用户名: 密码: 验证码:
零价铁还原降解四氯化碳废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四氯化碳是一种被广泛应用的有机氯化物,化学性质稳定,具有生物毒性,在自然环境能够长期稳定地存在,严重污染了土壤和地下水,对生态环境造成长期的危害。本文以零价铁还原降解四氯化碳,分别采用表面活性剂负载、过渡金属催化和超声辅助等方法提高零价铁还原降解效率,并对四氯化碳实际工业废水进行中试。
     第一章和第二章叙述了四氯化碳来源、性质及对环境危害,并总结了各种传统处理有机氯化物的方法,零价铁还原处理有机氯化物技术应用现状和存在的问题,并表明本文的研究目的和意义。
     第三章介绍了实验仪器、所用试剂,以及各处理方法的实验方法和分析方法。
     第四章采用零价铁还原处理四氯化碳,得出的结论主要有:1)零价铁对水中四氯化碳有较好脱氯效果,在零价铁投加量10g/L,四氯化碳初始浓度20mg/L, pH7.0时,280min四氯化碳降解效率为86.1%。影响零价铁还原效果的因素主要有:投加量、反应温度和pH等。加大投加量和反应温度都能促进脱氯反应,pH对降解效率影响比较大,酸性条件有利于反应进行。四氯化碳降解符合一级反应动力学,在零价铁作用下转变成氯仿,氯仿继续脱氯最终变成二氯甲烷。2)加入硫酸盐与Fe2+和铁化合物形成绿铁锈,抑制铁表面钝化,有利于还原脱氯。分别采用两种阳离子和阴离子表面活性剂负载零价铁,结果表明两种阳离子表面活性剂(十六烷基三甲基溴化铵(CTAB)和溴代十六烷基吡啶(CPB))的负载浓度在临界胶束浓度以下时均可以增强铁脱氯效果,反应速率常数可以提高81%(CTAB)和130%(CPB),负载两种阴离子表面活性剂反而不利于零价铁还原脱氯。
     第五章分别采用Ni/Fe和Pd/Fe二元双金属降解四氯化碳,考察了四氯化碳影响因素和脱氯效率,并对动力学和反应产物进行分析。与零价铁相比,Ni/Fe和Pd/Fe具有更强的还原降解四氯化碳的能力,90分钟脱氯反应后,初始浓度20mg/L的四氯化碳在Ni/Fe体系下降解效率为92.8%,而Pd/Fe在60分钟反应四氯化碳降解效率为95.7%。影响Ni/Fe和Pd/Fe还原脱氯的主要因素有:Ni和Pd含量、投加量、反应温度和pH等。结果表明Ni和Pd含量增加、提高Ni/Fe和Pd/Fe投加量有利于四氯化碳降解,四氯化碳初始浓度对脱氯效果影响很小,pH在弱酸性条件下有利于脱氯反应,Ni/Fe和Pd/Fe降解四氯化碳的表观活化能分别为6.12 kJ/mol和3.95kJ/mol kJ/mol。Ni/Fe降解四氯化碳的产物主要是氯仿和二氯甲烷,Pd/Fe降解四氯化碳的产物主要是氯仿和二氯甲烷和甲烷。
     第六章利用超声辅助零价铁降解四氯化碳,主要影响因素有:超声声强、零价铁投加量和pH等。结果表明,超声和零价铁联合有明显协同作用,在最佳条件下,36min四氯化碳降解效果达到91.2%。产生这种协同作用的原因:超声空化可以去除金属表面形成的钝化,活化了金属表面,同时强化了界面间的化学反应和传质过程,超声的存在使得超声/零价铁体系保持了较低的pH环境也有利于零价铁的还原脱氯。
     第七章为零价铁还原处理四氯化碳废水工程中试,把零价铁处理四氯化碳技术推向工程实际应用。结果表明采用零价铁还原和电石渣絮凝工艺有效解决四氯化碳工业废水处理难题,铁粉在流化反应器中处于流化状态可有效与废水接触,防止了铁粉板结和堵塞。在实际废水pH为2-2.5条件下,连续进水时,投加量宜为2kg/t铁粉,当四氯化碳浓度在5-25 mg/L之间,还原出水浓度在1-5 mg/L。后续电石渣中和调pH值在7-9,其絮凝进一步去除水中的四氯化碳,出水浓度低于1 mg/L。
As a kind of widely used organic chloride, chlorinated hydrocarbon has a stable chemical property and biological toxicity and can exist steadily in the natural environment for a long time. It seriously pollutes soils and groundwater and does great harm to the ecological environment. The reductive degradation of chlorinated hydrocarbon with zero-valent iron was investigated in this paper. The study was intended to enhance the degradation rate of the carbon tetrachloride with zero-valent iron by the application of surfactant load, transition metal catalysis and ultrasonic assistance. Pilot test of real industrial wastewater polluted by chlorinated hydrocarbon was also conducted in the experiment.
