用户名: 密码: 验证码:
软土变形和渗流特性的试验研究与微细观参数分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土是工程建设中常见的天然材料,广泛分布于沿海、河流中下游及湖泊的三角洲地区,其物理力学性质非常复杂,具有含水量高、孔隙比大、压缩性高、强度低、渗透性差、结构性和流变性显著等特点,其中具有代表性的淤泥和淤泥质土,主要由极细的粘土颗粒、有机物、氧化物等固相物质和水组成。软土的颗粒微小,比表面积大,颗粒表面富集电荷,在颗粒—水—电解质系统的相互作用下,颗粒表面形成的吸附结合水膜是显著影响软土工程特性的重要微观物质因素。结合水的厚度随矿物成分、孔隙液性质及浓度、温度等因素的变化而改变,以致改变软土的塑性、流变性、渗流与强度等宏观工程特性。长期以来,人们主要从宏观层次对软土的工程特性进行研究,无法从根本上解释其产生不良工程特性的机制和本质规律。本文通过实验,从微细观的角度分析细颗粒软土变形和渗流等工程特性及其变化的微观机制。
     通过软土的矿物成分及比例、比表面积、阳离子交换量、孔隙特征及分布等微细观参数的测试,对不同微细观参数组合的软土试样进行变形与渗流特性试验,基于颗粒—水—电解质系统相互作用的扩散双电层理论,由定量计算给出变形和渗流特性参数与各微细观参数的定量关系,分析特性参数与微细观参量的内在关系,解释影响软土特性的微观机制。最后,在试验分析的基础上,建立了软土的圆孔和平行平板微观渗流模型,通过实测结果证实了模型的合理性和有效性。
     本文开展的研究工作和取得的成果有如下几个方面:
     (1)通过微细观试验测试软土的矿物成分及比例、颗粒尺度、比表面积、阳离子交换量(CEC)、微孔隙的尺度及分布,由颗粒表面电荷密度计算颗粒表面电位。测试结果表明,不同矿物成分的颗粒比表面积、CEC差别较大,以致其表面电荷密度差别较大,矿物晶层结构是导致这些差别的最重要因素;颗粒表面电位随孔隙液离子浓度的提高而降低;软土中的孔隙尺度以微米级孔隙为主,孔径分布特征与其矿物成分、颗粒尺度和内部结构有关。
     (2)研究不同矿物成分、孔隙液离子浓度和含水量的软土的强度与塑性变形特性。根据试验分析,认为矿物颗粒之间的摩擦与胶结粘聚作用是软土强度特性的决定因素,结合水膜的变化将改变矿物颗粒之间的摩擦与胶结粘聚作用机制,从而改变强度性质;对于盐渍土,可溶盐离子通过颗粒表面微电场作用改变结合水膜性质是其具有低液塑限和较特殊强度特性的主要微观机制。
     (3)软土直剪蠕变试验与微细观参数测试分析相结合,研究粘土矿物、有机物和氧化物、含水量对软土流变特性的影响。试验结果表明,软土中的各种成分通过表面吸附结合水膜影响土样的流变性质;不同物质成分对软土流变性产生不同程度的影响,从而呈现出软土流变性的成分因素,而影响软土流变性的微观机制都是通过改变吸附结合水膜的厚度和性质产生的;强结合水是影响软土流变性质的主要因素,弱结合水则是相对次要因素。
     (4)采用不同电解质离子浓度的孔隙液对人工土和天然土进行渗透试验,研究极细颗粒软土微孔隙渗流的“微电场效应”和“微尺度效应”,并通过压汞法研究了固结过程中渗流固结特性的变化。试验分析认为,颗粒表面电荷的微电场对粘土微孔隙渗流会产生显著影响,不同的矿物成分和孔隙液离子浓度使颗粒表面具有不同电场,使孔隙液粘度和“有效渗孔”改变,从而影响渗流特性;对于微米级以下的微孔隙渗流,出现渗透系数随水力梯度降低而增大的“异常”现象,采用微孔隙渗流的“边界滑移”作出一种与试验相符的解释;孔隙尺度及分布特征是影响土体渗流固结特性的重要因素。
     (5)建立了软土的圆孔和平行平板微观渗流模型,通过实测结果证实了模型的合理性和有效性。在微观渗流模型中,考虑颗粒表面微电场对孔隙液粘度的影响以及对运动离子的电场力作用,导出了“圆孔”形和“平行平板”形渗孔的流体运动方程,由模型求得的渗透系数与系统微细观参数的关系得到了试验结果的验证,并证明了Darcy定律为本微观渗流模型的一个特例。
Soft soil is a kind of common natural materials for civil engineering, which is widely distributed in coastal areas, middle-lower reaches of rivers and lacustrine delta areas. Slit and mucky soil are the most typical ones that characterized with complex physical-mechanical properties, such as high water content, large void ratio, high compressibility, low strength, weak permeability, remarkable structural and rheological properties and so on. Slit and mucky soil are mainly composed of solid phase matter including tiny clay particles, organics, oxides, and water. Correspondingly, soft soil is small in particle size and large in specific surface area, and the electric charges assemble densely on particle surface. Under the interaction of particle-water-electrolyte system, the adsorbed bound water film formed on particle surface is an important microscopic physical factor that remarkably influences the engineering characteristics of soft soil. The thickness of bound water changes with mineral composition, property and concentration of porewater, and temperature and so on, leading to the change of macroscopic engineering characteristics—plasticity, rheology, seepage and strength. The research of engineering characteristics of soft soil is still focus on macroscopic stage mainly, which is unable to reveal the mechanism and essential law of its inferior properties. Base on experimental study, this dissertation analyzes the deformation and seepage characteristics of tiny-particle soft soil and its corresponding microscopic mechanism.
     Deformation and seepage characteristic tests of soft soil were conducted with different combination of microscopic parameters such as mineral composition and proportion, specific surface area, cation exchange capacity, pore size and distribution and so on. Base on the theory of diffused double layer, the relationship between deformation and seepage parameters and microscopic parameters are shown quantificationally, the intrinsic relation of them is analyzed, and the micromechanism that influence the soft soil characteristics is explained. Finally, the microscopic seepage models of circular and parallel-plate pore are established, which are confirmed reasonably and effectively by test results.
     The outline of the research tasks and achievements of this dissertation are listed as follows:
     (1) Microscopic experiments—mineral composition and proportion, particle size, specific surface area(SSA), cation exchange capacity(CEC), micropore scale and distribution—were carried out, and the particle surface potential was figured out by surface charge density. The test results showed that the SSA and CEC vary significantly among different mineral particles, resulting in different surface charge density, and the mineral crystalline structure is the most important factor that leads to these distinctions. The particle surface potential decreases with the augmentation of ion concentration of pore water. The scale of pore in soft soil is generally ofμm level, and the characteristic of pore scale distribution relates to mineral composition, particle size and internal structure of soil.
