电接入对输电系统规划和运行两个层面的影响,提出含风电场的输电系统多目标规划模型,减少风电的不利影响,提高系统对风电的消纳能力,为大规模风电的发展提供有利条件。具体工作主要体现在以下几个方面:
     1)提出计及风险控制的含风电场的输电系统规划方法。建立风电机组的概率模型,并利用半不变量和Gram-Charlier级数展开理论计算概率潮流。在此基础上,通过在规划模型中引入风险控制策略,提高系统抵御风险的能力;提出系统安全风险指标,建立以输电投资成本和安全风险指标为目标函数的输电系统规划模型,实现了大规模风电并网环境下考虑风险控制的输电系统优化规划。
     2)提出计及可用输电能力的含风电场的输电规划方法。在考虑了风速和负荷等随机变量之间相关性以及线路和发电机故障概率的基础上,构造了含风电场的系统可用输电能力(available transmission capacity, ATC)的概率模型,并采用拉丁超立方采样法和灵敏度分析法相结合进行求解。建立以输电投资成本和ATC期望值为目标函数的输电系统规划模型,并考虑线路过负荷概率,使输电系统具有足够的充裕度和安全性,更能适应大规模风电的接入。
     3)提出考虑风储联合运行的输电系统规划方法。利用储能系统平抑风电功率波动,改善风电出力的不确定性,提高系统运行的安全性和经济性。提出风储系统联合运行策略,优化储能系统的配置容量。建立以输电投资成本和系统运行成本为目标函数的输电系统两层规划模型,降低储能系统成本、平抑风电功率波动以及提高风电的消纳水平。
     4)提出考虑需求侧响应的含风电场的输电系统规划方法。采用需求侧响应机制应对风电波动,通过可中断负荷和价格激励机制实现负荷的“削峰填谷”。在此基础上,提出考虑需求侧响应的含风电场的输电系统两层规划模型,综合考虑输电投资成本、需求侧响应成本以及弃风成本,分析需求侧响应对含风电场的输电系统规划的影响。最后对论文所作的研究进行简要总结,并指出了有待进一步深入研究的的方向。
With integration of large-scale wind farms, transmission system needs to be upgraded to meet the growth of load and wind power. Although wind power is clean and renewable, wind farms can bring about significant unfavorable impacts on power systems due to their stochastic, intermittent and uncontrollable characteristics. With the expansion of wind power generation and thus the increasing quota of wind energy in power systems, these adverse influences could introduce an extra factor of uncertainties for power system planning and operation. A power network with a large proportion of wind power penetration will suffer more uncertain factors and power flow fluctuations. To address these challenges and improve the utilization of wind power, this thesis explores the impact of wind power on transmission system planning and operation, and then presents multi-objective transmission system expansion planning (TSEP) models with wind farms. The detailed work is as following:
     1) A transmission system planning method with risk-control strategies for power systems with wind generators is presented. First, some uncertainties associated with wind power generators are expressed with probability measures, and the probabilistic load flow is calculated by the combined use of cumulants and Gram-Charlier series. Then, risk-control strategies are introduced into the transmission system planning to enhance the ability of the system against security/reliability risks. A security risk index is then defined and a multi-objective transmission system planning model is next developed with the transmission investment and the security risk index as the objective functions, and in this way the security/reliability and economics associated with transmission system planning schemes could be well compromised.
     2) A transmission system planning method with available transmission capacity (ATC) for power systems with wind generators is presented. Firstly, a probabilistic ATC model of the power system is formed considering the correlation between the random input variables and outage rate of the equipments. Then, a hybrid method, combining the Monte Carlo simulation based on Latin hypercube sampling with the sensitivity analysis method, is developed to solve the ATC model. Lastly, a multi-objective transmission system expansion planning model with the objective functions composed of transmission investment and the expected value of ATC is developed. The presented work represents a superior model for transmission system expansion planning in terms of reliability and economy, which is advantageous to the integration of large-scale wind farms.