     Chapte 1 and Chapter 2 mainly dealt with the source, properties of chlorinated hydrocarbon and its harm to environment. Various conventional processing methods of organic chloride were introduced. The current situation and existing problems of the application of reductive treatment of chlorinated hydrocarbon with zero-valent iron were summarized. The aim and significance of the present study were also put forward in the first two chapters.
     Experiment instrument, reagent used and the experiment and analysis methods of various processing methods were introduced in Chapter 3.
     The reducting treatment of chlorinated hydrocarbon with zero-valent iron was studied in Chapte 4. The results showed that 1) Zero-valent iron had a good dechlorination performance on the chlorinated hydrocarbon in water. With the dosing quantity of carbon tetrachloride being lOg/L, initial concentration being 20mg/L, and pH valueof 7.0, the degradation rate of 280min chlorinated hydrocarbon reached to 86.1%. The effect of degradation was influenced by dosing quantity, reaction temperature and pH value. The dosing quantity and reaction temperature could enhance the dechlorination reaction, while pH value. had great infuence on the degradation efficiency and acdity condition was favorable for the reaction. The degradation of carbon tetrachloride followed first order kinetics. Under the influence of zero-valent iron, carbon tetrachloride transformed into chloroform, and then chloroform became dichloromethane.2) When sulfate and Fe2+ iron compounds were adding, green rust formed, which inhibited the passivation of iron surface and was favoralbe to the reductive dechlorination. Two kinds of cationic and anionic surfactants were used respectively to load the zero-valent iron, and the results showed that the cationic surfactants (CTAB and CPB) could enhance the effect of dechlorination when the loading concentration was under critical micelle concentration, and the reaction rate constant could increase by 81% (CTA) and 130% (CPB). While the anionic surfactants were unfavorable to the reductive dechlorination with zero-valent iron.
     In Chapter 5, the binary bimetal Ni/Fe and Pd/Fe were used to degrade the chlorinated hydrocarbon. The influencing factors and dechlorination efficiency of chlorinated hydrocarbon were investigated and the kinetics and reaction products were analyzed. Compared with zero-valent iron, Ni/Fe and Pd/Fe had better capacity of reductive degradation of chlorinated hydrocarbon. After 90 minutes, the dechlorination efficiency of chlorinated hydrocarbon in the Ni/Fe system was 92.8% when the initial concentration was 20 mg/L. And in the Pd/Fe system, dechlorination efficiency of chlorinated hydrocarbon was 95.7% after 6 minutes. The main factors influencing the reductive dechlorination were: content of Ni and Pd, dosing quantity, reaction temperature and pH value. It was found that the increase of the content and dosing quantity of Ni and Pd was favoralbe to the degradation of chlorinated hydrocarbon. The initial concentration of chlorinated hydrocarbon had little effect on the dechlorination efficiency. Under weak acidic condition, pH value could be favorable to the degradation. The apparent activation energy of Ni/Fe and Pd/Fe were 6.12kJ/mol and 3.95kJ/mol respectively. The degradation products of chlorinated hydrocarbon by Ni/Fe were mainly chloroform and dichloromethane, and the degradation products by Pd/Fe were mainly chloroform and dichloromethane and methane.
     In Chapter 6, ultrasonic-assisted degradation of chlorinated hydrocarbon with zero-valent iron was studied. The main influencing factors were:ultrasonic power, dosing quantity of zero-valent iron and pH value. The results revealed that the combination of ultrasound and zero-valent iron had obvious synergistic effect. Under optimum conditions, the 36min dechlorination efficiency of chlorinated hydrocarbon reached to 91.2%. The reasons for the synergistic effect were as follows:The ultrasonic cavitation could remove the passive and active metal surface, and meanwhile it enhanced the chemical reaction and mass transfer process interface between. Due to the ultrasound, the ultrasonic/iron system could maintain a lower pH value, which was helpful to the reductive dechlorination by zero-valent iron.