     (2) Research of the strength and plastic deformation features of soft soil with different mineral composition, ion concentration of pore water and water content were carried out. According to the test results, the determinant of soft soil strength is frictional and cohesive effect among mineral particles, which can be changed by the variety of bound water film and results in the change of strength properties. Especially, the main micromechanism of low Atterberg limits and unusual strength properties about saline soil is the micro-electric field effect that changes the properties of bound water by soluble salt ions. (3) The influence of clay mineral, organics, oxides and water content on the rheology of soft soil was analyzed by the combination of direct shear creep test and microscopic parameter test. The results showed that the composition factor of soft soil rheology is presented by different influence degree of different ingredients, and the micromechanism that influence soft soil rheology is generated by the change of thickness and characteristics of bound water film, strong-bound water and weak-bound water are the main and secondary factors respectively that influence the soft soil rheology.
     (4) In order to research the micro-electric field effect and micro-scale effect on tiny-particle soil seepage, the permeability tests on artificial and natural soil were conducted with different electrolyte ion concentrations. And the mercury-intrusion tests were carried on to study the seepage-consolidation characteristics of soil during consolidation. The test results indicated that the micropore seepage is affected significantly by micro-electric field produced by particle surface charges, and the seepage characteristic is influence by the change of porewater viscosity and effective pore size, and‘boundary slippage’of micropore seepage provides a reasonable explanation for the abnormal phenomena during the tests—the permeability coefficient increases with the reduction of hydraulic gradient, and the pore scale and distribution characteristics are important factors that affect the seepage-consolidation properties of soil.
     (5) The microscopic seepage models of circular and parallel-plate pore are established and confirmed reasonably and effectively by test results. The influence of micro-electric field on porewater viscosity and electric field force of moving ions are taken into consideration in the models, and the fluid motion equations are derived from circular-shaped and parallel-plate-shaped pore. The relationship of theoretical permeability coefficient and systematic microscopic parameters is verified by test results. In addition, the permeability equations prove that Darcy law is one of the special cases of the models.
引文
[1]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报, 1996, 4(1): 39-44.
    [2] Bazant Z. P., Ozaydin K. and Krizek R. J. Microplane model for creep of anisotropic clay[J]. Journal of Engineering Mechanics Division,ASCE, 1975, 101(EM1): 57-78.
    [3]高国瑞.中国红土的微结构和工程性质[J].岩土工程学报, 1985, 7(5): 10-21.
    [4]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报, 1990, 12(4): 1-10.
    [5]李生林,粘土结构、构造研究中的理论与实践课题[C].国际交流地质学论文集,第三册,北京:地质出版社,1985.
    [6]谭罗荣.土的微观结构研究概况和发展[J].岩土力学, 1983, 4(1): 73-86.
    [7]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报, 1988, 10(6): 80-87.
    [8]雷华阳.饱和软黏土固结变形的微结构效应[J].水利学报, 2004, (4): 91-95.
    [9]张敏江,阎婧,初红霞.结构性软土微观结构定量化参数的研究[J].沈阳建筑大学学报(自然科学版), 2005, 21(5): 455-459.
    [10]唐益群,张曦,周念清,等.地铁振动荷载作用下饱和软粘土性状微观研究[J].同济大学学报(自然科学版), 2005, 33(5): 626-630.
    [11]房后国,刘娉慧,袁志刚.海积软土固结过程中微观结构变化特征分析[J].水文地质工程地质, 2007, (2): 49-52.
    [12]李建红,沈珠江.结构性土的微观破损机理研究[J].岩土力学, 2007, 28(8): 1525-1550.
    [13]韩飞,赵瑞斌,张冬,等.天津滨海新区全新世湖沼相沉积土微观结构特征及定量化研究[J].天津城市建设学院学报, 2008, 14(3): 163-167.
    [14]张功新,真空预压加固大面积超软弱吹填淤泥土试验研究及实践[D].广州:华南理工大学, 2006.
    [15]谷任国,房营光.极细颗粒黏土渗流离子效应的试验研究[J].岩土力学, 2009b, 30(6): 1595-1598.
    [16] Abduljauwad S. N. and Al-Amoudi O. S. B. Geotechnical behavior of saline sebkha soils[J]. Geotechnique, 1995, 45(3): 425-445.
    [17] Al-Amoudi O. S. B. and Abduljauwad S. N. Compressibility and collapse characteristics of arid saline sebkha soils[J]. Engineering Geology, 1995, 39(3-4): 185-202.
    [18]柴寿喜,王沛,韩文峰,等.高分子材料固化滨海盐渍土的强度与微结构研究[J].岩土力学, 2007, 28(6): 1067-1072.
    [19]梁健伟,房营光,陈松.含盐量对极细颗粒黏土强度影响的试验研究[J].岩石力学与工程学报, 2009, 28(增2): 3821-3829.
    [20]王丽,梁鸿.含水率对粉质粘土抗剪强度的影响研究[J].内蒙古农业大学学报, 2009, 30(1): 170-174.
    [21]梁健伟,房营光,骆桂海,等.广州麒麟至天河电力隧道顶管施工安全监测[J].施工技术, 2008, 37(9): 69-72.
    [22]赵明华,土力学与基础工程[M].武汉:武汉理工大学出版社, 2000.
    [23]杨小平,土力学[M].广州:华南理工大学出版社, 2001.
    [24] Bishop A. W., Alpan l, Blight G. E. and etal., Factor Controlling the shear strength of partly saturated cohesive soils[C]. ASCE Research Conference on the shear strength of cohesive soils, University of Colorado,1960: 503-532.
    [25] Fredlund D. G., Morgenstem N. R. and Widger R. A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15: 313-321.
    [26]缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水量的关系[J].岩土力学, 1999, 20(2): 71-75.
    [27]陈敬虞,Fredlund D. G.非饱和土抗剪强度理论的研究进展[J].岩土力学, 2003, 24(增): 654-660.
    [28] Ladd C. C., Stability evaluation during staged construction[C]. Proc. ASCE,1991: 117.
    [29]郑刚,颜志雄,雷华阳,等.天津市区第一海相层粉质黏土卸荷路径下强度特性的试验研究[J].岩土力学, 2009, 30(5): 1201-1208.