     3) A transmission system planning method considering combined operation of wind farms and energy storage systems (ESS) is presented. ESS is applied to smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. A strategy for the combined operation of a wind farm and an ESS is next presented to optimize the capacity of ESS installed. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the operating costs of the systems as the objective function to be minimized. It aims to decrease the cost of ESSs, smooth the fluctuation of wind power and improve the utilization of wind power.
     4) A transmission system planning method based on demand-side response for power systems with wind generators is presented. Demand-side response is explored to cope with the uncertainty due to wind farms. The interruptible load and electricity price incentive are used to smooth the load curve. Then, a bi-level transmission system planning model based on demand-side response is developed with minimized objective functions, i.e. the sum of the transmission investment costs, the cost of demand-side response, and the punishment cost of curtailed wind energy. Lastly, the effectiveness of demand-side response for transmission system planning considering wind farms is verified.
     Finally, several conclusions are obtained based on the research outcomes, and directions for future research indicated.
引文
[1]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89.
    [2]张宁,周天睿,段长刚.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.
    [3]国家电力监管委员会.重点区域风电消纳监管报告[R],2012.
    [4]肖创英,汪宁渤,陟晶.甘肃酒泉风电出力特性分析[J].电力系统自动化,2010,34(17):64-67.
    [5]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.
    [6]穆钢,崔杨,严干贵.确定风电场群功率汇聚外送输电容量的静态综合优化方法[J].中国电机工程学报,2011,31(1):15-19.
    [7]周景宏,胡兆光,田建伟,等.电力综合资源战略规划模型与应用[J].电力系统自动化,2010,34(11):19-22.
    [8]王卿然,谢国辉,张粒子.含风电系统的发用电一体化调度模型[J].电力系统自动化.2011,35(5):15-18.
    [9]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990.
    [10]程浩忠,张焰.电力网络规划的方法与应用[M].上海:上海科学技术出版社,2002.
    [11]于晗,钟志勇,黄杰波,等.考虑负荷和风电出力不确定性的输电系统机会约束规划[J].电力系统自动化,2009,33(2):20-24.
    [12]曾鸣,吕春泉,邱柳青,等.风电并网时基于需求侧响应的输电规划模型[J].电网技术,2011,35(4):129-134.
    [13]周金辉,余贻鑫,曾沅.大规模风电接入下输电网扩展规划的启发式优化算法[J].电力系统自动化,2011,35(22):66-70.
    [14]Moeini-Aghtaie M., Abbaspour A., Fotuhi-Firuzabad M. Incorporating Large-scale Distant Wind Farms in Probabilistic Transmission Expansion Planning-Part I:Theory and Algorithm [J]. IEEE Transactions on Power Systems,2012,27(3):1585-1593.
    [15]程浩忠,高赐威,马则良,等.多目标电网规划的分层最优化方法[J].中国电机工程 学报,2003,23(10):11-16.
    [16]范宏,程浩忠,金华征,等.考虑经济性可靠性的输电网两层规划模型及混合算法[J].中国电机工程学报,2008,28(16):1-7.
    [17]王一,程浩忠.计及输电阻塞的帕累托最优多目标电网规划[J].中国电机工程学报,2008,28(13):132-138.
    [18]黄映,李扬,翁蓓蓓,等.考虑电网脆弱性的多目标电网规划[J].电力系统自动化,20 10,34(23):36-40.
    [19]袁越,吴博文,李振杰,等.基于多场景概率的含大型风电场的输电网柔性规划[J].电力自动化设备,2009,29(10):8-12.
    [20]朱海峰,程浩忠,张焰.考虑线路被选概率的电网灵活规划方法[J].电力系统自动化,2000,24(17):20-24.
    [21]程浩忠,朱海峰,马则良,等.基于等微增率准则的电网灵活规划方法[J].上海交通大学学报.2003,37(9):1351-1353.
    [22]Zadeh L. A. Fuzzy Sets [M]. Information and Control,1965.
    [23]孙洪波,徐国禹,秦翼鸿.电网规划的模糊随机优化模型[J].电网技术,1996,20(5):4-7.
    [24]谢敏,陈金富,段献忠,等.基于模糊阻塞管理的启发式电网规划方法[J].中国电机工程学报,2005,25(22):61-67.