     The pilot test of reductive treatment of chlorinated hydrocarbon with zero-valent iron in wastewater treatment was investigated in Chapter 7, with the aim of promoting the practical engineering application of the degradation of chlorinated hydrocarbon with zero-valent iron. The results revealed that the degradation of chlorinated hydrocarbon with zero-valent iron and flocculation process by carbide slag could solve the problems in the treatment of industrial wastedwater. When the fluidized reactor of iron powder was under flocculation process, the iron powder could have effective exposure to the wastewater, which avoided the iron powder hardening and blocking. When the pH value in real wastewater was between 2-2.5, under continuous influent,2kg/t iron powder was suitable. When the concentration of chlorinated hydrocarbon was between 5-25 mg/L, the reduction effluent concentration was 1-5 mg/L. When subsequent carbide slag pH value was 7-9, the flocculation could remove the chlorinated hydrocarbon in water with the effluent concentration below 1 mg/L.
引文
[1]中国环境保护部.2008年中国环境状况公报,2009
    [2]国家环保局有害化学品管理办公室,化工部北京化工研究院环保所.化学品 毒性法规环境数据手册.中国环境科学出版社,1992
    [3]Hua I, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of CCl4:intermediates and byproducts. Environmental Science & Technology, 1996,30(3)864-871
    [4]戴军升,刘鸣,钱瑾.黄浦江水中挥发性有机化合物污染现状.环境与职业医学,2005,22(6):502-505
    [5]方生,陈秀玲.地下水开发引起的环境问题与治理.地下水,2001,23(1):8-11
    [6]刘永娟,韩宝平,王小英.地下水四氯化碳污染现状与治理技术研究进展.水资源保护,2005,21(2):5-8
    [7]包志成,张尊.长江(江阴段)水体有机物鉴定与分析.环境化学,1990,9(4):1-8
    [8]游静,陈云侠,陈淑莲等.太湖水体中有机污染物的分析.分析测试技术与仪器,1999,5(4):213-218
    [9]《突发性污染事故中危险品档案库》http://www.ep.net.cn/msds/index.htm
    [10]莫道.危险货物介绍(15).知识园地.1999,8(40):1
    [1]于继盛.用汽提方法净化含有机氯化物的副产盐酸.齐鲁石油化工,1989,2:72-73
    [2]李培生.气提法处理二氯乙烷废水.化工环保,1990,10:338-340
    [3]奚照寿.二次萃取法提纯2,4-D废水中氯代酚.泰州职业技术学院学报,2008,8(5): 57-59
    [4]范洪富,王达,马军,等.用离子液体[bmim]PF6和[emim]Beti萃取水中的氯酚.大庆石油学院学报,2007,31(6):68-70,73
    [5]刘振中,邓慧萍,詹健.改性活性炭对2,4,6-三氯酚的吸附.土木建筑与环境工程,2009,31(6):122-127
    [6]Tan I, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon[J]. Journal of Hazardousmaterials,2009, 164:473-482
    [7]Meng Y F, Guan B H. Adsorption disposal of carbon tetrachloride in organic. 231st National Meeting of the American-Chemical-Society,2006,231:844-846
    [8]余娟,黎卫亮,李梦耀.HDX-8树脂对2,4-二氯苯酚吸附的研究.应用化工2008,37(9):1077-1080
    [9]傅旭庆,吕德伟,汪叔雄.生物处理含氯代脂肪烃废水的研究进展.环境科学,1994,15(3):84-87
    [10]Timothy M. Vogel, Craig SC, Perry L. McCarty. Transformations of halogenated aliphatic compounds. Environmental Science & Technology,1987, 21(8):722-736
    [11]Novak P J, Daniels L. Rapid dechlorination of carbon tetrachloride and chloroform by extracellular agents in cultures of methanosarcina thermophila. Environmental Science & Technology,1998,32(20):3132-3136
    [12]Andrews E J, Novak P J. Influence of ferrous iron and pH on carbon tetrachloride degradation by methanosarcina thermop. Water Research, 2001,35(9):2307-2313
    [13]Gerlach R, Cunningham AB, Caccavo F. Dissimilatory iron-reducing bacteria can Influence the reduction of carbon tetrachloride by iron metal. Environmental Science & Technology,2000,34(12):2461-2464
    [14]Jappe BH, Peter H, et al. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron dono. Biodegradation, 1999,10(4):287-295
    [15]傅旭庆,吕德伟.生物降解氯代脂肪烃动力学.高校化学工程学报,1996,10(4):84-87
    [16]Strand SE. Kinetics and modeling of reductive dechlorination at chloroethylene concentrations. Water Science and Technology.1988,20(11):167-175
    [17]Jae H, Choi W. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation,2007,18(1):91-101
    [18]王玉芬,张肇铭,胡筱敏,等.微生物法去除水中氯苯类化合物的研究进展.微生物学通报,2008,35(6):949-954
    [19]Yadav JS, Wallace RE, Reddy C A. Mineralization of mono-and dichlorobenzenes and simultaneous degradation of chloro-and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium[J]. Applied and Environrnental. Microbiology,1995,61(2):677-680.