    [30]陈晓平,曾玲玲,吕晶,等.结构性软土力学特性试验研究[J].岩土力学, 2008, 29(12): 3223-3228.
    [31]聂庆科,白冰,胡建敏,等.循环荷载作用下软土的孔压模式和强度特征[J].岩土力学, 2007, 28(增): 724-729.
    [32]高广运,李伟,顾国荣,等.软土基坑土压力计算抗剪强度参数的分析[J].岩土力学, 2005, 26(增): 183-186.
    [33]张银屏,宫全美,董月英.软土抗剪强度随固结度变化的试验研究[J].岩土工程界, 2004, 8(2): 37-40.
    [34]杨庆,贺洁,栾茂田.非饱和红粘土和膨胀土抗剪强度的比较研究[J].岩土力学, 2003, 24(1): 13-16.
    [35]孔德金,苗中海.软粘土抗剪强度增长规律[J].岩土工程学报, 1999, 21(6): 757-759.
    [36]魏汝龙,张凌.稳定分析中的强度指标问题[J].岩土工程学报, 1993, 15(5): 24-30.
    [37] Matsui T. Cyclic stress-strain history and shear characteristics of clay[J]. Journal of Geotechnical Engineering Division,America Society of Civil Engineering, 1980, 106(10): 1101-1120.
    [38] Andersen K. H. Cyclic and static laboratory tests on drammen clay[J]. Journal of Geotechnical Engineering Division,America Society of Civil Engineering, 1980, 106(5): 499-529.
    [39] Larsson R. Undrained shear strength in stability calculation of embankments and foundations on soft clays[J]. Canadian Geotechnical Journal, 1980, 17(4): 591-602.
    [40]侯晋芳,刘爱民,闫澍旺,等.施工期软土边坡稳定分析中抗剪强度指标的确定方法[J].水运工程, 2009, (12): 178-181.
    [41]刘润,闫澍旺.软粘土边坡稳定性分析中十字板强度取值的探讨[J].岩石力学与工程学报, 2005, 24(8): 1422-1426.
    [42] Mesri G. Discussion of "New design procedure for stability of soft clays"[J]. Journal of Geotechnical Engineering Division. ASCE, 1975, 101(4): 409-412.
    [43]胡欣雨,张子新,徐营.黏性土层中泥水盾构泥浆作用对开挖面土体强度和侧向变形特性影响研究[J].岩土工程学报, 2009, 31(11): 1735-1743.
    [44]欧阳慧敏,卢力强.天津滨海新区固化软土强度与微结构特征研究[J].天津城市建设学院学报, 2008, 14(3): 159-162.
    [45]唐晓武,林廷松,罗雪,等.利用桐油和糯米汁改善黏土的强度及环境土工特性[J].岩土工程学报, 2007, 29(9): 1324-1329.
    [46]周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[J].岩土工程学报, 2005, 27(10): 1136-1141.
    [47]雷胜友,唐文栋,王晓谋,等.原状黄土损伤破坏过程的CT扫描分析(Ⅱ)[J].铁道科学与工程学报, 2005, 2(1): 51-56.
    [48]雷胜友,唐文栋,王晓谋,等.原状黄土损伤破坏过程的CT扫描分析[J].兰州理工大学学报, 2004, 30(4): 110-114.
    [49]吕海波,赵艳林,孔令伟,等.利用压汞试验确定软土结构性损伤模型参数[J].岩石力学与工程学报, 2005, 24(5): 854-858.
    [50]吕海波,汪稔,赵艳林,等.软土结构性破损的孔径分布试验研究[J].岩土力学, 2003, 24(4): 573-578.
    [51] Wen B. P. and Aydin A. Microstructural study of a natural slip zone: quantification and deformation history[J]. Engineering Geology, 2003, 68(3-4): 289-317.
    [52]严春杰,唐辉明,孙云志.利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J].地质科技情报, 2001, 20(4): 89-92.
    [53] Bai X. and Smart P. Change in microstructure of kaolin in consolidation and undrained shear[J]. Geotechnique, 1997, 47(5): 1009-1017.
    [54] Morgenstern N. R. and Tchalenko J. S. Microscopic structures in kaolin subjected to direct shear[J]. Geotechnique, 1967, 17(4): 309-328.
    [55] Skempton A. W. Long-term stability of clay slopes[J]. Geotechnique, 1964, 14(2): 77-101.
    [56] Geuze E. C. W. A. and Tan Tjong Kie, The Mechanical behavior of clays[C]. Proc. Of the 2nd international Congress on Rheology, Oxford: Geotechnique,1953, 1.
    [57] Taylor D. W. and Merchant W. A theory of clay consolidation accounting for secondary compression[J]. J.of Mathematics and Physics, 1940, 19(3): 167-185.
    [58]谷任国,软土流变的成分影响和渗流的离子效应研究[D].广州:华南理工大学, 2007b.
    [59]维亚洛夫,土力学的流变原理[M].杜余培译.北京:科学出版社, 1987.
    [60]孙钧,岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [61]胡华,顾恒星,俞登荣.淤泥质软土动态流变特性与流变参数研究[J].岩土力学, 2008, 29(3): 696-700.
    [62]李兴照,黄茂松,王录民.流变性软黏土的弹黏塑性边界面本构模型[J].岩石力学与工程学报, 2007, 26(7): 1393-1401.
    [63]陈晓平,白世伟.软土蠕变-固结特性及计算模型研究[J].岩石力学与工程学报, 2003, 22(5): 728-734.
    [64]陈洋.软粘土深基坑开挖的粘弹粘塑性流变分析[J].工业建筑, 2000, 30(9): 42-45.
    [65]李军世,林咏梅.上海淤泥质粉质粘土的Singh-Mitchell蠕变模型[J].岩土力学, 2000, 21(4): 363-366.
    [66]廖红建,俞茂宏,赤石胜,等.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报, 1998, 20(2): 41-44.
    [67] Keedwell J. K., Rheology and Soil Mechanics[M]. London: Elsevier Applied Science Publishingers, 1984: 91-92.
    [68] Vyalov S. S., Rheological Fundamentals of Soil Mechanics[M]. London: Elsevier Applied Science Publishingers, 1986: 231-232.
    [69] Bazant Z. P., Ansal A. M. and Krizek R. J. Viscoplasticity of Transversely Isotropic Clays[J]. Journal of Engineering Mechanics Division,ASCE, 1979, 105(4): 1024-1028.
    [70] Adachi T., Oka F. and Mimura M., Descriptive accuracy of several existing constitutive models for normally consolidated clays[C]. 5th ICONMG,[s.l.]: [s.n.],1985: 259-266.