    [25]张洪明,廖培鸿.输电网规划的灰色模型及算法[J].上海交通大学学报,1995,29(3):20-26.
    [26]张洪明,廖培鸿,仲建中.电网规划的灰色系统方法[J].电网技术,1995,19(12):19-23.
    [27]赵国波,刘天琪,李兴源,等.基于灰色机会约束规划的输电系统规划[J].电网技术,2009,33(1):22-25.
    [28]高赐威,程浩忠,王旭.盲信息的模糊评价模型在电网规划中的应用[J].中国电机工程学报,2004,24(9):24-29.
    [29]Cheng H. Z., Zhu H. F., Crow M. L., Sheble G. B. Flexible Method for Power Network Planning Using the Unascertained Number [J]. Electric Power Systems Research,2004, 68(1):41-46.
    [30]Schilling M. T., Leite da Silva A. M., Billinton R., et al. Bibliography on Power System Probabilistic Analysis (1962-88) [J]. IEEE Transactions on Power Systems,1990,5(1): 1-11.
    [31]Silva A. M., Ribeiro S. M. P., Arienti V. L., et al. Probabilistic Load Flow Techniques Applied to Power System Expansion Planning [J]. IEEE Transactions on Power Systems, 1990,5(4):1047-1053.
    [32]Antony S., William R., Jose A.. Cumulant-Based Probabilistic Optimal Power Flow (P-OPF) With Gaussian and Gamma Distributions [J]. IEEE Transactions on Power Systems,2005, 20(2):773-781.
    [33]Silva A. M., Arienti V. L.. Probabilistic load flow by a multilinear simulation algorithm [J]. IEEE Transactions on Power Systems,1990,37(4):276-282.
    [34]Zhang P., Lee S. T.. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion [J]. IEEE Transactions on Power Systems,2004, 19(1):676-682.
    [35]Silva A. M., Arienti V. L, Allan R. N.. Probabilistic load flow considering dependence between input nodal powers [J]. IEEE Transactions on Power Apparatus and System,1984, PAS-103(6):1524-1530.
    [36]Su C. L.. Probabilistic load-flow computation using point estimate method [J]. IEEE Transactions on Power Systems,2005,20(4):1843-1851.
    [37]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,21(32):80-87.
    [38]YU H., Chung C. Y., Wong K. P., et al. A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties [J]. IEEE Transactions on Power Systems,2009,24(3):1568-1576.
    [39]杨宁,文福拴.基于机会约束规划的输电系统规划方法[J].电力系统自动化,2004,28(14):23-27.
    [40]杨宁,文福拴.计及风险约束的多阶段输电系统规划方法[J].电力系统自动化,2005,29(4):28-33.
    [41]王一,程浩忠,胡泽春,等.计及过负荷风险的输电网多目标期望值规划[J].中国电 机工程学报,2009,29(1):21-27.
    [42]Romero R., Monticelli A., Garcia A., et al. Test System and Mathematical Models for Transmission Network Expansion Planning [J]. IEE Proceeding, Generation, Transmission and Distribution,2002,149(1):27-36.
    [43]Levi V. A., Calovic M. S. A New Decomposition Based Method for Optimal Expansion Planning of Large Transmission Network [J]. IEEE Transactions on Power Systems,1993, 6(3):937-943.
    [44]Silvio B., Mario V. F. P., Sergio G.. A New Benders Decomposition Approach to Solve Power Transmission Network Design Problems [J]. IEEE Transactions on Power Systems, 2001,16(2):235-240.
    [45]Laura B., Gerson C. O., Mario P. A Mixed Integer Disjunctive Model for Transmission Network Expansion [J]. IEEE Transactions on Power Systems,2001,16(3):560-565.
    [46]王秀丽,王锡凡.遗传算法在输电系统规划中的应用[J].西安交通大学学报,1995,29(8):1-9.
    [47]Da Silva E. L., Gil H. A., Areiza J. M. Transmission network expansion planning under an improved genetic algorithm [J]. IEEE Transactions on Power Systems,2000,15(3): 1168-1174.