    [20]Jechorek M, Wendlandt K D, Beck M. Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology,2003,102(1):93-98
    [21]Taeko T, Rita L C, John F Q, et al. Effects of a microbially dechlorinated polychlorinated biphenyl (PCB) mixture on rat uterine contraction in vitro. Environmental Research,2008,107(2):185-193
    [22]Benabdallah T, E H, Dosta J, Torres R. PCB and AOX removal in mesophilic and thermophilic sewage sludge digestion. Biochemical Engineering Journal, 2007,36(3):281-287
    [23]Choi W. The role metal ion dopants in quantum-sized TiO2. Journal of Physical Chemistry,1994,98 (51):13669-13679
    [24]Crittenden J C, Liu J B, Hand D W. Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Resrarch,1997,31(3):429-438
    [25]蒋晓凤,赵一先,盛兆琪.掺银负载型TiO2光催化剂降解水中氯苯的动力学研究.华东理工大学学报(自然科学版),2005,31(1):122-125
    [26]Chatterj ee D, Mahata A. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catalysis ommunications,2001,2(1):1-3.
    [27]Bae E, Choi W. Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light. Environmental Science & Technology,2003,37(1):147-152.
    [28]徐涛,肖贤名,刘红英.UV/H2O2光化降解水中邻二氯苯的反应机理.中国环境科学,2004,24(5):547-551
    [29]Goi A, Trapido M. Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols:a comparative study. Chemosphere,2002,46:913-922
    [30]Du Y X, Zhou M H, Lei L C. The role of oxygen in the degradation of p-chlorophenol by Fenton system. Journal of Hazardous Materials, 2007,139(1):108-115
    [31]Hatakeda K. Supercritical water oxidation of polychlorinate biphenyl s using hydrogen peroxide. Chemical Engineering Science,1999,54:3079-3084
    [32]Belhadj T N, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide:a comparison of the activities of various electrode formulations Source. Journal of Applied Electrochemistry,1999,29(3): 277-283
    [33]薛军,胡俊,王建龙.Y辐照降解水溶液中氯酚的研究.环境科学,2008,29(7):1919-1923
    [34]胡俊,王建龙.Y辐照降解-H202联合技术降解3-氯酚的研究.环境科学,2009,30(10):2939-2938
    [35]杨建国,于心玉,叶生荣等.负载双金属Pd催化剂催化氢解脱卤反应.石油化工,2003,32(12):1028-1031
    [36]Kang R H, Ma J H, Liu X H. PVP-supported palladium bimetallic catalyst for the hydrogen transfer dechlorination of aryl chlorides. Chinese Physical Letters, 1999,10(7):607-611
    [37]董玉环,孟庆朝,周长山.PVP-PdCl2-SnCl4/MontKl 0-PEG400的制备及催化芳香卤化物水相脱卤研究.分子催化,2003,17(2):124-128
    [38]甄小丽,韩建荣,康汝洪,欧阳兴梅.PVP-蒙脱土双负载Pd-Sn催化剂催化芳香卤化物水相脱卤.分子催化,2000,14(5):389-392
    [39]康汝洪,欧阳兴梅,韩建荣.官能化硅胶负载Pd-Cu催化剂的制备及催化芳香氯化物水相脱氯作用.分子催化,2001,15(4):299-303
    [40]Krlegman-Kling M R, Relnhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology,1994,28: 692-700
    [41]Satapanajaru T, Shea P J, Comfort S D, et al. Green Rust and Iron Oxide Formation Influences Metolachlor Dechlorination during Zerovalent Iron Treatment. Environmental Science & Technology,2003,37(22):5219-5227
    [42]Erbs M, Hansen H, Olsen C E. Reductive dechlorination of carbon tetrachloride using iron (Ⅱ)iron(Ⅲ) hydroxide sulfate (green rust). Environmental Science & Technology,1999,33(2):307-311
    [43]Workman J E, Kennedy D J, Fruchter DW, et al. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite amonette. Environmental
    Science & Technology,2000,34(21):4606-4613.