    [71] Adachi T., Oka F. and Zhang F. An Elasto-viscoplastic Constitutive Model With Strain Softening[J]. Soils and Foundations, 1998, 38(2): 27-35.
    [72]李建中,曾祥熹.用内蕴时间理论进行土流变本构方程研究[J].探矿工程, 2002, (2): 1-3.
    [73]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报, 2001, 20(6): 772-779.
    [74]钱征,杨国强,曾锡庭,海洋软土的流变性质及其长期强度.天津软土地基[M].天津:天津科技出版社, 1986: 5-11.
    [75]夏明耀,孙逸明.饱和软土固结、蠕变变形和应力松弛规律[J].同济大学学报, 1989, 17(3): 319-327.
    [76]侍倩.饱和软粘土蠕变特性试验研究[J].土工基础, 1998, 12(3): 40-44.
    [77]谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报, 1996, 24(3): 233-237.
    [78]李军世.粘土蠕变―应力松弛耦合效应的数值探讨[J].岩土力学, 2001, 22(3): 294-297.
    [79]朱长歧,郭见杨.粘土流变特性的再认识及确定长期强度的新方法[J].岩土力学, 1990, 11(2): 15-22.
    [80] Day R. W.压实粘土斜坡的软化与蠕变[J].地质科学译丛, 1996, 13(4): 76-80.
    [81]孙钧,饱和软土流变属性及其在地基与地下工程中的应用研究[R].上海,同济大学岩土工程研究所, 1993,
    [82]谷任国,房营光.一种改进的土体直剪蠕变仪及应用[J].岩石力学与工程学报, 2006, 25(S2): 3552-3558.
    [83]谷任国,房营光.矿物成分对软黏土流变性质影响的试验研究[J].岩土力学, 2007c, 12(28): 2681-2686.
    [84]谷任国,房营光.有机质对软土流变性质影响的试验研究[J].土木工程学报, 2009, 1(42): 101-106.
    [85]谷任国,房营光.有机质和黏土矿物对软土流变性质影响的对比试验研究[J].华南理工大学学报(自然科学版), 2008, 10(36): 31-36.
    [86]李生林.苏联对土中结合水研究的某些进展[J].水文地质工程地质, 1982, (05): 52-55.
    [87]谷任国,房营光.有机质对软土流变性质影响的试验研究[J].土木工程学报, 2009a, 42(1): 101-106.
    [88]谷任国,房营光,梁健伟.膨润土对软黏土流变性质影响的试验研究[J].人民黄河, 2009d, 31(6): 97-99.
    [89] Sridharan A. and Rao A. S. Mechanisms controlling the secondary compression of clays[J]. Geotechnique, 1982, 32(3): 249-260.
    [90] Mitchell J. K., Fundamentals of Soil Behavior[M]. 2nd ed., New York: John Wiley & Sons,Inc., 1993.
    [91]何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报(地球科学版), 2003, 33(2): 204-207.
    [92]胡华.含水率对软土流变参数的影响特性及其机制分析[J].岩土工程技术, 2005, 19(3): 134-136.
    [93]汤斌,软土固结蠕变耦合特性的试验研究与理论分析[D].武汉:武汉大学, 2004.
    [94]陈宗基. Structure Mechanics of Clay[J].中国科学, 1959, 8(1): 41-45.
    [95] Dafalias Y. F., On Rate Dependence and Anisotropy in Soil Constitutive Modeling[R]. Paris, Results of the Int. Workshop on Constitutive Relations for Soil, 1982: 79-83.
    [96] Osipov J. B. and Sokolov B. K., On the texture of clay soils of different genesis investigated by magnetic anisotropy method[C]. Proc. of the International Symposium on Soil Structure, Gothenburg, Sweden,1973: 21-29.
    [97]吴义祥,张宗祜,凌泽民.土体微观结构的研究现状评述[J].地质论评, 1992, 38(3): 250-259.
    [98]陈冬元,上海地区饱和粘土蠕变微观机理及其流变模型与工程计算的研究[D].上海:同济大学, 1993.
    [99]吴紫汪,马巍,蒲毅彬,等.冻土蠕变变形形态特征的细观分析[J].岩土工程学报, 1997, 19(3): 1-6.
    [100]滕军林,熊传详.基于土结构性的软土流变试验研究[J].长沙大学学报, 2007, 21(5): 50-53.
    [101]胡华.软土稳态流变参数多因素影响特性试验研究[J].岩土力学, 2008, 29(增): 507-510.
    [102]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报(自然科学版), 2003, 31(2): 161-165.
    [103]翟云芳,渗流力学[M].北京:石油工业出版社, 1999.
    [104] Dupuit A. J. E. J., Etudes theoriques et practiques sur le mouvement de eaux das les canaux decouverts et a travers les terrains permeables[M]. Paris: Dunod, 1863.
    [105] Boussinesq J. Recherches theoriques sur l'ecoulement des nappes d'eau infiltrees dans le sol et sur le debit des sources[J]. Journal de Math Pures Appl, 1904, 5(10): 5-78.
    [106]毛昶熙,渗流计算分析与控制[M].北京:中国水利水电出版社, 2003.
    [107]董邑宁.饱和粘土渗透特性的试验研究[J].青海大学学报(自然科学版), 1999, 17(1): 6-13.
    [108]董邑宁,徐日庆,龚晓南.萧山粘土的结构性对渗透性质影响的试验研究[J].大坝观测与土工测试, 2000, 24(6): 44-46.
    [109]齐添,谢康和,胡安峰,等.萧山黏土非达西渗流性状的试验研究[J].浙江大学学报(工学版), 2007, 41(6): 1023-1028.
    [110]唐大雄,孙素文,工程岩土学[M].北京:地质出版社, 1987.
    [111] Hansbo S. Consolidation of clay, eith special reference to influence of vertical sand drains[J]. Swedish Geotech. Inst. Proc., 1960: 148-159.
    [112] Miller R. J. and Low P. F. Threshold gradient for water flow in clay systems[J]. Soil Sci. Soc. Am. Proc., 1963, 27(6): 605-609.
    [113] Mitchell J. K. and Younger J. S. Abnormalities in hydraulic flow through finegrained soils[J]. ASTM Speech, 1967, 417: 106-141.
    [114]吴景春.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报, 1999, 23(2): 83-84.
    [115]陈永敏.低速非达西渗流现象的实验论证[J].重庆大学学报(自然科学版), 2000, 23(增刊): 59-60.
    [116]李中锋.低渗透储层非达西渗流机理探讨[J].特种油气藏, 2005, 12(2): 38.