    [48]陈章潮,顾洁,孙纯军.改进的混合模拟退火-遗传算法应用于电网规划[J].电力系统自动化,1999,23(10):28-31.
    [49]毛玉宾,王秀丽,王锡凡.多阶段输电网最优规划的遗传算法[J],电力系统自动化,1998,22(12):13-15.
    [50]Romero R., Gallego R. A., Monticelli A. Transmission system expansion planning by simulated annealing [J]. IEEE Transactions on Power Systems,1996,11(1):364-369.
    [51]金义雄,程浩忠,严健勇,等.改进粒子群算法及其在输电网规划中的应用[J],中国电机工程学报,2005,25(4):46-51.
    [52]胡家声,郭创新,叶彬,等.离散粒子群优化算法在输电网络扩展规划中的应用[J].电力系统自动化,2004,28(20):31-36.
    [53]金义雄,程浩忠,严健勇,等.计及阻塞管理及剩余容量的并行粒子群电网规划方法[J].电网技术,2005,29(23):18-23.
    [54]金义雄,程浩忠,严健勇,等.基于局优分支优化的粒子群收敛保证算法及其在电网规划中的应用[J].中国电机工程学报,2005,25(23):12-18.
    [55]Wen F. S., Chang C. S. Transmission Network Optimal Planning using the Tabu Search Method [J]. Electric Power Systems Research,1997,47(2):153-163.
    [56]Edson L. S., Jorge M. A., Gerson C. O., et al. Transmission Network Expansion Planning Under a Tabu Search Approach [J]. IEEE Transactions on Power Systems,2001,16(1): 62-68.
    [57]陈根军,李继光,王磊,等.基于Tabu搜索的配电网络规划[J].电力系统自动化,2001(4):40-44.
    [58]周玲,王兴念,丁晓群,等.基因禁忌组合算法在配电网网架优化规划中的应用[J].电网技术,1999,23(9):35-38.
    [59]翟海保,程浩忠,陈春霖,等.基于改进蚁群算法的输电网络扩展规划[J].中国电力,2003,36(12):49-52.
    [60]翟海保,程浩忠,陈春霖,等.多阶段输电网络最优规划的并行蚁群算法[J].电力系统自动化,2004,28(20):37-42.
    [61]翟海保,程浩忠,吕干云,等.基于模式记忆并行蚁群算法的输电网规划[J].中国电机工程学报,2005,25(9):17-42.
    [62]武鹏,程浩忠,邢洁,等.不确定信息下的输电网规划新模型[J].电力系统自动化,2008,32(13):21-25.
    [63]武鹏,程浩忠,邢洁,等.考虑发电备用容量的输电网规划[J].电力系统自动化,2009,33(7):22-25.
    [64]Galiana D., McGillis D. T., Marin M. A. Expert Systems in Transmission Planning [J]. Proceedings of the IEEE,1992,80(5):712-726.
    [65]石立宝,徐国禹.一种求解电网多目标模糊优化运行的自适应进化规划算法[J].中国电机工程学报,2001,21(3):53-61.
    [66]De la Torre T., Feltes J. W., Roman, T. G. S., et al. Under regulation privatization and competition:transmission planning under uncertainty [J]. IEEE Transactions on Power Systems,1999,14(2):460-465.
    [67]Crousillat E. O., Dormer P., Alvarado P., et al. Conflicting objectives and risk in power system planning [J]. IEEE Transactions on Power Systems,1993,8(3):887-893.
    [68]刘铠滢,蔡述涛,张尧.基于风险评判的电网规划方法[J].中国电机工程学报,2007,27(22):69-73.
    [69]Usaola J. Probabilistic load flow in systems with wind generation [J]. IET Generation, Transmission and Distribution,2009,3(12):1031-1041.
    [70]Villanueva D., Pazos J. L., Feijoo A. Probabilistic load flow including wind power generation [J]. IEEE Transactions on Power Systems,2011,26(3):1659-1667.
    [71]Hatziargyriou N. D., Karakatsanis T. S., Papadopoulos M. Probabilistic load flow in distribution systems containing dispersed wind power generation [J]. IEEE Transactions on Power Systems,1993,8(1):159-165.