    [44]Maithreepala R A, Doong R. Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(Ⅱ). Environmental Science & Technology,2005,39(11):4082-4090.
    [45]Maithreepala R A, Doong R. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(Ⅱ) associated with goethite. Environmental Science & Technology,2004,38(1):260-268
    [46]Strathmann T J, Stone A T. Reduction of oxamyl and related pesticides by Fell: influence of organic ligands and natural organic matter. Environmental Science & Technology,2002,36:5172-5183.
    [47]Li F B, Wang X G, Li Y T, et al. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface. Journal of Colloid and Interface Science,2008,321:332-341.
    [48]Mason T J. Sonochemistry:A Technology for Tomorrow. Chemistry & Industry, 1993,18(1):47-50
    [49]Hua L, Hochemer R H, Hoffmann MR. Sonolytic hydrolysis of P-Nit-rophenol acetate:the role of supercritical water. Journal of physical chemistry, 1995,99(8):2335-2342
    [50]赵彬斌,王丽.超声波技术对水中有机污染物的降解.化学工程师,2002,93(6):21-22
    [51]Lorimer J P, Mason T J, Cuthbert T C. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry,1995,2 (1):55-57
    [52]Hoffmann M R, Hua I, Hochemer. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics Sonochemistry, 1996,3(3):163-172
    [53]Ayyildiz O, Peters RW, Anderson PR. Sonolytic degradation of halogenated organic compounds in groundwater:Mass transfer effects. Ultrasonics Sonochemistry,2007,14(2):163-172
    [54]Cheung H M, Bhatnagar A, Jansen G. Sonochemical destruction of chlorinate
    hydrocarbons in dilute aqueous solution, Environmental Science & Technology, 1991,25(8):1510-1512
    [55]邹华生,林岗,肖磊.多频率组合平行正交超声场降解氯苯的研究.环境科学与技术,2008,31(2):16-19
    [56]王松林,刘哲,杨利芝.水溶液中邻二氯苯的超声去除.环境科学与技术,2006,29(9):35-37
    [57]Christian P, Yi J, MarieFrancoise Lamy. Ultrasound and Environment: Sonochemical Destruction of Chloroaromatic Derivatives.Environmental Science & Technology,1998,32(9):1316-1318
    [58]Serpone N, Terzian R, Hidaka H, et al. Ultrasonic induced dehalogenation and oxidation of 2-,3-, and 4-chlorophenol in air-equilibrated aqueous media: Similarities with irradiated semiconductor particulates. The Journal of Physical Chemistry,1994,98(10):2634-2640
    [59]Christian P, Anne F. Ultrasonic waster water treatment incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonic Sonochemistry,1997,(4):295-300
    [60]张光明,周吉全,张锡辉,等.超声波处理难降解有机物影响参数研究.环境污染治理技术与设备,2005,6(5):42-45
    [61]Zhang G M, Chang A M, Wang L. Frequency effects on 2-chlorobiphenyl sonication. Tsinghua Science and Technology,2004,9(2):181-184
    [62]Olson TM, Barbier PF. Oxidation kinetics of natural organic matter by sonolysis and ozone Water Research,1994,28(6):1383-1391
    [63]Peeter K, Robert C B, Mohammad H E, et al. Sonication of aqueous solutions of chloroben-zene. Ultrasonic Sonochemistry,1997,4:229-233
    [64]Ku Y, Tu Y H, Ma C M. Effect of hydrogen peroxide on the decomposition of momochlorophenols by sonolysis in aqueous solution. Water Research, 2005,39:1093-1098
    [65]Jiann MW Ultrasonic destruction of chlorinated compounds in aqueous solution. Environmental Progress,1992,11(3):195-201
    [66]Bhatnagar A, Cheung H M. Sonochemical destruction of chlorinated C1 and C2 volatile organic compounds in dilute aqueous solution. Environmental Science & Technology,1994,28:281-286
    [67]Jiang Y, Petrier C, Waite T D. Sonolysis of 4-chlorophenol in aqueous solution: Eddects of substrate concentration, aqueous temperature and ulstrasonic frequency. Ultrasonics Sonochemistry,2006,13(5):415-422
    [68]Mukesh G, Hu H Q, Arun S M, et al. Sonochemical decomposition of volatile and non-volatile organic compounds comparative study. Water Research,2004,38 (19):4247-4261
    [69]任国宾,陈宜良,李永峰,等.超声波及其联用技术降解废水中的氯苯.环境污染与防治,2003,25(3):167-169