    [117]贾振岐.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报, 2001, 25(3): 74-75.
    [118]张忠胤,结合水动力学[M].北京:地质出版社, 1980: 40-100.
    [119]冯小蜡,沈孝宇.饱和粘性土渗透固结特性及其微观机制的研究[J].水文地质工程地质, 1991, 18(1): 6-11.
    [120]宿青山,侯杰,段淑娟.对饱和粘性土渗透规律的新认识及其应用[J].长春地质学院学报, 1994, 24(1): 50-56.
    [121] Dixon D. A., Grey M. N. and Hatiw D. Critical gridents and pressures in dense swelling clay[J]. Canadian Geotechnical Journal, 1992a, 29: 1113-1119.
    [122] Dixon D. A., Srirangjian R. and Granham, Applicability of Darcy's law in laboratory measurement of water flow through low permeability clays[C]. Proc. of 45th Canadian Geotechnical Conference, Toronto,1992b: 871-877.
    [123]王秀艳,刘长礼.对粘性土孔隙水渗流规律本质的新认识[J].地球学报, 2003a, 24(1): 91-95.
    [124]王秀艳,刘长礼.深层黏性土渗透释水规律的探讨[J].岩土工程学报, 2003b, 25(3): 308-312.
    [125]徐维生,柴军瑞,王如宾,等.低渗透介质非达西渗流研究进展[J].勘察科学技术, 2007, (3): 20-24.
    [126]文章,黄冠华,李健,等.承压含水层中扩展井附近非达西流数值解[J].水利学报, 2009, 40(4): 398-402.
    [127]谢开富,俞玉良.非线性渗流二次函数与幂函数的转换[J].武汉交通科技大学学报, 1997, 21(2): 216-220.
    [128] Li B. and Garga V. K. Theoretical solution for seepage flow in overtopped rockfill[J]. Journal of Hydraulic Engineering, 1998a, 124(2): 213-217.
    [129] Li B., Garga V. K. and Davies M. H. Relationship for non-darcy flow in rockfill[J]. Journal of Hydraulic Engineering, 1998b, 124(2): 206-212.
    [130] Bear J., Dynamics of Fluids in Porous Media[M]. New York: Elsevier, 1979.
    [131]刘成宇,土力学[M].第二版.北京:中国铁道出版社, 2000.
    [132]谢康和,庄迎春,李西斌.萧山饱和软粘土的渗透特性试验研究[J].岩土工程学报, 2005, 27(5): 591-594.
    [133]李平,饱和黄土的三轴渗透试验研究[D].杨凌:西北农林科技大学, 2007.
    [134]曹存先,鲁西平原区粘性土结构与渗透特征研究[D].青岛:中国海洋大学, 2005.
    [135]顾中华,高广远,王结虎.结构性对上海软土渗透系数影响的试验研究[J].探矿工程(岩土钻掘工程), 2004, (5): 1-3.
    [136]顾正维,孙炳楠,董邑宁.粘土的原状土、重塑土和固化土渗透特性试验研究[J].岩石力学与工程学报, 2003, 22(3): 505-508.
    [137]赵维,陈晨.室内试验对孔隙水压力消散和渗透系数的研究[J].科学技术与工程, 2007, 7(8): 1813-1814,1818.
    [138]蔡国军,刘松玉,童立元,等.基于孔压静力触探的连云港海相黏土的固结和渗透特性研究[J].岩石力学与工程学报, 2007, 26(4): 846-852.
    [139]肖夺,宁明膨胀土渗透特性的试验研究[D].长沙:长沙理工大学, 2006.
    [140]张锐,郑健龙,杨和平.饱和—非饱和膨胀土渗透特性试验研究[J].长沙交通学院学报, 2007, 23(3): 26-33.
    [141]雷华阳,张文殊,张喜发.盐渍土渗透性测试和渗透系数计算方法[J].长春科技大学学报, 2000, 30(2): 173-176.
    [142]邓友生,何平,周成林,等.含盐土渗透系数变化特征的试验研究[J].冰川冻土, 2006, 28(5): 772-775.
    [143]黄婉荣,郭志平.填埋场压实粘土衬垫渗透系数的影响因素综述[J].水利水电科技进展, 2001, 21(2): 19-22.
    [144]张显龙,夏松林,韩宝平,等.安全填埋场粘土衬层渗透性的试验研究[J].煤矿环境保护, 2002, 16(4): 26-28.
    [145]介玉新,旦增顿珠,魏戈峰.垃圾土的渗透特性试验[J].岩土工程技术, 2005, 19(6): 307-310.
    [146]夏惠芬,王德民,刘中春,等.弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报, 2001, 22(4): 60-65.
    [147]赵阳,曲志浩,刘震.裂缝水驱油机理的真实砂岩微观模型实验研究[J].石油勘探与开发, 2002, 29(1): 116-119.
    [148]朱维耀,刘学伟,石志良,等.蜡沉积凝析气—液—固微观渗流机理研究[J].石油学报, 2007, 28(2): 87-89.
    [149]李登伟,张烈辉,周克明,等.可视化微观孔隙模型中气水两相渗流机理[J].中国石油大学学报(自然科学版), 2008, 32(3): 80-83.
    [150]郭尚平,黄延章,马效武,等.多相系统渗流的微观实验研究[J].石油学报, 1984, 5(1): 59-66.
    [151]郭尚平,黄延章,周娟,等.物理化学渗流的微观研究[J].力学学报, 1986, (S1): 45-50.
    [152]郭尚平,黄延章,周娟,等,物理化学渗流[M].北京:科学出版社, 1990.
    [153]黄延章,于大森,微观渗流实验力学及其应用[M].北京:石油工业出版社, 2001.
    [154]何秋轩,高永利,阎庆来.油层渗流的若干微观机理[J].西安石油学院学报, 1995, 10(3): 68-70.
    [155]高永利,何秋轩.砾岩油藏微观水驱油特征可视化研究—以克拉玛依砾岩油藏为例[J].西南石油学院学报, 1997, 19(3): 60-64.
    [156]潘一山,宋义敏,高迎伏,等.三元复合驱驱油机理及乳液渗流规律NMRI研究[J].辽宁工程技术大学学报, 2003a, 22(2): 199-201.
    [157]刘建军,宋义敏,潘一山. ASP三元复合体系驱油微观机理研究[J].辽宁工程技术大学学报, 2003b, 22(3): 326-328.
    [158]刘建军,刘先贵,冯夏庭.裂缝—孔隙介质油、水两相微观渗流物理模拟[J].岩石力学与工程学报, 2003c, 22(10): 1646-1650.