    [72]Morales J. M., Baringo L., Conejo A. J., Minguez R. Probabilistic power flow with correlated wind sources [J]. IET Generation, Transmission and Distribution,2010,4(5): 641-651.
    [73]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11):10-14.
    [74]Cramer H.. Numerical methods of statistics [M]. New Jersey:Princeton University Press, 1946.
    [75]赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [76]Celik A. N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey [J]. Renewable Energy,2003,29(4):593-604.
    [77]林锉云,董加礼.多目标优化的方法与理论[M].吉林教育出版社,1992.
    [78]杨波,赵遵廉,陈允平,等.一种求解最优潮流问题的改进粒子群优化算法[J].电网技术,2006,30(11):6-10.
    [79]卢志刚,董玉香.基于改进二进制粒子群算法的配电网故障恢复[J].电力系统自动化,2006,30(24):39-43.
    [80]王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948.
    [81]NERC. Available transfer capability definition and determination:a reference document prepared by TTC task force [R]. New Jersey:North American Electric Reliability Council, 1996.
    [82]翟海保.多不确定信息的电网灵活规划模型及算法研究[D].上海交通大学博士学位论文,2007.
    [83]Enns M. K., Quada J. J., Sackett B.. Fast linear contingency analysis [J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(4):783-791.
    [84]Ejebe G. C., Waight J. G., Sanots N. M., Tinney W.F.. Fast calculation of linear Available Transfer Capability [J]. IEEE Transactions on Power Systems,2000,15(3):1112-1116.
    [85]Gravener M. H., Nwwankpa C.. Available Transfer Capability and first order sensitivity [J]. IEEE Transactions on Power Systems,1999,14(2):512-518.
    [86]Ou Y., Singh C.. Assessment of Available Transfer Capability and Margins [J]. IEEE Transactions on Power Systems,2002,17(2):463-468.
    [87]Chiang H. D., Flueck A., Shah K. S., et al. CPFLOW:A practical tool for tracing power system steady-state stationary behavior due to load and generation variations [J]. IEEE Transactions on Power Systems,1995,10(2):623-634.
    [88]王成山,李国庆,余贻鑫,等.电力系统区域间功率交换能力的研究(一)[J].电力系统自动化,1999,23(3):23-26.
    [89]王成山,李国庆,余贻鑫,等.电力系统区域间功率交换能力的研究(二)[J].电力系统自动化,1999,23(4):5-9.
    [90]Tuglie E. D., Dicorato M.. A static optimization approach to assess dynamic Available Transfer Capability [J]. IEEE Transactions on Power Systems,2000,15(3):1069-1076.
    [91]占勇,李光熹,刘志超,等.计及FACTS装置的最大输电能力研究[J].电力系统自动化,2001,23-26.
    [92]丁晓莺,王锡凡.最优潮流在电力市场环境下的最新发展[J].电力系统自动化,2002,26(13):1-7.
    [93]刁勤华,Mohamed Shaaban,倪以信.运用连续二次规划法计算区域间极限传输容量[J].电力系统自动化,2000,24(24):5-8.
    [94]Dai Y., McCalley J. D., Vittal V.. Simplification, expansion and enhancement of direct interior point algorithm for power system maximum load ability [J]. IEEE Transactions on Power Systems,2000,15(3):1014-1021.
    [95]Luo X., Patton A. D., Singh C.. Real power transfer capability calculations using multi-layer feed-forward neural networks [J]. IEEE Transactions on Power Systems,2000, 15(2):903-908.
    [96]汪峰,白晓民.基于最优潮流方法的传输容量计算研究[J].中国电机工程学报,2002,22(11):35-40.
    [97]XIAO Y., SONG Y. H.. Available Transfer Capability (ATC) evaluation by stochastic programming [J]. IEEE Power Engineering Review,2000,20(9):50-52.
    [98]XIAO Y., SONG Y. H., SUN Y. Z.. A hybrid stochastic approach to Available Transfer Capability evaluation [J]. IEE Proceeding Generation, Transmission and Distribution,2001, 148(5):420-426.