    [70]Seymour J D, Gupta R B. Oxidation of aqueous pollutants using ultrasound: salt-induced enhancement. Industrial and Engineering Chemistry Research, 1997,36(9):3453-3457
    [71]Lin J G, Chang C N, Wu J R. Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process. Water Science Technology,1996,33: (6):75-81
    [72]Linda KW, Noah M, Michael R Hoffmann. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation and sonolytic ozonation. Environmental Science & Technology,2000,34(7):1280-1285
    [73]Lin J G, Ma Y S. Oxidation of 2-chlorophenol in water by ultrasound/Fenton method. Journal of Environmental Engineering,2000,126(2):130-137
    [74]Mason T. Sonochemistry:A technology for tomorrow. Chemical and Industry, 1993,18 (1):47-50.
    [75]Trabwelsi F, Ait-L YH, Ratsimba B, et al. Chem oxidation of phenol in wastewater by sonoelectrochemistry. Chemical Engineering Science,1996,51 (10):1857-1862
    [76]Sweeny K H. American water works association research foundation. Denver, Water Reuse Symposium,1979,2:1487
    [77]Gillham R W, O'Hannesin S F. Enhanced degradation of halogenated aliphatics by Zero-Valent Iron. Ground Water,1994,32(2):958-967
    [78]Junko H, Hiroyuki I, Koichi S, et al. Kinetics of trichloroethene dechlorination with iron powder. Water Research,2005,39,(6):1165-1173
    [79]何小娟,刘菲,黄园英,等.利用零价铁去除挥发性氯代脂肪烃的试验.环境科学,2003,24(1):139-141
    [80]Sayles G. D, You G, Wang M, et al. DDT DDD and DDE Dechlorination by zero-valent iron. Environmental Science & Technology,1997,31(12):3448-3454
    [81]Wang Z Y, Peng P A, Huang W L. Dechlorination of γ-hexachlorocy-clohexane by zero-valent metallic iron. Journal of Hazardous Materials, 2009,166(2-3):992-997
    [82]Kim G, Jeong Wo, Choe S. Dechlorination of atrazine using zero-valent iron (Fe0) under neutral pH conditions Journal of Hazardous Materials,2008, 155(15):502-506
    [83]Dombek T, Dolan E, Schultz J, et al. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions Environmental Pollution,2001, 111(1):21-27
    [84]Muftikian R, Fernando Q, Korte N. A met hod for rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research,1995,(29):2 434-2439.
    [85]Mark D E, Ryan H, Kristy H, et al. Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyl-trichloroethane (DDT) by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography. Microchemical Journal,2003,74:19-25
    [86]Mark D E, Ryan H, Kristy H, et al. Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyl-trichloroethane (DDT) by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography. Microchemical Journal,2003,74:19-25
    [87]Wang ZY, Huang W L, Peng P A, et al. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere,2010,78(2):147-151
    [88]Song H. Elizabeth R. Reduction of Chlorinated Ethanes by Nanosized Zero-Valent Iron:Kinetics, Pathways, and Effects of Reaction Conditions. Carraway Environmental Science & Technology,2005,39(16):6237-6245
    [89]Robert JBs, Olga R, Murray NG, et al. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere,2010,79(4):448-454
    [90]Varima N, Alok D B, Rajeev C C, et al. Reductive dechlorination of y-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles Journal of Hazar-dous Materials,2010,175(1-3):680-687
    [91]Wei J J, Xu X H, Liu Y, et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe:Reaction pathway and some experimental parameters. Water Research,2006,40(2):348-354
    [92]Daniel W E, Zhang W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology,2001,35(24): 4922-4926
    [93]Leah J M, Paul G T. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environmental Science & Technology,1994,28(12):2045-2053
    [94]周红艺,徐新华,汪大翚.Pd/Fe双金属对水中m-二氯苯的催化脱氯.化工学报,2004,55(11):1912-1915
    [95]Satapanajaru T, Shea PJ, Comfort SD. et al. Green Rust and Iron Oxide Formation Influences Metolachlor Dechlorination during Zerovalent Iron Treatment. Environmental Science & Technology,2003,37(22):5219-5227