    [159]刘建军,代立强,李树铁.孔隙介质渗流微观数值模拟[J].辽宁工程技术大学学报, 2005, 24(5): 680-682.
    [160]黄康乐.多孔介质水动力弥散尺度效应研究[J].水文地质工程地质, 1991, 18(3, 4)
    [161]周仰效,国外地下水流及物质传输的模拟现状与趋势[C].工程、水文、环境地质论文集,北京:地震出版社,1993.
    [162]邹立芝,潘俊,杨昌兵,等.含水层水力参数的尺度效应研究现状[J].长春地质学院学报, 1994, 24(1): 66-69.
    [163] Bear J.,多孔介质流体动力学[M].李竟生等译.北京:中国建筑工业出版社, 1983.
    [164] Wheatcraft S. W. and Tyler S. W. An explanation of scale-dependent dispersity in heterogeneous aquifers using concepts of fractal geometry[J]. Water Resources Research, 1988, 24(4): 566-578.
    [165] Herweijer J. C. and Young S. C., Three-dimensional characterization of hydraulic conductivity in beterogeneous sands using pump tests and well tests on different scale[C]. International Conference on Calibration and Reliability in Groundwater Modelling,1990: 179-188.
    [166] Neuman Shlomo P. Universal scaling of hydraulic conductivities and dispersivities in geologic media[J]. Water Resources Research, 1990, 26(8): 1749-1758.
    [167] Ghilardi P., Abdulai K. K. and Menduni G. Self-similar heterogenety in granular porous media at the representative elementary volume scale[J]. Water Resources Research, 1993, 29(4): 1205-1214.
    [168] Schad H. and Teutsch G. Effects of the investigation scale on pumping test results in heterogeneous porous aquifers: field laboratory and modelling studies of flow and transport processes[J]. Journal of Hydrology, 1994, 159(1-4): 61-77.
    [169] Tanaka H., Shiwakoti D. R., Omukai N. and et al. Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Journal of The Japanese Geotechnical Society of Soils and Foundations, 2003, 43(6): 63-73.
    [170]吴承伟,马国军,周平.流体流动的边界滑移问题研究进展[J].力学进展, 2008, 38(3): 265-282.
    [171] Craig V. S. J., Neto C. and Williams D. R. M. Shear-dependent boundary slip in an aqueous Newtonian liquid[J]. Physical Review Letters, 2001, 87: 054504.
    [172] Neto C., Craig V. S. J. and Williams D. R. M. Evidences of shear-dependent boundary slip in Newtonian liquids[J]. European Physical Journal E, 2003, 12(Suppl. 1): 59-62.
    [173] Campbell S. E., Luengo G., Srdanov V. I. and et al. Very low viscosity at the solid-liquid interface induced by absorbed C60 monolayers[J]. Nature, 1996, 382: 520-522.
    [174] Zhu Y. X. and Granick S. Limits of the hydrodynamic no-slip boundary condition[J]. Physical Review Letters, 2002, 88: 106102.
    [175] Hervet H. and Léger L. Flow with slip at the wall: from simple to complex fluids[J]. Comptes Rendus Physique, 2003, 4(2): 241-249.
    [176] Schmatko T., Hervet H. and Léger L. Friction and slip at simple fluid-solid interfaces: the role of the molecular shape and the solid-liquid interaction[J]. Physical Review Letters, 2005, 94(24): 1-4.
    [177] Ou J. and Rothstein J. P. Direct velocity measurement of the flow past drag-reducing ultrahydrophobic surfaces[J]. Physics of Fluids, 2005, 17: 103606.
    [178] Tretheway D. C. and Meinhart C. D. Apparent fluid slip at hydrophobic microchannel walls[J]. Physics of Fluids, 2002, 14(3): L9-L12.
    [179] Joseph P. and Tabeling. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3): 035303.
    [180] Neto C., Evans D. R., Butt H. J. and et al, Boundary slip in Newtonian liquids: a review of experimental studies[R]. Reports on Progress in Physics, 2005, 68: 2859-2897.
    [181] Vinogradova O. I. Slippage of water over hydrophobic surfaces[J]. International Journal of Mineral Processing, 1999, 56: 31-60.
    [182] Granick S., Zhu Y. X. and Lee H. J. Slippery questions about complex fluids flowing past solids[J]. Nature Materials, 2003, 2(4): 221-227.
    [183] Traube J. and Whang S. H.über reibungskonstante und wandschicht[J]. Z Phys. Chem. A., 1928, 138: 102-122.
    [184] Weber L. J. and Neugebauer H. Theoretische betrachtungenüber das Traube-Whangsche ph?nomen[J]. Z Phys. Chem. A., 1928, 138: 161-168.
    [185] Schnell E. Slippage of water over nonwettable surfaces[J]. Journal of Applied Physics, 1956, 27: 1149-1152.
    [186] Churaev N. V., Sobolev V. D. and Somov A. N. Slippage of liquids over lyophobic solid surfaces[J]. Journal of Colloid and Interface Science, 1984, 97: 574-581.
    [187] Ou J., Perot B. and Rothstein J. P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(13): 4635-4643.
    [188]凌志勇,杨继昌,丁建宁,等.低粘度液体在微管道中流动特性的试验[J].农业机械学报, 2006, 37(11): 103-105.
    [189] Stemme G., Kitttilsland G. and Norden B. A sub micron particle filter in silicon channels[J]. Sensors and Actuators, 1990, 431(4): 21-23.
    [190]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报, 2001, 18(3): 46-48.
    [191]过增元.国际传热研究前沿—微细尺度传热[J].力学进展, 2000, 30(1): 1-6.
    [192] Kassner M. E., Nemat-Nasser S., Suo Z. and et al. New directions in mechanics[J]. Mechanics of Materials, 2005, 37: 231-259.
    [193]李志清,胡瑞林,王立朝,等.阳离子改性剂改良膨胀土试验研究[J].岩土工程学报, 2009, 31(7): 1094-1098.
    [194] Zheng G. D., Lang Y. H., Miyahara M. and et al. Iron oxide precipitate in seepage of groundwater from a landslide slip zone[J]. Environmental Geology, 2007, 51(8): 1455-1464.
    [195] Wen B. P., Aydin A. and Aydin N. S. Geochemical characteristics of the slip zones in granitic saprolite and the implication in their origin and evolution[J]. Environmental Geology, 2004, 47(1): 140-154.
    [196] Wen B. P., Nature and development of slip zones of landslides in igneous saprolites, Hongkong[D]. Hongkong: The University of Hongkong, 2002.