    [99]杨燕,文福拴,李力,等.可用输电容量协调决策的多目标机会约束规划模型与方法[J].电力系统自动化,2011,35(13):37-43.
    [100]Xia F., Meliopoulos A. P. S.. A method for probabilistic simultaneous transfer capability analysis [J]. IEEE Transactions on Power Systems,1996,11(3):1269-1278.
    [101]张强,韩学山,徐建.可用输电能力的概率优化决策模型与计算[J].电力系统自动化,2007,31(23):15-28.
    [102]王成山,王兴刚,孙玮.含大型风电场的电力系统概率最大输电能力快速计算[J].中国电机工程学报,2008,28(10):56-62.
    [103]崔雅莉,别朝红,王锡凡.输电系统可用输电能力的概率模型及计算[J].电力系统自动化,2003,27(14):36-40.
    [104]周明,冉瑞江,李庚银.风电并网系统可用输电能力的评估[J].中国电机工程学报,2010,33(22):14-21.
    [105]杨燕,文福拴,李力,等.计及风险控制策略的电力系统可用输电容量决策[J].电力系统自动化,2012,36(4):50-55.
    [106]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21):32-35.
    [107]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
    [108]EJEBE C. G., WAIGHT J. G., MANUEL S. N., et al. Fast calculation of linear available transfer capability [J]. IEEE Transactions on Power Systems,2000,15(3):1112-1116.
    [109]LIU P. L., DER K. A.. Multivariate distribution models with prescribed marginals and covariances [J]. Probabilistic Engineering Mechanics,1986,1(2):105-112.
    [110]GEORGE P., DOROTA K. Using copulas for modeling stochastic dependence in power system uncertainty analysis [J]. IEEE Transactions on Power Systems,2009,24(1):40-49.
    [111]丁明,徐宁舟,毕锐.用于平抑可再生能源功率波动的储能电站建模及评价[J].电力系统自动化,2011,35(2):66-72.
    [112]Brekken T. K. A., Yokochi A., Jouanne A. V., et al. Optimal energy storage sizing and control for wind power applications [J]. IEEE Trans on Sustainable Energy,2011,2(1): 69-77.
    [113]丁明,张颖媛,茆美琴,等.包含钠硫电池储能的微网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-13.
    [114]TAKAHASHI R., WU L., MURATA T., et al. An application of flywheel energy storage system for wind energy conversion [C]. Proceedings of International Conference on Power Electronics and Drives Systems, November 28-December 1,2005, Kuala Lumpur, Malaysia:932-937.
    [115]吴俊玲,吴畏,周双喜.超导储能改善并网风电场稳定性的研究[J].电工电能新技术,2004,24(3):59-63.
    [116]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.
    [117]丁明,徐宁舟,毕锐,等.基于综合建模的3类电池储能电站性能对比分析[J].电力系统自动化,2011,35(15):34-38.
    [118]毕大强,葛宝明,王文亮,等.基于钒电池储能系统的风电场并网功率控制[J].电力系统自动化,2010,34(13):72-78.
    [119]KAZEMPOUR S. J., MOGHADDAM M. P., HAGHIFAM M. R.. Electric energy storage systems in a market-based economy [J]. Renewable Energy,2009,34(12): 2630-2639.
    [120]MEARS L. D., GOTSCHALL H. L. EPRI-DOE handbook of energy storage for transmission and distribution applications [R]. Palo Alto, CA, USA:EPRI,2003. http://www.sandia.gov/ess/publications/ESHB%201001834%20reduced%20size.pdf
    [121]刘宝华,王冬容,曾鸣.从需求侧管理到需求侧响应[J].电力需求侧管理,2005,7(5):10-13.
    [122]杜文,黄崇超.求解两层规划问题的遗传算法[J].数学杂志,2005,25(2):167-170.
    [123]Wei H., Sasaki H., Yokoyama R.. An interior point nonlinear programming for optimal power flow problems with a novel data structure [J]. IEEE Transactions on Power Systems, 1998,13(3):870-877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700