    [96]Lee JY, Hozalski R M, Arnold W A. Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone. Chemosphere,2007,66(11):2127-2135
    [97]Balko BA, Tratnyek P G. Photoeffects on the reduction of carbon tetrachloride by zero-valent iron Journal of Physical Chemistry B,1998,102(8):1459-1465
    [98]Deng BL, Burris DR, Timothy J. Reductive of vinyl chloride in metallic iron-water systems. Environmental Science & Technology,1999,33(15):2651-
    2656
    [99]Jayant KG, Eric A G, Dibakar B. Reductive dehalogenation of trichloroethylene using zero-valent iron. Environmental Science & Technology,1997,16(2): 137-143
    [100]Hwa KY, Lang QY, Wai C M.. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water. Environmental Science & Technology,2000,34(13): 2792-2798
    [101]William A A, Roberts A L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology,2000,4(9):1794-1805
    [102]Johnson T L, Scherer M M, Trathyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 1996,30(8):2634-2640
    [103]刘菲,黄园英,张国臣.纳米镍/铁去除氯代烃影响因素的探讨.地学前缘,2006,13(1):150-1535
    [104]黄园英,刘菲,汤鸣臬,等.纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究.环境科学学报,2007,27(1):80-85
    [105]Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998,40(4):387-395
    [106]全燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国环境科学.1998,18(4):333-336
    [107]Mallat T, Bodnar Z, Petro J. Reduction by dissolving bimetals.1991, Tetrahedron,47(3):441-446
    [108]Cheng I F, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology.1997,31(8): 1074-1078.
    [109]徐新华,刘永,卫建军等.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱 氯的催化作用.催化学报,2004,25(2):138-142
    [110]Xu Y, Zhang W X. Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes. Industrial & Engineering Chemistry Research.2000, 39(7):2238-2244
    [111]童少平,胡丽华,魏红等.Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学,2005,26(4):59-62
    [112]Liu C C, Tseng D H, Wang C Y. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials,2006,136(3):706-713
    [113]Lookman R, Bastiaens L, Borremans B, et al. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent ironJournal of Contaminant Hydrology,2004,74(1-4):133-144
    [114]Deng BL, Burris D R, Campbell T J. Reduction of vinyl chloride in metallic iron-water systems. Environmental Science & Technology,1999,33 (15):2651-2656
    [115]全燮,杨凤林,薛大明等.钯/铁催化还原法对水中三氯乙烯的快速脱氯研究.大连理工大学学报,1997,37(1):46-48
    [1]Genin JR, Bourrie G, Trolard F, et al. Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) green rusts:Occurrences of the mineral in hydromorphic soils. Environmental Science & Technology, 1998,32(6):1058-1068
    [2]Marianne E, Hansen HCB, Olsen CE. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environmental Science & Technology,1999,33(2):307-311
    [3]Gibb C, Satapanajaru T, Comfort SD, et al. Remediating dicamba-contaminated water with zerovalent iron. Chemosphere,2004,54(7):841-848
    [4]Scherer MM, Balko BA, Tratnyek PG., et al. The role of oxides in reduction reactions at the metal-water interface. In Mineral-Water Interfacial Reactions: Kinetics and Mechanisms. ACS Symposium,1998,715:301-322
    [5]Li ZH, Jones HK, Bowman RS,. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron. Environ. Environmental Science & Technology,1999,33(23):4326-4330
    [6]Tamara ML, Butler EC. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology,2004,38(6):1866-1876
    [7]Rosen MJ. Surfactants and Interfacial Phenomena,2nd ed. John Wiley & Sons: New York,1989,431
    [8]Mukerjee P, Mysels KJ. Critical Micelle Concentrations of Aqueous Surfactant Systems.U.S. Department of Commerce, U.S. Government Printing Office: Washington, DC,1971.
    [9]Liu M, Roy D. Surfactant-induced interactions and hydraulic conductivity changes in soil. Waste Management.1995,16(7):463-470.