    [197] Shuzui H. Process of slip surface development and formation of slip surface clay in landslide in Tertiary volcanic rocks, Japan[J]. Engineering Geology, 2001, 61: 199-219.
    [198]王继华,彭振斌,杜长学.边坡中水土化学作用浅析[J].中国地质灾害与防治学报, 2006, 17(2): 69-73.
    [199]陈仁朋, Daita R. K., Drnevich V. P. and et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 249-255.
    [200]韩立华,刘松玉.城市区域土体铁的化学行为与土体强度变异关系研究[J].安全与环境学报, 2005, 5(5): 105-108.
    [201]韦复才.桂林红粘土的物质组成及其工程地质性质特征[J].江西师范大学学报(自然科学版), 2005, 29(5): 460-464.
    [202]仵彦卿.地下水与地质灾害[J].地下空间, 1999, 19(4): 303-310.
    [203]房营光,谷任国. Experiment study on the effects of absorbed water on rheological characteristics of soft clayey soil[J]. Science Technology and Engineering, 2007a, 7(1): 73-78.
    [204] Manassero M. and Dominijanni A. Modelling the osmosis effect on solute migration through porous media[J]. Geotechnique, 2003, 53(5): 481-492.
    [205] Barbour S. L. and Fredlund D. G. Mechanisms of osmotic flow and volume changes in clay soils[J]. Canadian Geotechnical Journal, 1989, 26: 551-562.
    [206]席永慧,冯世进.粘质土壤的膜性能研究进展[J].同济大学学报(自然科学版), 2009, 37(2): 187-191.
    [207] Keijzer T. J. S., Kleingeld P. J. and Loch J. P. G. Chemical osmosis in compacted clayey material and the prediction of water transport[J]. Engineering Geology, 1999, 53(5): 151-159.
    [208] Olsen H. W. Simultaneous fluxes of liquid and charge in saturated kaolinite[J]. Soil Sci. Soc. Am. Proc., 1969, 33: 338-344.
    [209] Olsen H. W. Liquid movement through kaolinite under hydraulic, electric, and osmotic gradients[J]. American Association Geologists Bulletin, 1972, 56: 2022-2028.
    [210] Young A. and Low P. F. Osmosis in argillaceous rocks[J]. Bulletin of the American Association of Petroleum Geologists, 1965, 49(7): 1004-1008.
    [211]徐超,李志斌,高彦斌.溶液特征对GCL膨胀和渗透特性的影响[J].同济大学学报(自然科学版), 2009, 37(1): 36-40, 46.
    [212] Ruhl J. L. and Daniel D. E. Geosynthetic clay liners permeated with chemical solutions and leachates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 369-381.
    [213] Lake C. B. and Rowe R. K. Diffusion of sodium and chloride through geosynthetic clay liners[J]. Geotextiles and Geomembranes, 2000, 18(2-4): 103-131.
    [214] Shackelford C. D., Benson C. H., Katsumi T. and et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes, 2000, 18(2-4): 133-161.
    [215] Casagrande L. Electroosmosis in soils[J]. Geotechnique, 1948, (1): 159-177.
    [216] Esrig M. I. Pore pressure, consolidation and electrokinetics[J]. Journal of the SMFD, ASCE, 1968, 94(SM4): 899-921.
    [217] Banerjee S. and Vitayasupakorn V. Appraisal of the electro-osmotic oedometer tests[J]. Journal of Geotechnical Engineering, 1984, 110(8): 1007-1023.
    [218] Chen J. L. and Murdonch L. Effects of electroosmosis on natural soil: field test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(12): 1090-1098.
    [219] Micic S., Shang J. Q., Lo K. Y. and et al. Electrokinetic strengthening of a marine sediment using intermittent current[J]. Canadian Geotechnical Journal, 2001, 38(22): 287-302.
    [220] Lefebvre G. and Burnotte F. Improvement of electroosmotic consolidation of soft clays by minimizing power loss at electrodes[J]. Canadian Geotechnical Journal, 2002, 39(2): 399-408.
    [221] Burnotte F., Lefebvre G. and Grondin G. A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact[J]. Canadian Geotechnical Journal, 2004, 41(6): 1038-1053.
    [222]周顺华,唐秋生.软土地区铁路基床病害的电化学处理法探讨[J].铁道学报, 1999, (1): 107-109.
    [223]高志义,张美燕.真空预压联合电渗法室内模型试验研究[J].中国港湾建设, 2000, (5): 58-61.
    [224]房营光,徐敏,朱忠伟.碱渣土的真空—电渗联合排水固结特性试验研究[J].华南理工大学学报(自然科学版), 2006, 34(11): 70-75.
    [225]何伟,赵明华,刘小平.双电层对非饱和粘土渗透率的影响[J].公路交通科技, 2008, 25(9): 47-51.
    [226]李学垣,土壤化学及实验指导[M].北京:中国农业出版社, 1997.
    [227]戴绍斌,黄俊,夏林.鄂北膨胀土的矿物组成和化学成分分析[J].岩土力学, 2005, 26(Supp.1): 296-299.
    [228]侯建.浅谈确定土的矿物组成方法[J].山西建筑, 2009, 35(13): 119.
    [229]王平全,粘土表面结合水定量分析及水合机制研究[D].南充:西南石油学院, 2001.
    [230]吴凤彩.粘性土吸附结合水容重测量[J].水利水运科学研究, 1987, (4): 69-74.
    [231]李文平,于双中,王柏荣,等.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质, 1995, (3): 31-34.
    [232]张华杰,孙秋,胡昕,等.岩土微结构试验研究综述[J].土工基础, 2008, 22(4): 49-52.
    [233]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报, 2006, 39(10): 87-91.
    [234]钱家欢,殷宗泽,土工原理与计算[M].第二版.北京:水利电力出版社, 1993.
    [235] Tovey N. K., Quantitative analysis of electron micro- graphs of soil structure[C]. Proceeding in the International Symposium on Soil Structure, Gothenburg,1980.
    [236]李法虎,土壤物理化学[M].北京:化学工业出版社, 2006.
    [237]谷任国,房营光.极细颗粒黏土渗流的微电场效应试验分析[J].长江科学院院报, 2009c, 26(6): 21-23.
    [238] Shibuya S., Mitachi T. and Tamate S. Interpretation of direct shear box testing of sands as quasi-simple shear[J]. Geotechnique, 1997, 47(4): 769-790.
    [239] Potts D. M., Dounias G. T. and Vaughan P. R. Finite element analysis of the direct shear box test[J]. Geotechnique, 1987, 37(1): 11-23.
    [240] George T. D. and David M. P. Numerical analysis of drained direct and simple shear tests[J]. Journal of Geotechnical Engineering, 1993, 119(12): 1870-1891.
    [241] Jewell R. A. Direct shear tests on sand[J]. Geotechnique, 1989, 39(2): 309-322.
    [242]闵弘,刘小丽,魏进兵,等.现场室内两用大型直剪仪研制(I):结构设计[J].岩土力学, 2006, 27(1): 168-172.
    [243]赵明华,肖燕,陈昌富.软土流变特性的室内试验与改进的西原模型[J].湖南大学学报(自然科学版), 2004, 31(1): 48-51.
    [244]杨熙章,土工试验与原理[M].上海:同济大学出版社, 1993.
    [245]宋畅,柴寿喜,王沛,等,土质试验与试验分析[M].天津:天津大学出版社, 2007.
    [246]邱正松,丁锐,于连香.泥页岩比表面积测定方法研究[J].钻井液与完井液, 1999, 16(1): 9-11.
    [247]梁大川.粘土和泥页岩比表面积测定和计算方法综述[J].钻井液与完井液, 1995, 12(5): 11-15.
    [248]孟昭福,张一平,郭仲义.有机修饰塿土表面特性的研究:I.CEC和比表面[J].土壤学报, 2008, 45(2): 370-374.
    [249] Carter D. L., Heilman M. D. and Gonzalez C. L. Ethylene glycol monoethyl ether for determining surface area of silicate minerals[J]. Soil Science, 1965, 100: 356-360.
    [250]胡小芳,胡大为,吴成宝.土壤透气性及粘土颗粒比表面积与粘土颗粒粒度分布分形维数关系[J].土壤通报, 2007, 38(2): 215-219.
    [251]邵旭平,陶精言,张慧中,等.吸附法测定U3O8粉末比表面积[J].原子能科学技术, 2004, 38(4): 366-369.
    [252]田英姿,陈克复.用压汞法和氮吸附法测定孔径分布及比表面积[J].中国造纸, 2004, 23(4): 21-23.
    [253]魏智强,乔宏霞,温贤伦,等.镍纳米粉的比表面积测试研究[J].甘肃工业大学学报, 2003, 29(3): 146-148.
    [254]王虎,张萍.非金属矿物比表面积及孔隙度测试方法研究[J].矿产保护与利用, 2001, 4: 18-23.
    [255]张茂林,徐伟昌.气体吸附法测定坡缕石的比表面积[J].江西地质, 2000, 14(1): 62-65.
    [256]王兴业.硅溶胶中二氧化硅粒径及比表面积测定[J].材料工程, 1997, 5: 34-36.
    [257]赵杏媛,张有瑜,粘土矿物与粘土矿物分析[M].北京:海洋出版社, 1990.
    [258]潘兆橹,万朴,应用矿物学[M].武汉:武汉工业大学出版社, 1993.
    [259]于天仁,季国亮,丁昌璞,可变电荷土壤的电化学[M].北京:科学出版社, 1996.
    [260]凌婉婷,土壤表面电荷特征与Cu2+离子吸附-解吸的相互关系[D].武汉:华中农业大学, 2001.
    [261] Van Olphen H.,粘土胶体化学导论[M].许冀泉等译.北京:农业出版社, 1982.
    [262]于天仁等编著,土壤的电化学性质及其研究法(修订本)[M].北京:科学出版社, 1976.
    [263]张效年,蒋能慧.土壤电化学性质的研究III.红壤胶体的电荷特征[J].土壤学报, 1964, 12(2): 120-131.
    [264]李妥德,谌壮丽.土样微观结构研究中的样品制备技术[J].水文地质工程地质, 1985, (2): 37-41.
    [265]施斌,姜洪涛.粘性土的微观结构分析技术研究[J].岩石力学与工程学报, 2001, 20(6): 864-870.
    [266]柴寿喜,韩文峰,王沛,等.用冻干法制备微结构测试用土样的试验研究[J].煤田地质与勘探, 2005, 33(2): 46-48.
    [267] Shear D. L., Olsen H. W. and Nelson K. R., Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay[R]. Washington D. C., Transportation research record, NRC, National academy press, 1993: 1365-1370.
    [268] Kodikara J., Barbour S. L. and Fredlund D. G., Changes in clay structure abd behavior due to wetting and drying[C]. Proceedings of the 8th Australian-New Zealand conference on Geomechanics,1999: 179-186.
    [269] Ananth R., Geotechnical Investigation-Factual Report of trial embankment of Bubiyan seaport phase-1 stage-1 road, bridge &soil improvement (No.200702 109-TM)[R]. Kuwait, Gulf Inspection International Company (GIICo), 2008,
    [270]杨洋,姚海林,陈守义.广西膨胀土的孔隙结构特征[J].岩土力学, 2006, 27(1): 155-158.
    [271] Low P. F. Physical chemistry of clay-water interaction[J]. Advances in Agronomy, 1961, 9: 269-327.
    [272]赵宇,崔鹏,胡良博.黏土抗剪强度演化与酸雨引发滑坡的关系——以三峡库区滑坡为例[J].岩石力学与工程学报, 2009, 28(3): 576-582.
    [273]王艳婷,黄土流变特性试验分析及本构模型的研究[D].西安:长安大学, 2006.
    [274] Lowell S. and Shields J. E., Powder surface area and porosity[M]. New York: Chapman and Hall, 1997.
    [275] Carlos A. and Le?ny L. New perspectives in mercury porosimetry[J]. Advances in Colloid and Interface Science, 1998, 76: 341-372.
    [276]李平,骆亚生.饱和土的三轴渗透试验研究[J].路基工程, 2006, (129): 32-33.
    [277]房纯纲,贾永梅,周晓文,等.汉江遥堤电导率与土性参数相关关系试验研究[J].水利学报, 2003, (6): 119-123.
    [278]翁永玲,宫鹏.黄河三角洲盐渍土盐分特征研究[J].南京大学学报(自然科学), 2006, 42(6): 602-610.
    [279]敬芸仪,邓良基,张世熔.主要紫色土电导率特征及其影响因素研究[J].土壤通报, 2006, 37(3): 617-619.
    [280]林义成,丁能飞,傅庆林,等.土壤溶液电导率的测定及其相关因素的分析[J].浙江农业学报, 2005, 17(2): 83-86.
    [281]刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的试验研究[J].土壤通报, 2001, 32(S0): 85-87.
    [282] Glenn H., Peter M. M., Pal S. and et al. Viscosities of concentrated electrolyte solutions[J]. Journal of Molecular Liquids, 2003, (103-104): 261-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700