    [10]Bi ZC, Zhang ZS, Xu F, et al. Wettability. Oil Recovery, and Interfacial Tension with an SDBS-Dodecane-Kaolin System. Journal of Colloid and Interface Science,1999,214(8):368-372.
    [11]Leah JM, Paul Q. Tratnyek. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology,1994,28(12):2045-2053.
    [12]Tratnyek PG, Scherer MM, Deng, BL, et al. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research,2001,35(18):4435-4443
    [13]Li Z, Bowman RS. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environmental Science & Technology,1997,31 (8):2407-2412
    [14]Burris DR, Antworth CP. In situ modification of an aquifer material by a cationic surfactant to enhance retardation of organic contaminants. Journal of Contaminant Hydrology.1992,10(4):325-337
    [1]He F, Zhao DY. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles:Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B:Environmental,2008,84(3-4):533-540
    [2]Hsieh SH, Horng JJ. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene Applied Surface Science, 2006,253 (3):1660-1665
    [3]Wu LF, Stephen MCR. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere,2006,63(2): 285-292
    [4]Ganesh KP, Doong R. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Research, 2009,43(12):3086-3094
    [5]Zhang WH, Xie Q, Zhang ZY. Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. Journal of Environmental Sciences,2007,19(3):362-366
    [6]Xu XH., Wo JJ, Zhang JH, et al.Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination,2009,242(1-3):346-354
    [1]Zhou T, Lim TT, Lu XH, et al. Simultaneous degradation of 4CP and EDTA in a heterogeneous Ultrasound/Fenton like system at ambient circumstance. Separation and Purification Technology,2009,68(3):367-374
    [2]Tsai YJ. Chou FC. Cheng T. Coupled acidification and ultrasound with iron enhances nitrate reduction. Journal of Hazardous Materials,2009,163(2-3): 743-747
    [3]Wu JM, Huang HS, Livengood CD. Ultrasonic destruction of chlorinated compounds in aqueous solution. Environmental Progress,1992,11,(3):195-201
    [4]Peeter K, Robert CB, Mohammad HE, et al. Sonication of aqueous solutions of chloroben-zene. Ultrasonic Sonochemistry,1997,4:229-233
    [5]Drijvers D, Langenhove HV, Kim LNT, et al. Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene. Journal of Histochemistry and Cytoche-mistry,1999,47(5):115-121
    [6]马俊华,赵建夫,伊学龙.超声波技术在水处理中的研究进展.上海环境科学,2002,21(5):298-301
    [7]Su CM, Robert WP. Kinetics of tricholroethene reduction by zerovalent iron and tin:pretreatment effect, apparent activation energy, and intermediate products. Environmental Science & Technology,1999,33(1):163-168
    [8]Petrier C Jiang Y,Lamy MF. Ultrasound and environment:Sonochemical destruction of chloromatic derivatives. Environmental Science & Technology, 1998,32(5):1316-1318
    [9]Hua L, Hochemer RH, Hoffmann MR. Sonolytic hydrolysis of P-Nit-rophenol acetate:the role of supercritical water. Journal of physical chemistry, 1995,99(8):2335-2342
    [10]Zhou T, Li YZ, Wong FS, et al. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance Ultrasonics Sonochemistry,2008,15(5):782-790
    [11]Mardones C, Dietrich B, Hidalgo A, et al. Determination of pentachlorophenol and tribromophenol in sawdust by ultrasound-assisted extraction and MEKC. Journal of Separation Science,2008,31 (6-7):1124-1129
    [12]Geiger CL, Ruiz NE, Clausen CA. et al. Ultrasound pretreatment of elemental iron:Kinetic studies of dehalogenation reaction enhancement and surface effects. Water Research,2002,36(5):1342-1350
    [13]Zhang H, Duan LJ, Zhang Y. et al. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron.2005, Dyes and Pigments,65(1):39-43
    [14]李晖.超声波强化液-固传质的机理研究.沈阳化工学院学报,1994,8(3):175-182
    [15]Rajan R, Kumar R, Gandhi K S. Modeling of Sonochemical decomposition of CCl4 in aqueous solutions. Environmental Science & Technology,1998,32(8):
    1128-1133
    [16]Keck A, Gilbert E, Koster R. Influence of particles on sonochemical reactions in aqueous solutions. Ultrasonics,2002,40(1-8):661-665
    [17]Hung H M, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons:Frequency effects. Journal of Physical Chemistry,1999,103(15):2734-2739

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700